Effect of Long-Term Supplementation of AZOMITE (Hydrated Sodium Calcium Aluminosilicate) in Finishing Diets on Growth Performance, Dietary Energy, and Carcass Yield of Hairy Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Location in Which Experiment Was Performed and Ethical Considerations
2.2. Animals, Diet, and Experimental Design
2.3. Feed and Refusals Analysis
2.4. Calculations
2.5. Carcass Dressing and Visceral Organ Mass
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-chemical properties of clay minerals and their use as a health promoting feed additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef] [PubMed]
- Játiva, A.; Ruales, E.; Etxeberria, M. Volcanic ash as a sustainable binder material: An extensive review. Materials 2021, 14, 1302. [Google Scholar] [CrossRef] [PubMed]
- Ilham, D.J.; Kautsar, F.R.; Januarti, J.; Anggarini, U.; Fiantis, D. The potential use of volcanic deposits for geopolymer materials. IOP Conf. Series J. Earth Environ. Sci. 2020, 497, 012035. [Google Scholar] [CrossRef]
- Azomite International. Azomite in the News. 2021. Available online: https://azomite.com/about-azomite-mineral-products/azomite-in-the-news/ (accessed on 17 January 2023).
- Ahamed, Z.; Das, S.C.; Dey, B.; Azad, M.R.; Islam, K.M.S. Supplementation of natural minerals on the performance of broiler. Bang. J. Anim. Sci. 2019, 48, 92–98. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20203203069 (accessed on 24 February 2023). [CrossRef]
- Pirzado, S.A.; Wu, Z.; Liu, J.; Zheng, A.; Cai, H.; Liu, G. Effect of azomite with low energy diet on growth, carcass performance and blood biochemical indexes in broiler chickens. J. Aquat. Live. Prod. 2020, 11, 1–5. [Google Scholar] [CrossRef]
- Pirzado, S.A.; Hassan, F.u.; Arain, M.A.; Zhengke, W.; Huiyi, C.; Haile, T.H.; Guohua, L. Effect of Azomite on growth performance, nutrient utilization, serum biochemical indexand bone mineralization of broilers fed low protein diet. Ital. J. Anim. Sci. 2021, 20, 1282–1291. [Google Scholar] [CrossRef]
- Teng, P.Y.; Choi, J.; Yadav, S.; Maeshall, B.; Castro, F.L.S.; Ferrel, J.; Kim, W.K. Evaluation of adacitic (rhyolitic) tuff breccia use on performance, inflammatory, and antioxidant responses in broilers mildly challenged with Eimeria spp. Poult. Sci. 2023, 102, 102697. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, H.; Chang, W.T.H.; Li, X.; Leng, X. The combined supplementation of AZOMITE and citric acid promoted the growth, intestinal health, antioxidant, and resistance against Aeromonas hydrophila for Largemouth Bass, Micropterus salmoides. Aquac. Nutr. 2023, 100, 5022456. [Google Scholar] [CrossRef]
- Pereira, E.S.; Carmo, A.B.R.; Costa, M.R.G.F.; Medeiros, A.N.; Oliveira, R.L.; Pinto, A.P.; Carneiro, M.S.S.; Lima, F.W.R.; Campos, A.C.N.; Gomes, S.P. Mineral requirements of hair sheep in tropical climates. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1090–1096. [Google Scholar] [CrossRef]
- Herbster, C.J.L.; Abreu, M.L.C.; Brito Neto, A.S.; Mendes, M.S.; Silva, L.P.D.; Marcondes, M.I.; Mazza, P.H.S.; Cabral, L.S.; Bezerra, L.R.; Oliveira, R.L.; et al. Macromineral requirements for maintenance and growth in male and female hair sheep. Front. Vet. Sci. 2023, 10, 1032429. [Google Scholar] [CrossRef]
- Normas Oficiales Mexicanas; Diario Oficial de la Federación. (NOM-051-ZOO-1995, NOM-033-ZOO-1995) Trato Humanitario de Animales de Producción, de Compañía y Animales Silvestres Durante el Proceso de Crianza, Desarrollo de Experimentos, Movilización y Sacrificio; 1995. Available online: https://www.dof.gob.mx/normasOficiales/4010/seeco11_C/seeco11_C.htm (accessed on 17 January 2023).
- National Research Council. Nutrient Requirement of Small Ruminant: Sheep, Goats, Cervids, and New World Camelids; National Academy Science (NRC): Washington, DC, USA, 2007. [Google Scholar]
- Association of Official Analytical Chemists. Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirement of Sheep, 6th ed.; National Academy Science (NRC): Washington, DC, USA, 1985. [Google Scholar]
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: ADG, mature weight, DMI and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Statistical Analytical System Institute Inc. SAS Proprietary Software Release 9.3; SAS Institute Inc. (SAS): Cary, NC, USA, 2004. [Google Scholar]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants: A review. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Placha, I.; Gai, F.; Simonová, M.P. Editorial: Natural feed additives in animal nutrition—Their potential as functional feed. Front. Vet. Sci. 2022, 9, 1062724. [Google Scholar] [CrossRef] [PubMed]
- Damato, A.; Vianello, F.; Novelli, E.; Balzan, S.; Gianesella, M.; Giaretta, E.; Gabai, G. Comprehensive review on the interactions of clay minerals with animal physiology and production. Front. Vet. Sci. 2022, 9, 889612. [Google Scholar] [CrossRef]
- Mumpton, F.A. La roca mágica: Uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. USA 1999, 96, 3463–3470. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, N.; Umaña, J.C.; Alastuey, A.; Hernández, E.; López-Soler, A.; Plana, F. Synthesis of zeolites from coal fly ash: An overview. Int. J. Coal Geol. 2002, 50, 413–423. [Google Scholar] [CrossRef]
- Spotti, M.; Fracchiola, M.L.; Arioli, F.; Canoni, F.; Pompa, G. Aflatoxin B1 binding to sorbents in bovine ruminal fluid. Vet. Res. Commun. 2005, 29, 507–515. [Google Scholar] [CrossRef]
- Sweeney, T.F.; Cervantes, A.; Bull, L.S.; Hemken, R.W. Effects of dietary clinoptilolite on digestion and rumen fermentation in steers. In Zeo-Agriculture Use of Natural Zeolites in Agriculture and Aquaculture; Pond, W.G., Mumpton, F.A., Eds.; Westview Press: Boulder, CO, USA, 1984; p. 177. [Google Scholar]
- Estrada-Angulo, A.; Urías-Estrada, J.D.; Castro-Pérez, B.I.; Contreras-Pérez, G.; Angulo-Montoya, C.; Barreras, A.; López-Soto, M.A.; Olivas-Valdés, J.A.; Plascencia, A. Impact of dietary inclusion of clinoptilolite as substitute of soybean meal on growth performance, dietary energetics and carcass traits of feedlot ewes fed a corn-based diet. Austral. J. Vet. Sci. 2017, 49, 123–128. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Coronel-Burgos, F.; Castro-Pérez, B.I.; López-Soto, M.A.; Barreras, A.; Angulo-Montoya, C.; Contreras-Pérez, G.; Plascencia, A.; Effect of zeolite inclusion for finishing feedlot lambs: Growth performance and dietary energetic. Arch. Zoot. 2017, 66, 381–386. Available online: https://www.redalyc.org/pdf/495/49553112009.pdf (accessed on 6 April 2023).
- Roque-Jiménez, J.A.; Pinos-Rodríguez, J.M.; Rojo-Rubio, R.; Mendoza, G.D.; Vazquez, A.; Cayetano De Jesus, J.A.; Lee-Rangel, H.A. Effect of natural zeolite on live weight changes, ruminal fermentation and nitrogen metabolism of ewe lambs. South Afr. J. Anim. Sci. 2018, 48, 1149–1155. [Google Scholar] [CrossRef]
- Castro-Pérez, B.I.; Rodríguez-Vázquez, J.; Estrada-Angulo, A.; Ríos-Rincón, F.G.; Urías-Estrada, J.D.; Ponce-Barraza, E.; Barreras, A.; Plascencia, A. Effect of particle size of zeolite clay included in high-energy diets for feedlot lambs: Growth performance, dietary energy, carcass traits, and visceral mass. J. Adv. Vet. Anim. Res. 2023, 10, 500–506. [Google Scholar] [CrossRef]
- Urías-Estrada, J.D.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Ponce-Barraza, E.; Arteaga-Wences, Y.J.; Ramos-Méndez, J.L.; Alberto Barreras, A.; Valdés-García, Y.; Plascencia, A. Impact of presence of zeolite in diets for lambs supplemented with zilpaterol hydrochloride: Growth performance and dietary energetics. Chil. J. Agric. Res. 2023, 83, 768–776. [Google Scholar] [CrossRef]
- Smith, E.E.; Phillips, T.D.; Ellis, J.A.; Harvey, R.B.; Kubena, L.F.; Thompson, J.; Newton, G. Dietary hydrated sodium calcium aluminosilicate reduction of aflatoxin M1 residue in dairy goat milk and effects on milk production and components. J. Anim. Sci. 1994, 72, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Şahin, T.; Şehu, A. Effects of hydrated sodium calcium aluminosilicate (HSCAS) on aflatoxicosis in broilers. Arch. Geflügelk 2007, 71, S88–S92. [Google Scholar]
- Juzaitis-Boelter, C.P.; Benson, A.P.; Ahammad, M.U.; Jones, M.K.; Ferrel, J.; Davis, A.J. Dietary inclusion of AZOMITE improves feed efficiency in broilers and egg production in laying and broiler breeder hens. Poultry Sci. 2021, 100, 101144. [Google Scholar] [CrossRef]
- Matthews, J.O.; Southern, L.L.; Bidner, T.D.; Hayes, V.W.; Larsen, L.M. Effect of a hydrated sodium calcium aluminosilicate on growth performance and carcass traits of pigs. Prof. Anim. Sci. 1999, 15, 196–200. [Google Scholar] [CrossRef]
- Batool, S.S.; Khan, N.; Atique, U.; Azmat, H.; Iqbal, K.J.; Mughal, D.H.; Ahmad, S.; Batool, S.; Munawar, S.; Dogar, S.; et al. Impact of azomite supplemented diets on the growth and body composition of catfish (Pangasius hypophthalmus). Pak. J. Zool. 2018, 13, 8–12. [Google Scholar]
- McCollum, F.T.; Galyean, M.L. Effects of clinoptilolite on rumen fermentation, digestion and feedlot performance in beef steers fed high concentrate diets. J. Anim. Sci. 1983, 56, 517–523. [Google Scholar] [CrossRef]
- Urías-Estrada, J.D.; López-Soto, M.A.; Barreras, A.; Aguilar-Hernández, J.A.; González-Vizcarra, V.M.; Estrada-Angulo, A.; Zinn, R.A.; Mendoza, G.D.; Plascencia, A. Influence of zeolite (clinoptilolite) supplementation on characteristics of digestion and ruminal fermentation of steers fed a steam-flaked corn-based finishing diet. Anim. Prod. Sci. 2018, 58, 1239–1245. [Google Scholar] [CrossRef]
- El-Nile, A.; Elazab, M.; El-Zaiat, H.; El-Azrak, K.E.-D.; Elkomy, A.; Sallam, S.; Soltan, Y. In Vitro and In Vivo assessment of dietary supplementation of both natural or nano-zeolite in goat diets: Effects on ruminal fermentation and nutrients digestibility. Animals 2021, 11, 2215. [Google Scholar] [CrossRef]
- Forouzani, R.; Rowghani, E.; Zamiri, M.J. The effect of zeolite on digestibility and feedlot performance of Mehraban male lambs given a diet containing urea-treated maize Silage. Anim. Sci. 2004, 78, 179–184. [Google Scholar] [CrossRef]
- Deligiannis, K.; Lainas, T.; Arsenos, G.; Papadopoulos, E.; Fortomaris, P.; Kufidis, D.; Stamataris, C.; Zygoyiannis, D. The effect of feeding clinoptilolite on food intake and performance of growing lambs infected or not with gastrointestinal nematodes. Livest. Prod. Sci. 2005, 96, 195–203. [Google Scholar] [CrossRef]
- Esteves, S.N.; Chagas, A.C.S.; Oliveira, M.C.S.; Barioni-Junior, W.; Bernanrdi, A.C.C. Zeolite supplementation effects on lamb growth and gastrointestinal nematode infection, and economic analysis. Rev. Ciênc. Agron. 2022, 53, e20207611. [Google Scholar] [CrossRef]
- Ghoneem, W.M.A.; El-Tanany, R.R.; Mahmoud, A.E.M. Effect of natural zeolite as a rumen buffer on growth performance and nitrogen utilization of Barki lambs. Pakistan J. Zool. 2022, 54, 1199–1207. [Google Scholar] [CrossRef]
- Toprak, N.N.; Yilma, A.; Öztürk, E.; Yigit, O.; Cedden, F. Effect of micronized zeolite addition to lamb concentrate feeds on growth performance and some blood chemistry and metabolites. South Afr. J. Anim. Sci. 2016, 46, 313–320. [Google Scholar] [CrossRef]
- Urías-Estrada, J.D.; Estrada-Angulo, A.; Zinn, R.A.; Plascencia, A. The role of zeolite as feed additive in finishing diets for ruminants: An approach under energetic perspective. EC Vet. Sci. 2021, 6, 45–49. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Valdés, Y.S.; Carrillo-Muro, O.; Castro-Pérez, B.I.; Barreras, A.; López-Soto, M.A.; Plascencia, A.; Dávila-Ramos, H.; Ríos, F.G.; Zinn, R.A. Effects of feeding different levels of chromium-enriched live yeast in hairy lambs fed a corn-based diet: Effects on growth performance, dietary energetics, carcass traits and visceral organ mass. Anim. Prod. Sci. 2013, 53, 308–315. [Google Scholar] [CrossRef]
- Mudgal, V.; Garg, A.K.; Dass, S.D.; Rawat, M. Supra-nutritional copper influences blood parameters including antioxidant markers and immune response in Murrah buffalo (Bubalus bubalis) calves. Livest. Sci. 2019, 225, 15–25. [Google Scholar] [CrossRef]
- Messersmith, E.M.; Smerchek, D.T.; Hansen, S.L. Effects of increasing supplemental zinc in beef feedlot steers administered a steroidal implant and beta agonist. Trans. Anim. Sci. 2022, 6, txac029. [Google Scholar] [CrossRef]
- Renner, L.; Schwabe, A.; Kersten, S.; Höltershinken, M.; Dänicke, S. Effect of rare earth elements on beef cattle growth performance, blood clinical chemical parameters and mitogen stimulated proliferation of bovine peripheral blood mononuclear cells In Vitro and Ex Vivo. Toxicol. Lett. 2011, 201, 277–284. [Google Scholar] [CrossRef]
- Tariq, H.; Sharma, A.; Sarkar, S.; Ojha, L.; Pal, R.P.; Mani, V. Perspectives for rare earth elements as feed additive in livestock—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, C.; Huang, Y.; Dong, K.; Yang, W.; Wang, H. Effects of lanthanum on rumen fermentation, urinary excretion of purine derivatives and digestibility in steers. Anim. Feed Sci. Technol. 2008, 142, 121–132. [Google Scholar] [CrossRef]
- Schwabe, A.; Meyer, U.; Flachowsky, G.; Dänicke, S. Effect of graded levels of rare earth elements in diets of fattening bulls on growing and slaughtering performance, and on nutrient digestibility of wethers. Arch. Anim. Nutr. 2011, 65, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, X.; Xu, Z.; Yao, W.; Leng, X. Dietary Azomite, a natural trace mineral complex, improved the growth, immunity response, intestine health and resistance against bacterial infection in largemouth bass (Micropterus salmoides). Fish Shellfish. Immunol. 2021, 108, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Dai Ch Li, J.; Huang, P.; Li, Y.; Ding, X.; Huang, J.; Hussain, T.; Yang, H. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Anim. Nutr. 2020, 6, 499–506. [Google Scholar] [CrossRef]
- Zhang, D.; Yuan, C.; Guo, T.; Liu, J.; Lu, Z. Effects of different dietary energy levels on development, quality of carcass and meat, and fatty acid profile in male lambs. Animals 2023, 13, 2870. [Google Scholar] [CrossRef]
- Coronel-Burgos, F.; Plascencia, A.; Castro-Pérez, B.I.; Contreras-Pérez, G.; Barreras, A.; Estrada-Angulo, A. Influencia de la sustitución parcial del maíz y dela pasta de soja por zeolita en ovinos en etapa de finalización: Características de la canal, composición tisular y masa visceral. Arch. Zoot. 2017, 66, 223–228. Available online: https://www.redalyc.org/pdf/495/49553570009.pdf (accessed on 23 February 2023).
- Yazdani, A.R.; Hajilari, D.; Ghorbani, M.H. Effect of clinoptilolita zeolite on feedlot performance and carcass characteristics in Holstein steers. Indian J. Anim. Res. 2009, 43, 300–303. Available online: https://www.indianjournals.com/ijor.aspx?target=ijor:ijar1&volume=43&issue=4&article=018 (accessed on 9 February 2023).
- Sadeghi, A.A.; Shawrang, P. The effect of natural zeolite on nutrient digestibility, carcass traits and performance of Holstein steers given a diet containing urea. Anim. Sci. 2006, 82, 163–167. [Google Scholar] [CrossRef]
Item | AZOMITE Inclusion in Diet (%) | ||
---|---|---|---|
0.00 | 0.75 | 1.50 | |
Ingredient Composition (%, DM) | |||
Cracked corn grain | 60.00 | 59.25 | 58.50 |
AZOMITE 1 | 0.00 | 0.75 | 1.50 |
Soybean meal | 14.00 | 14.00 | 14.00 |
Sudan grass hay | 12.00 | 12.00 | 12.00 |
Molasses cane | 8.00 | 8.00 | 8.00 |
Yellow grease | 3.50 | 3.50 | 3.50 |
Mineral–protein supplement 2 | 2.50 | 2.50 | 2.50 |
Dry matter content (%) | 88.23 | 88.88 | 88.93 |
Nutrient Composition (DM basis) 3 | |||
Net energy (Mcal/kg) | |||
Maintenance | 2.13 | 2.11 | 2.09 |
Gain | 1.46 | 1.44 | 1.43 |
Crude protein (%) | 14.73 | 14.62 | 14.58 |
NDF (%) | 16.52 | 16.40 | 16.32 |
Ether extract (%) | 6.30 | 6.28 | 6.28 |
Mineral matter | 6.15 | 6.89 | 7.62 |
Mineral | % Unless Shown as mg/kg |
---|---|
Alumina | 6.57% |
Calcium oxide | 3.67% |
Silicon dioxide | 65.85% |
Potassium oxide | 5.23% |
Ferric oxide | 1.37% |
Sodium oxide | 2.07% |
Total rare earth elements (mg/kg) | 479 |
Item | AZOMITE in Diet (% of Diet DM) | Contrast p Value | ||||
---|---|---|---|---|---|---|
0.00 | 0.75 | 1.50 | SEM | L | Q | |
Water intake (L/d) | 3.15 | 2.99 | 3.13 | 0.138 | 0.90 | 0.39 |
Live Weight (kg) 1 | ||||||
Initial | 18.92 | 18.88 | 18.75 | 0.09 | 0.21 | 0.75 |
Final | 40.19 | 41.18 | 41.44 | 0.39 | 0.09 | 0.56 |
Daily gain (kg) | 0.263 | 0.275 | 0.280 | 0.006 | 0.06 | 0.17 |
Dry matter intake (kg/d) | 0.965 | 0.954 | 1.017 | 0.020 | 0.11 | 0.26 |
Gain to feed (kg/kg) | 0.273 | 0.288 | 0.275 | 0.003 | 0.62 | 0.02 |
Observed Dietary Net Energy (Mcal/kg) | ||||||
Maintenance | 2.13 | 2.22 | 2.14 | 0.019 | 0.84 | 0.008 |
Gain | 1.46 | 1.53 | 1.46 | 0.016 | 0.84 | 0.007 |
Observed-to-Expected Dietary NE | ||||||
Maintenance | 1.00 | 1.06 | 1.02 | 0.009 | 0.18 | 0.007 |
Gain | 1.01 | 1.07 | 1.02 | 0.011 | 0.23 | 0.006 |
Hot carcass weight (kg) | 23.85 | 24.79 | 25.26 | 0.421 | 0.04 | 0.66 |
Dressing percentage | 59.20 | 60.15 | 60.87 | 0.564 | 0.06 | 0.87 |
Item | AZOMITE in Diet (% of Diet DM) | Contrast p Value | ||||
---|---|---|---|---|---|---|
0.00 | 0.75 | 1.50 | SEM | L | Q | |
Full viscera (kg) | 8.218 | 8.477 | 8.122 | 0.190 | 0.73 | 0.22 |
Organs (g/ kg of Empty Body Weight) | ||||||
Stomach complex | 25.33 | 25.66 | 24.83 | 1.164 | 0.76 | 0.69 |
Intestines | 33.50 | 32.83 | 32.50 | 1.253 | 0.58 | 0.91 |
Heart lungs | 19.33 | 20.16 | 19.00 | 0.920 | 0.80 | 0.39 |
Liver + spleen | 18.66 | 18.83 | 18.00 | 0.802 | 0.57 | 0.62 |
Kidney | 2.67 | 3.00 | 2.33 | 0.235 | 0.34 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vizcarra-Chávez, C.A.; Urías-Estrada, J.D.; Ponce-Barraza, E.; Estrada-Angulo, A.; Arteaga-Wences, Y.J.; Castro-Pérez, B.I.; Ramos-Méndez, J.L.; Corona, L.; Gomez-Vázquez, A.; Plascencia, A. Effect of Long-Term Supplementation of AZOMITE (Hydrated Sodium Calcium Aluminosilicate) in Finishing Diets on Growth Performance, Dietary Energy, and Carcass Yield of Hairy Lambs. Animals 2024, 14, 3018. https://doi.org/10.3390/ani14203018
Vizcarra-Chávez CA, Urías-Estrada JD, Ponce-Barraza E, Estrada-Angulo A, Arteaga-Wences YJ, Castro-Pérez BI, Ramos-Méndez JL, Corona L, Gomez-Vázquez A, Plascencia A. Effect of Long-Term Supplementation of AZOMITE (Hydrated Sodium Calcium Aluminosilicate) in Finishing Diets on Growth Performance, Dietary Energy, and Carcass Yield of Hairy Lambs. Animals. 2024; 14(20):3018. https://doi.org/10.3390/ani14203018
Chicago/Turabian StyleVizcarra-Chávez, Claudia A., Jesús D. Urías-Estrada, Elizama Ponce-Barraza, Alfredo Estrada-Angulo, Yesica J. Arteaga-Wences, Beatriz I. Castro-Pérez, Jorge L. Ramos-Méndez, Luis Corona, Armando Gomez-Vázquez, and Alejandro Plascencia. 2024. "Effect of Long-Term Supplementation of AZOMITE (Hydrated Sodium Calcium Aluminosilicate) in Finishing Diets on Growth Performance, Dietary Energy, and Carcass Yield of Hairy Lambs" Animals 14, no. 20: 3018. https://doi.org/10.3390/ani14203018
APA StyleVizcarra-Chávez, C. A., Urías-Estrada, J. D., Ponce-Barraza, E., Estrada-Angulo, A., Arteaga-Wences, Y. J., Castro-Pérez, B. I., Ramos-Méndez, J. L., Corona, L., Gomez-Vázquez, A., & Plascencia, A. (2024). Effect of Long-Term Supplementation of AZOMITE (Hydrated Sodium Calcium Aluminosilicate) in Finishing Diets on Growth Performance, Dietary Energy, and Carcass Yield of Hairy Lambs. Animals, 14(20), 3018. https://doi.org/10.3390/ani14203018