Insight into the Gut–Brain Axis and the Productive Performance and Egg Quality Response to Kudzu Leaf Flavonoid Supplementation in Late-Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Kudzu Leaf Flavonoid Preparation
2.2. Experimental Design
2.3. Productive Performance and Egg Quality Measurements
2.4. Hypothalamus Acquisition and Transcriptomic Measurement
2.5. Gastrointestinal Microbiota Determination
2.6. Statistical Analysis
3. Results
3.1. Effects of Kudzu Leaf Flavonoid Supplements on Productive Performance and Egg Quality
3.2. Effects of KLF Supplementation on Hypothalamus Gene Expression of Late-Laying Hens
3.3. Effects of KLF Supplementation on Gastrointestinal Microbiome
3.4. Interaction Effects among Hypothalamus Genes, Hormones, and Cecal Microbiota
4. Discussion
4.1. Modulatory Effects on Gut Microbial Communities in Promoting Productive Performance
4.2. Bidirectional Gut–Brain Interactions to Boost Productive Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anene, D.O.; Akter, Y.; Thomson, P.C.; Groves, P.; Liu, S.; O’Shea, C.J. Hens That Exhibit Poorer Feed Efficiency Produce Eggs with Lower Albumen Quality and Are Prone to Being Overweight. Animals 2021, 11, 2986. [Google Scholar] [CrossRef] [PubMed]
- Damaziak, K.; Musielak, M.; Musielak, C.; Riedel, J.; Gozdowski, D. Reproductive performance and quality of offsprings of parent stock of layer hens after rearing in open and closed aviary system. Poult. Sci. 2021, 100, 1120–1131. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, S.; Cai, Y.; Yang, Q.; Wang, Y.; Yu, X.; Sun, W.; Qiu, S.; Li, X.; Guo, Y. Decoding active compounds and molecular targets of herbal medicine by high-throughput metabolomics technology: A systematic review. Bioorganic Chem. 2024, 144, 107090. [Google Scholar] [CrossRef] [PubMed]
- Goliomytis, M.; Simitzis, P.; Papalexi, A.; Veneti, N.; Hager-Theodorides, A.L.; Charismiadou, M.A.; Deligeorgis, S.G. Influence of citrus flavonoids on laying hen performance, inflammatory immune response, egg quality and yolk oxidative stability. Br. Poult. Sci. 2019, 60, 272–278. [Google Scholar] [CrossRef]
- Iskender, H.; Yenice, G.; Dokumacioglu, E.; Kaynar, O.; Hayirli, A.; Kaya, A. Comparison of the effects of dietary supplementation of flavonoids on laying hen performance, egg quality and egg nutrient profile. Br. Poult. Sci. 2017, 58, 550–556. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Huang, C.; Wang, D.; Chang, D.; Shi, X.; Chen, Y.; Chen, H. Positive effects of Mulberry leaf extract on egg quality, lipid metabolism, serum biochemistry, and antioxidant indices of laying hens. Front. Vet. Sci. 2022, 9, 1005643. [Google Scholar] [CrossRef]
- Xue, F.; Wan, G.; Xiao, Y.; Chen, C.; Qu, M.; Xu, L. Growth performances, gastrointestinal epithelium and bacteria responses of Yellow-feathered chickens to kudzu-leaf flavonoids supplement. AMB Express 2021, 11, 125. [Google Scholar] [CrossRef]
- Clavijo, V.; Flórez, M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Q.; Tang, J.; Dong, L.; Dai, G.; Zhang, T.; Zhang, G.; Xie, K.; Wang, H.; Zhao, Z. Comprehensive analysis of gut microbiome and host transcriptome in chickens after Eimeria tenella infection. Front. Cell. Infect. Microbiol. 2023, 13, 1191939. [Google Scholar] [CrossRef]
- Mayer, E.A.; Nance, K.; Chen, S. The Gut-Brain Axis. Annu. Rev. Med. 2022, 73, 439–453. [Google Scholar] [CrossRef]
- Osadchiy, V.; Martin, C.R.; Mayer, E.A. The Gut-Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clinical gastroenterology and hepatology. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2019, 17, 322–332. [Google Scholar]
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front. Immunol. 2020, 11, 604179. [Google Scholar] [CrossRef] [PubMed]
- GB/T 42114-2022; Determination of Flavonols in Cassava Leaves by High Performance Liquid Chromatography. National Standardization Administration: Beijing, China, 2022.
- Xu, P.; Siegel, P.B.; Denbow, D.M. Genetic selection for body weight in chickens has altered responses of the brain’s AMPK system to food intake regulation effect of ghrelin, but not obestatin. Behav. Brain Res. 2011, 221, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Aristóteles, G.N.; Clarice, L.L.; Guerrero, R.T. DNA extraction from frozen field-collected and dehydrated herbarium fungal basidiomata: Performance of SDS and CTAB-based methods. Biotemas 2005, 18, 18–32. [Google Scholar]
- Gungor, B.; Adiguzel, E.; Gursel, I.; Yilmaz, B.; Gursel, M. Intestinal microbiota in patients with spinal cord injury. PLoS ONE 2016, 11, e0145878. [Google Scholar] [CrossRef]
- Bezerra, L.R.; Sarmento, J.L.; Neto, S.G.; de Paula, N.R.; Oliveira, R.L.; do Rêgo, W.M. Residual feed intake: A nutritional tool for genetic improvement. Trop. Anim. Health Prod. 2013, 45, 1649–1661. [Google Scholar] [CrossRef]
- Soleimani, T.; Gilbert, H. Evaluating environmental impacts of selection for residual feed intake in pigs. Animal 2020, 14, 2598–2608. [Google Scholar] [CrossRef]
- Martin, P.; Ducrocq, V.; Faverdin, P.; Friggens, N.C. Invited review: Disentangling residual feed intake-Insights and approaches to make it more fit for purpose in the modern context. J. Dairy Sci. 2021, 104, 6329–6342. [Google Scholar] [CrossRef]
- Saki, A.A.; Alipana, A. Effect of Dietary Wheat Screening Diet on Broiler Performance, Intestinal Viscosity and Ileal Protein Digestibility. Int. J. Poult. Sci. 2005, 61, 734–745. [Google Scholar]
- Apajalahti, J.; Vienola, K. Interaction between chicken intestinal microbiota and protein digestion. Anim. Feed. Sci. Technol. 2016, 221, 323–330. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, H.; Zhang, L.; Su, Y.; Shi, D.; Xiao, H.; Tian, Y. High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken. BMC Microbiol. 2016, 16, 259. [Google Scholar] [CrossRef] [PubMed]
- Barczynska, R.; Slizewska, K.; Litwin, M.; Szalecki, M.; Kapusniak, J. Effects of dietary fiber preparations made from maize starch on the growth and activity of selected bacteria from the Firmicutes, Bacteroidetes, and Actinobacteria phyla in fecal samples from obese children. Acta Biochim. Pol. 2016, 63, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jeong, Y.; Kang, S.; You, H.J.; Ji, G.E. Co-Culture with Bifidobacterium catenulatum Improves the Growth, Gut Colonization, and Butyrate Production of Faecalibacterium prausnitzii: In Vitro and In Vivo Studies. Microorganisms 2020, 8, 788. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.; Kim, S.W.; Kwon, Y.M. Characterization of Microbiota Associated with Digesta and Mucosa in Different Regions of Gastrointestinal Tract of Nursery Pigs. Int. J. Mol. Sci. 2019, 20, 1630. [Google Scholar] [CrossRef] [PubMed]
- Tavarez, M.A.; Boler, D.D.; Bess, K.N.; Zhao, J.; Yan, F.; Dilger, A.C.; Mckeith, F.K.; Killefer, J. Effect of antioxidant inclusion and oil quality on broiler performance, meat quality, and lipid oxidation. Poult. Sci. 2011, 90, 922–930. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Reyer, H.; Oster, M.; Magowan, E.; Muráni, E.; Sauerwein, H.; Dannenberger, D.; Kuhla, B.; Ponsuksili, S.; Wimmers, K. Feed-efficient pigs exhibit molecular patterns allowing a timely circulation of hormones and nutrients. Physiol. Genom. 2018, 50, 726–734. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, M.; Yue, Z.; Chen, X.; Li, C.; Liu, L.; Li, F. Combined Omics Analysis Further Unveils the Specific Role of Butyrate in Promoting Growth in Early-Weaning Animals. Int. J. Mol. Sci. 2023, 24, 1787. [Google Scholar] [CrossRef]
- Agirman, G.; Yu, K.B.; Hsiao, E.Y. Signaling inflammation across the gut-brain axis. Science 2021, 374, 1087–1092. [Google Scholar] [CrossRef]
- Calderón Díaz, J.A.; Berry, D.P.; Rebeiz, N.; Metzler-Zebeli, B.U.; Magowan, E.; Gardiner, G.E.; Lawlor, P.G. Feed efficiency metrics in growing pigs. J. Anim. Sci. 2017, 95, 3037–3046. [Google Scholar] [CrossRef]
- Liu, E.; VandeHaar, M.J. Relationship of residual feed intake and protein efficiency in lactating cows fed high- or low-protein diets. J. Dairy Sci. 2020, 103, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Furter, M.; Sellin, M.E.; Hansson, G.C.; Hardt, W.D. Mucus Architecture and Near-Surface Swimming Affect Distinct Salmonella Typhimurium Infection Patterns along the Murine Intestinal Tract. Cell Rep. 2019, 27, 2665–2678.e2663. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Composition Amount (%) |
---|---|
Corn | 60.10 |
Soybean meal (SBM, CP 43%) | 25.00 |
Soy oil | 1.30 |
CaCO3 | 9.00 |
Calcium hydrophosphate (2 water) DCP | 1.00 |
Salt | 0.40 |
Levogyration- Lys-HCL (L- Lys-HCL, 98%) | 0.10 |
Dextrorotation and levogyration-Met (DL-Met) | 0.10 |
Primix a | 3.00 |
Total | 100 |
Metabolizable energy (ME/MJ × kg−1) | 11.31 |
Crude protein (CP) | 15.30 |
Crude fat (EE) | 3.07 |
Crude fiber (CF) | 2.68 |
Calcium (Ca) | 3.45 |
Phosphorus (P) | 0.43 |
dLys | 0.80 |
dMet | 0.35 |
dCys | 0.28 |
dM + C | 0.63 |
Items | CON | 0.2% KLF | 0.4% KLF | 0.6% KLF | 0.8% KLF | 1.0% KLF | SEM | p-Value | |
---|---|---|---|---|---|---|---|---|---|
Initial Phase (d1–d60) | ADFI (g) | 109.14 | 109.36 | 109.03 | 109.09 | 109.14 | 109.05 | 0.74 | 0.993 |
Feed/egg ratio | 1.89 | 1.87 | 1.85 | 1.82 | 1.82 | 1.84 | 0.11 | 0.285 | |
Laying rate (%) | 82.4 | 82.57 | 83.46 | 83.45 | 82.79 | 82.29 | 0.93 | 0.234 | |
Deformity egg rate (%) | 3.59 | 3.25 | 3.11 | 3.15 | 3.23 | 3.22 | 0.24 | 0.082 | |
Finishing Phase (d61–d120) | ADFI (g) | 109.43 | 109.46 | 109.09 | 109.03 | 109.07 | 109.16 | 0.84 | 0.976 |
Feed/egg ratio | 2.01 | 1.95 | 1.96 | 1.93 | 1.98 | 1.98 | 0.13 | 0.165 | |
Laying rate (%) | 76.4 | 77.57 | 77.96 | 78.34 | 77.88 | 77.69 | 0.86 | 0.104 | |
Deformity egg rate (%) | 5.69 a | 4.85 b | 4.77 b | 4.65 b | 4.70 b | 4.72 b | 0.21 | 0.042 |
Items | CON | 0.2% KLF | 0.4% KLF | 0.6% KLF | 0.8% KLF | 1.0% KLF | SEM | p-Value | |
---|---|---|---|---|---|---|---|---|---|
Egg weight (g) | 64.35 | 64.06 | 64.36 | 64.89 | 64.76 | 64.56 | 1.68 | 0.591 | |
Initial Phase | Relative egg density | 1.10 | 1.12 | 1.13 | 1.13 | 1.12 | 1.10 | 0.04 | 0.628 |
Egg shell thickness (mm) | 0.39 | 0.39 | 0.41 | 0.39 | 0.41 | 0.39 | 0.02 | 0.375 | |
Egg shape index | 1.31 | 1.32 | 1.32 | 1.33 | 1.31 | 1.31 | 0.03 | 0.809 | |
Eggshell strength (N) | 35.74 | 36.49 | 36.24 | 36.70 | 36.44 | 36.78 | 1.34 | 0.213 | |
Haugh unit | 80.14 | 80.88 | 80.53 | 80.65 | 80.33 | 80.50 | 3.26 | 0.674 | |
Yolk percentage (%) | 26.94 | 27.89 | 27.57 | 27.71 | 27.79 | 27.57 | 0.31 | 0.462 | |
Finishing Phase | Egg weight (g) | 65.04 | 65.27 | 65.13 | 65.00 | 65.28 | 65.19 | 2.31 | 0.671 |
Relative egg density | 1.10 | 1.10 | 1.11 | 1.12 | 1.12 | 1.11 | 0.04 | 0.568 | |
Egg shell thickness (mm) | 0.39 | 0.40 | 0.41 | 0.41 | 0.39 | 0.40 | 0.02 | 0.465 | |
Egg shape index | 1.31 | 1.33 | 1.31 | 1.33 | 1.32 | 1.31 | 0.03 | 0.749 | |
Eggshell strength (N) | 33.94 b | 34.05 b | 34.74 ab | 35.36 a | 34.29 b | 34.63 ab | 1.06 | 0.034 | |
Haugh unit | 74.14 | 75.66 | 76.06 | 75.96 | 75.47 | 75.45 | 0.76 | 0.095 | |
Yolk percentage (%) | 27.24 | 27.36 | 27.60 | 27.42 | 27.69 | 27.62 | 0.36 | 0.346 |
Items | CON (n = 10) | KLF (n = 10) | SE | p-Value |
---|---|---|---|---|
Shannon | 8.85 | 8.96 | 0.10 | 0.182 |
Simpson | 0.98 | 0.98 | 0.00 | 0.342 |
Ace | 1056.5 | 1071.4 | 52.0 | 0.418 |
Chao1 | 1156.3 b | 1216.6 a | 31.2 | 0.042 |
observed_species | 934.9 | 972.5 | 26.8 | 0.317 |
Items | CON | KLF | SE | p-Value |
---|---|---|---|---|
Bacteroides | 23.21 b | 28.10 a | 1.65 | 0.008 |
Alistipes | 15.82 | 14.06 | 1.43 | 0.563 |
Megamonas | 9.52 | 8.86 | 1.51 | 0.435 |
Barnesiella | 6.39 | 6.60 | 1.11 | 0.705 |
Faecalibacterium | 6.07 | 5.66 | 0.89 | 0.562 |
Phascolarctobacterium | 5.73 | 6.94 | 0.57 | 0.102 |
Eubacterium | 4.11 | 3.92 | 0.44 | 0.887 |
Ruminococcus | 3.01 | 2.30 | 0.38 | 0.443 |
Erysipelatoclostridium | 2.99 a | 1.18 b | 0.35 | 0.002 |
Ruminococcaceae | 3.57 | 3.62 | 0.75 | 0.528 |
Parasutterella | 2.33 a | 1.44 b | 0.16 | 0.002 |
Desulfovibrio | 2.39 | 2.52 | 0.87 | 0.144 |
Fournierella | 1.20 b | 1.42 a | 0.12 | 0.005 |
Subdoligranulum | 0.92 | 0.62 | 0.16 | 0.540 |
Bifidobacterium | 0.41 b | 1.31 a | 0.07 | 0.005 |
Parabacteroides | 0.56 | 0.71 | 0.19 | 0.362 |
Ruminiclostridium | 0.94 | 0.60 | 0.40 | 0.184 |
Sellimonas | 0.76 | 0.37 | 0.06 | 0.078 |
Oscillospira | 0.70 | 0.39 | 0.07 | 0.223 |
Blautia | 0.84 a | 0.32 b | 0.08 | 0.018 |
Butyricicoccus | 0.41 | 0.38 | 0.12 | 0.973 |
Oscillibacter | 0.52 | 0.33 | 0.19 | 0.252 |
Escherichia-Shigella | 0.49 a | 0.17 b | 0.05 | 0.025 |
Lactococcus | 0.03 b | 0.07 a | 0.004 | 0.011 |
Lactobacillus | 0.01 b | 0.04 a | 0.001 | 0.003 |
Streptococcus | 0.01 | 0.01 | 0.004 | 0.795 |
others | 7.10 | 8.08 | 0.42 | 0.073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Hu, Y.; Luo, J.; Hu, M.; Chen, M.; Ye, D.; Ye, J.; Xue, F. Insight into the Gut–Brain Axis and the Productive Performance and Egg Quality Response to Kudzu Leaf Flavonoid Supplementation in Late-Laying Hens. Animals 2024, 14, 2780. https://doi.org/10.3390/ani14192780
Tang S, Hu Y, Luo J, Hu M, Chen M, Ye D, Ye J, Xue F. Insight into the Gut–Brain Axis and the Productive Performance and Egg Quality Response to Kudzu Leaf Flavonoid Supplementation in Late-Laying Hens. Animals. 2024; 14(19):2780. https://doi.org/10.3390/ani14192780
Chicago/Turabian StyleTang, Shi, Yaodong Hu, Jiahui Luo, Meijun Hu, Maolin Chen, Dehan Ye, Jingsong Ye, and Fuguang Xue. 2024. "Insight into the Gut–Brain Axis and the Productive Performance and Egg Quality Response to Kudzu Leaf Flavonoid Supplementation in Late-Laying Hens" Animals 14, no. 19: 2780. https://doi.org/10.3390/ani14192780
APA StyleTang, S., Hu, Y., Luo, J., Hu, M., Chen, M., Ye, D., Ye, J., & Xue, F. (2024). Insight into the Gut–Brain Axis and the Productive Performance and Egg Quality Response to Kudzu Leaf Flavonoid Supplementation in Late-Laying Hens. Animals, 14(19), 2780. https://doi.org/10.3390/ani14192780