Physiological Responses of the Green Shore Crab, Carcinus maenas, During Acute and Chronic Low Temperature Exposure
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Collection and Housing
2.2. Temperature Reduction Experiments
2.3. Long-Term Acclimation to Winter and Summer Time Temperature Experiments
2.4. Heart Rate
2.5. Metabolic Rate and Energy Expenditure
2.6. Statistical Analysis
3. Results
3.1. Temperature Reduction
3.2. Long-Term Acclimation to Winter and Summer Time Temperatures
4. Discussion
4.1. Reduction in Temperature
4.2. Long-Term Acclimation to Winter and Summer Temperatures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGaw, I.J.; Edgell, T.C.; Kaiser, M.J. Population demographics of native and newly invasive populations of the green crab Carcinus maenas. Mar. Ecol. Prog. Ser. 2011, 430, 235–240. [Google Scholar]
- Klassen, G.; Locke, A. A Biological Synopsis of the European Green Crab, Carcinus maenas; Canadian Manuscript Report of Fisheries and Aquatic Sciences; Fisheries and Oceans Canada: Moncton, NB, Canada, 2007; Volume 2818, pp. 1–82. [Google Scholar]
- Amaral, V.; Cabral, H.N.; Jenkins, S.; Hawkins, S.; Paula, J. Comparing quality of estuarine and nearshore intertidal habitats for Carcinus maenas. Estuar. Coast. Shelf Sci. 2009, 83, 219–226. [Google Scholar]
- McKenzie, C.H.; Matheson, K.; Sargent, P.; Piersiak, M.; Bernier, R.Y.; Simard, N.; Therriault, T.W. Trapping Methods for the Invasive European Green Crab in Canada; Fisheries and Oceans Canada: Moncton, NB, Canada, 2022; Canadian Science Advisory Secretariat (CSAS), Research Document 2022/063; iv + 47p. [Google Scholar]
- Carlton, J.T.; Cohen, A.N. Episodic global dispersal in shallow water marine organisms: The case history of the European shore crabs Carcinus maenas and C. aestuarii. J. Biogeogr. 2003, 30, 1809–1820. [Google Scholar]
- Grosholz, E.D.; Ruiz, G.M. Biological invasions drive size increases in marine and estuarine invertebrates. Ecol. Lett. 2003, 6, 700–705. [Google Scholar]
- Glude, J.B. The effects of temperature and predators on the abundance of the soft shell clam, Mya arenaria, in New England. Trans. Am. Fish. Soc. 1955, 84, 13–26. [Google Scholar] [CrossRef]
- Grosholz, E.D.; Ruiz, G.M. Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crab Carcinus maenas. Biol. Conserv. 1996, 78, 59–66. [Google Scholar]
- Fulton, S.W.; Grant, F.E. Some Little Known Victorian Decapod Crustacea with Description of a New Species. J. R. Dublin Soc. 1902, 1, 1S58. [Google Scholar]
- Joska, M.A.P.; Branch, G.M. The European shore-crab-another alien invader. Afr. Wildl. 1986, 40, 63–65. [Google Scholar]
- Le Roux, P.J.; Branch, G.M.; Joska, M.A.P. On the distribution, diet and possible impact of the invasive European shore crab Carcinus maenas (L.) along the South African coast. S. Afr. J. Mar. Sci. 1990, 9, 85–93. [Google Scholar] [CrossRef]
- Darling, J.A. Interspecific hybridization and mitochondrial introgression in invasive Carcinus shore crabs. PLoS ONE 2011, 6, e17828. [Google Scholar]
- Cohen, A.N.; Carlton, J.T.; Fountain, M.C. Introduction, dispersal and potential impacts of the green crab Carcinus maenas in San Francisco Bay, California. Mar. Biol. 1994, 122, 225–237. [Google Scholar]
- Hidalgo, F.J.; Baron, P.J.; Orensanz, J.M. A prediction come true: The green crab invades the Patagonian coast. Biol. Invasions 2005, 7, 547–552. [Google Scholar]
- Kern, F.; Grosholz, E.; Ruiz, G. Management Plan for the European Green Crab. Aquatic Nuisance Species Task Force. 2002. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9dbcfc1093691c341a76dab003fb0c5aea5931e6 (accessed on 6 August 2024).
- Tepolt, C.K.; Somero, G.N. Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. J. Exp. Biol. 2014, 217, 1129–1138. [Google Scholar]
- Taylor, E.W.; Wheatly, M.G. The behaviour and respiratory physiology of the shore crab, Carcinus maenas (L.) at moderately high temperatures. J. Comp. Physiol. B 1979, 130, 309–316. [Google Scholar]
- Miron, G.; Landry, T.; MacNair, N. Predation Potential by Various Epibenthic Organisms on Commercial Bivalve Species in Prince Edward Island: Preliminary Results; Fisheries and Oceans Canada: Moncton, NB, Canada, 2002; 2392, Ix + 33 p; Available online: https://publications.gc.ca/site/eng/422200/publication.html (accessed on 6 August 2024).
- Young, J.S.; Peck, L.S.; Matheson, T. The effects of temperature on walking and righting in temperate and Antarctic crustaceans. Polar Biol. 2006, 29, 978–987. [Google Scholar]
- Berrill, M. The life cycle of the green crab Carcinus maenas at the northern end of its range. J. Crustac. Biol. 1982, 2, 31–39. [Google Scholar]
- De Rivera, C.E.; Hitchcock, N.G.; Teck, S.J.; Steves, B.P.; Hines, A.H.; Ruiz, G.M. Larval development rate predicts range expansion of an introduced crab. Mar. Biol. 2007, 150, 1275–1288. [Google Scholar]
- Audet, D.; Davis, D.S.; Miron, G.; Moriyasu, M.; Benhalima, K.; Campbell, R. Geographical expansion of a nonindigenous crab, Carcinus maenas (L.), along the Nova Scotian shore into the southeastern Gulf of St. Lawrence, Canada. J. Shellfish Res. 2003, 22, 255–262. [Google Scholar]
- Jeffery, N.W.; Bradbury, I.R.; Stanley, R.R.; Wringe, B.F.; Van Wyngaarden, M.; Lowen, J.B.; McKenzie, C.H.; Matheson, K.; Sargent, P.S.; DiBacco, C. Genomewide evidence of environmentally mediated secondary contact of European green crab (Carcinus maenas) lineages in eastern North America. Evol. Appl. 2018, 11, 869–882. [Google Scholar]
- Compton, T.J.; Leathwick, J.R.; Inglis, G.J. Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers. Distrib. 2010, 16, 243–255. [Google Scholar]
- Frederich, M.; DeWachter, B.; Sartoris, F.J.; Pörtner, H.O. Cold tolerance and the regulation of cardiac performance and hemolymph distribution in Maja squinado (Crustacea: Decapoda). Physiol. Biochem. Zool. 2000, 73, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Madeira, D.; Narciso, L.; Cabral, H.N.; Diniz, M.S.; Vinagre, C. Role of thermal niche in the cellular response to thermal stress: Lipid peroxidation and HSP70 expression in coastal crabs. Ecol. Indic. 2014, 36, 601–606. [Google Scholar] [CrossRef]
- McGaw, I.J.; Whiteley, N.M. Effects of acclimation and acute temperature change on specific dynamic action and gastric processing in the green shore crab, Carcinus maenas. J. Therm. Biol. 2012, 37, 570–578. [Google Scholar] [CrossRef]
- Kelley, A.L.; de Rivera, C.E.; Buckley, B.A. Cold tolerance of the invasive Carcinus maenas in the east Pacific: Molecular mechanisms and implications for range expansion in a changing climate. Biol. Invasions 2013, 15, 2299–2309. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Somero, G.N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Ahsanullah, M.; Newell, R.C. Factors affecting the heart rate of the shore crab Carcinus maenas (L.). Comp. Biochem. Physiol. Part A 1971, 39, 277–287. [Google Scholar] [CrossRef]
- Taylor, E.W.; Butler, P.J.; Al-Wassia, A. Some responses of the shore crab, Carcinus maenas (L.) to progressive hypoxia at different acclimation temperatures and salinities. J. Comp. Physiol. 1977, 122, 391–402. [Google Scholar] [CrossRef]
- Cuculescu, M.; Hyde, D.; Bowler, K. Thermal tolerance of two species of marine crab, Cancer pagurus and Carcinus maenas. J. Therm. Biol. 1998, 23, 107–110. [Google Scholar] [CrossRef]
- Jørgensen, L.B.; Overgaard, J.; MacMillan, H.A. Paralysis and heart failure precede ion balance disruption in heat-stressed European green crabs. J. Therm. Biol. 2017, 68, 186–194. [Google Scholar] [CrossRef]
- Kelley, A.L.; de Rivera, C.E.; Buckley, B.A. Intraspecific variation in thermotolerance and morphology of the invasive European green crab, Carcinus maenas, on the west coast of North America. J. Exp. Mar. Biol. Ecol. 2011, 409, 70–78. [Google Scholar] [CrossRef]
- McGaw, I.J.; Nancollas, S.J. Experimental setup influences the cardiovascular responses of decapod crustaceans to environmental change. Can. J. Zool. 2018, 96, 1043–1052. [Google Scholar] [CrossRef]
- Levinton, J.S.; Volkenborn, N.; Gurr, S.; Correal, K.; Villacres, S.; Seabra, R.; Lima, F.P. Temperature-related heart rate in water and air and a comparison to other temperature-related measures of performance in the fiddler crab Leptuca pugilator (Bosc 1802). J. Therm. Biol. 2020, 88, 102502. [Google Scholar] [CrossRef] [PubMed]
- Lutterschmidt, W.I.; Hutchison, V.H. The critical thermal maximum: History and critique. Can. J. Zool. 1997, 75, 1561–1574. [Google Scholar] [CrossRef]
- Taylor, E.W. Some effects of temperature on respiration in decapodean crustaceans. J. Therm. Biol. 1981, 6, 239–248. [Google Scholar] [CrossRef]
- Whiteley, N.M.; Taylor, E.W.; El Haj, A.J. Seasonal and latitudinal adaptation to temperature in crustaceans. J. Therm. Biol. 1997, 22, 419–427. [Google Scholar] [CrossRef]
- McGaw, I.J.; Reiber, C.L. Circulatory physiology. In Physiology, the Natural History of Crustaceans; Oxford University Press: Oxford, UK, 2015; Volume 4, pp. 199–246. [Google Scholar]
- Breteler, W.K. Food consumption, growth and energy metabolism of juvenile shore crabs, Carcinus maenas. Neth. J. Sea Res. 1975, 9, 255–272. [Google Scholar] [CrossRef]
- Camus, L.; Davies, P.E.; Spicer, J.I.; Jones, M.B. Temperature-dependent physiological response of Carcinus maenas exposed to copper. Mar. Environ. Res. 2004, 58, 781–785. [Google Scholar] [CrossRef]
- Tepolt, C.K.; Somero, G.N. 2013, Cardiac thermal tolerance and acclimatory plasticity in diverse populations of the invasive green crab, Carcinus maenas. In Integrative and Comparative Biology; Oxford University Press INC.: Cary, NC, USA, 2001; Volume 53, p. E213. [Google Scholar]
- Blakeslee, A.M.; McKenzie, C.H.; Darling, J.A.; Byers, J.E.; Pringle, J.M.; Roman, J. A hitchhiker’s guide to the Maritimes: Anthropogenic transport facilitates long distance dispersal of an invasive marine crab to Newfoundland. Divers. Distrib. 2010, 16, 879–891. [Google Scholar] [CrossRef]
- DFO. Ecological Assessment of the Invasive European Green Crab (Carcinus maenas) in Newfoundland 2007–2009; DFO Canadian Science Advisory Secretariat Science Advisory Report 2010/033; Fisheries and Oceans Canada: Moncton, NB, Canada, 2011; p. 10. [Google Scholar]
- Jeffery, N.W.; DiBacco, C.; Van Wyngaarden, M.; Hamilton, L.C.; Stanley, R.R.; Bernier, R.; FitzGerald, J.; Matheson, K.; McKenzie, C.H.; Nadukkalam Ravindran, P.; et al. RAD sequencing reveals genomewide divergence between independent invasions of the European green crab (Carcinus maenas) in the Northwest Atlantic. Ecol. Evol. 2017, 7, 2513–2524. [Google Scholar] [CrossRef]
- Jeffery, N.W.; DiBacco, C.; Wringe, B.F.; Stanley, R.R.; Hamilton, L.C.; Ravindran, P.N.; Bradbury, I.R. Genomic evidence of hybridization between two independent invasions of European green crab (Carcinus maenas) in the Northwest Atlantic. Heredity 2017, 119, 154–165. [Google Scholar] [CrossRef]
- Methven, D.A.; Piatt, J.F. Seasonal abundance and vertical distribution of capelin (Mallotus villosus) in relation to water temperature at a coastal site off eastern Newfoundland. ICES J. Mar. Sci. 1991, 48, 187–193. [Google Scholar] [CrossRef]
- Colbourne, E.B.; Holden JSnook, S.; Han, G.; Lewis, S.; Senciall, D.; Bailey, W.; Higdon, J.; Chen, N. Physical Oceanographic Conditions on the Newfoundland and Labrador Shelf During 2016; Fisheries and Oceans Canada: Moncton, NB, Canada, 2017; Canadian Science Advisory Secretariat (CSAS), Research Document 2017/079. v + 50 p. [Google Scholar]
- Naylor, E. Seasonal changes in a population of Carcinus maenas (L.) in the littoral zone. J. Anim. Ecol. 1962, 31, 601–609. [Google Scholar] [CrossRef]
- Sharp, G.; Semple, R.; Connolly, K.; Blok, R.; Audet, D.; Cairns, D.; Courtenay, S. Ecological assessment of the Basin Head lagoon: A proposed marine protected area. Can. Manuscr. Rep. Fish. Aquat. Sci. 2003, 2641, 76. [Google Scholar]
- Rivers, M.L. Surviving Winter on the Rock: How European Green Crab (Carcinus maenas) Utilizes its Thermal Tolerance and Habitat Use to Tolerate the Cold-Water Temperatures in Newfoundland. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2024; p. 182. [Google Scholar]
- Cronin, T.W. Photoreception in marine invertebrates. Am. Zool. 1986, 26, 403–415. [Google Scholar] [CrossRef]
- McGaw, I.J.; Curtis, D.L. A review of gastric processing in decapod crustaceans. J. Comp. Physiol. B 2013, 183, 443–465. [Google Scholar] [CrossRef]
- Wilson, C.H.; Wyeth, R.C.; Spicer, J.I.; McGaw, I.J. Effect of animal stocking density and habitat enrichment on survival and vitality of wild green shore crabs, Carcinus maenas, maintained in the laboratory. Animals 2021, 12, 2970. [Google Scholar] [CrossRef]
- Aagaard, A.; Warman, C.G.; Depledge, M.H.; Naylor, E. Dissociation of heart rate and locomotor activity during the expression of rhythmic behaviour in the shore crab Carcinus maenas. Mar. Freshw. Behav. Physiol. 1995, 26, 1–10. [Google Scholar] [CrossRef]
- McMahon, B.R. Intrinsic and extrinsic influences on cardiac rhythms in crustaceans. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1999, 124, 539–547. [Google Scholar] [CrossRef]
- Secor, S.M. Specific dynamic action: A review of the postprandial metabolic response. J. Comp. Physiol. B 2009, 179, 1–56. [Google Scholar] [CrossRef]
- Lehnert, S.J.; DiBacco, C.; Jeffery, N.W.; Blakeslee, A.M.; Isaksson, J.; Roman, J.; Wringe, B.F.; Stanley, R.R.; Matheson, K.; McKenzie, C.H.; et al. Temporal dynamics of genetic clines of invasive European green crab (Carcinus maenas) in eastern North America. Evol. Appl. 2018, 11, 1656–1670. [Google Scholar] [CrossRef]
- Roman, J. Diluting the founder effect: Cryptic invasions expand a marine invader’s range. Proc. R. Soc. B 2006, 273, 2453–2459. [Google Scholar] [CrossRef]
- Darling, J.A.; Bagley, M.J.; Roman, J.O.E.; Tepolt, C.K.; Geller, J.B. Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol. Ecol. 2008, 17, 4992–5007. [Google Scholar] [CrossRef] [PubMed]
- Coyle, A.F.; Voss, E.R.; Tepolt, C.K.; Carlon, D.B. Mitochondrial genotype influences the response to cold stress in the European green crab, Carcinus maenas. J. Exp. Biol. 2019, 222, jeb203521. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, N.M.; Houlihan, D.F. Respiratory and circulatory adjustments during aquatic treadmill exercise in the European shore crab Carcinus maenas. J. Exp. Biol. 1992, 162, 37–54. [Google Scholar]
- De Wachter, B.D.; McMahon, B.R. Haemolymph flow distribution, cardiac performance and ventilation during moderate walking activity in Cancer magister (Dana) (Decapoda, Crustacea). J. Exp. Biol. 1996, 199, 627–633. [Google Scholar]
- Rose, R.A.; Wilkens, J.L.; Walker, R.L. The effects of walking on heart rate, ventilation rate and acid-base status in the lobster Homarus americanus. J. Exp. Biol. 1998, 201, 2601–2608. [Google Scholar]
- Clarke, A. Temperature and energetics: An introduction to cold ocean physiology. In Cold Ocean Physiology; Portner, H.O., Playle, R., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 3–30. [Google Scholar]
- Wieser, W. The Effects of Temperature on Ectothermic Organisms; Springer: Berlin/Heidelberg, Germany, 1973. [Google Scholar]
- Costa, I.A.; Driedzic, W.R.; Gamperl, A.K. Metabolic and cardiac responses of cunner Tautogolabrus adspersus to seasonal and acute changes in temperature. Physiol. Biochem. Zool. 2013, 86, 233–244. [Google Scholar]
- Speers-Roesch, B.; Norin, T.; Driedzic, W.R. The benefit of being still: Energy savings during winter dormancy in fish come from inactivity and the cold, not from metabolic rate depression. Proc. R. Soc. B 2018, 285, 20181593. [Google Scholar]
- Knight, K. Cold winter fish slow down naturally rather than by depressing metabolism. J. Exp. Biol. 2022, 225, jeb244303. [Google Scholar]
- Stillman, J.H.; Somero, G.N. Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): Correlation of physiology, biochemistry and morphology with vertical distribution. J. Exp. Biol. 1996, 199, 1845–1855. [Google Scholar]
- Jost, J.A.; Podolski, S.M.; Frederich, M. Enhancing thermal tolerance by eliminating the pejus range: A comparative study with three decapod crustaceans. Mar. Ecol. Prog. Ser. 2012, 444, 263–274. [Google Scholar] [CrossRef]
- Madeira, D.; Narciso, L.; Cabral, H.N.; Vinagre, C. Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J. Sea Res. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Payette, A.L.; McGaw, I.J. Thermoregulatory behavior of the crayfish Procambarus clarki in a burrow environment. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 136, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Jury, S.H.; Watson, W.H., 3rd. Thermosensitivity of the lobster, Homarus americanus, as determined by cardiac assay. Biol. Bull. 2000, 199, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Kivivuori, L. Temperature acclimation of the caudal photoreceptor response in the crayfish Astacus astacus L. Comp. Biochem. Physiol. Part A 1982, 72, 17–22. [Google Scholar] [CrossRef]
- Lehti-Koivunen, S.M.; Kivivuori, L.A. Effect of temperature acclimation in the crayfish Astacus astacus L. on the locomotor activity during a cyclic temperature change. J. Therm. Biol. 1994, 19, 299–304. [Google Scholar] [CrossRef]
- Young, A.M.; Elliott, J.A.; Incatasciato, J.M.; Taylor, M.L. Seasonal catch, size, color, and assessment of trapping variables for the European green crab (Carcinus maenas) (Brachyura: Portunoidea: Carcinidae), a non-indigenous species in Massachusetts, USA. J. Crustac. Biol. 2017, 37, 556–570. [Google Scholar] [CrossRef]
- Newell, R.C.; Bayne, B.L. A review on temperature and metabolic acclimation in intertidal marine invertebrates. Neth. J. Sea Res. 1973, 7, 421–433. [Google Scholar] [CrossRef]
- Matveev, E.; McGaw, I.J. Effects of laboratory holding time and diet type on labile traits in the crab Cancer irroratus Say, 1817 (Decapoda: Brachyura: Cancridae). J. Crustac. Biol. 2022, 42, ruab076. [Google Scholar] [CrossRef]
- Bowler, K. A study of the factors involved in acclimatization to temperature and death at high temperatures in Astacus pallipes. I. Experiments on intact animals. J. Cell. Comp. Physiol. 1963, 62, 119–132. [Google Scholar] [CrossRef]
- Sneddon, L.U.; Huntingford, F.A.; Taylor, A.C. The influence of resource value on the agonistic behaviour of the shore crab, Carcinus maenas (L.). Mar. Freshw. Behav. Physiol. 1997, 30, 225–237. [Google Scholar] [CrossRef]
- Robertson, R.F.; Meagor, J.; Taylor, E.W. Specific dynamic action in the shore crab, Carcinus maenas (L.), in relation to acclimation temperature and to the onset of the emersion response. Physiol. Biochem. Zool. 2002, 75, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Careau, V.; Thomas, D.; Humphries, M.M.; Réale, D. Energy metabolism and animal personality. Oikos 2008, 117, 641–653. [Google Scholar] [CrossRef]
- Réale, D.; Reader, S.M.; Sol, D.; McDougall, P.T.; Dingemanse, N.J. Integrating animal temperament within ecology and evolution. Biol. Rev. 2007, 82, 291–318. [Google Scholar] [CrossRef] [PubMed]
- Biro, P.A.; Stamps, J.A. Are animal personality traits linked to life-history productivity? Trends Ecol. Evol. 2008, 23, 361–368. [Google Scholar] [CrossRef]
- Biro, P.A.; Stamps, J.A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol. Evol. 2010, 25, 653–659. [Google Scholar] [CrossRef]
- Biro, P.A.; Beckmann, C.; Stamps, J.A. Small within-day increases in temperature affects boldness and alters personality in coral reef fish. Proc. R. Soc. B 2010, 277, 71–77. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Van Leeuwen, T.E.; Killen, S.S. Does individual variation in metabolic phenotype predict fish behaviour and performance? J. Fish Biol. 2016, 88, 298–321. [Google Scholar] [CrossRef]
- Bélair, M.C.; Miron, G. Time budget of Cancer irroratus (Say) and Carcinus maenas (L.) under various temperature and prey density conditions during conspecific and heterospecific challenges. J. Shellfish Res. 2009, 28, 923–930. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivers, M.L.; McKenzie, C.H.; McGaw, I.J. Physiological Responses of the Green Shore Crab, Carcinus maenas, During Acute and Chronic Low Temperature Exposure. Animals 2024, 14, 3049. https://doi.org/10.3390/ani14213049
Rivers ML, McKenzie CH, McGaw IJ. Physiological Responses of the Green Shore Crab, Carcinus maenas, During Acute and Chronic Low Temperature Exposure. Animals. 2024; 14(21):3049. https://doi.org/10.3390/ani14213049
Chicago/Turabian StyleRivers, Molly L., Cynthia H. McKenzie, and Iain J. McGaw. 2024. "Physiological Responses of the Green Shore Crab, Carcinus maenas, During Acute and Chronic Low Temperature Exposure" Animals 14, no. 21: 3049. https://doi.org/10.3390/ani14213049
APA StyleRivers, M. L., McKenzie, C. H., & McGaw, I. J. (2024). Physiological Responses of the Green Shore Crab, Carcinus maenas, During Acute and Chronic Low Temperature Exposure. Animals, 14(21), 3049. https://doi.org/10.3390/ani14213049