Trace Elements in Hermann’s Tortoises (Testudo hermanni) According to Sex, Season, and Sampling Region in Central Europe
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sample Collection and Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berardo, F.; Carranza, M.L.; Frate, L.; Stanisci, A.; Loy, A. Seasonal habitat preference by the flagship species Testudo hermanni: Implication for the conservation of coastal dunes. Comptes Rendus. Biol. 2015, 338, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Meek, R. Nutritional selection in Hermann’s tortoise, Testudo hermanni, in Montenegro and Croatia. B.C.G. Testudo 2010, 7, 88–95. [Google Scholar]
- Dennert, C. Ernährung von Landschildkröten, 5th ed.; Natur und Tier-Verlag: Münster, Germany, 2021. [Google Scholar]
- Liesegang, A.; Hatt, J.-M.; Wanner, M. Influence of different dietary calcium levels on the digestibility of Ca, Mg, and P in Hermann’s tortoises (Testudo hermanni). J. Anim. Physiol. Anim. Nutr. 2007, 91, 459–464. [Google Scholar] [CrossRef]
- Herdt, T.H.; Hoff, B. The use of blood analysis to evaluate trace mineral status in ruminant livestock. Vet. Clin. N. Am. Food Anim. Pract. 2011, 27, 255–283. [Google Scholar] [CrossRef] [PubMed]
- Arthington, J.D.; Ranches, J. Trace mineral nutrition of grazing beef cattle. Animals. 2021, 11, 2767. [Google Scholar] [CrossRef] [PubMed]
- López-Alonso, M. Trace minerals and livestock: Not too much not too little. ISRN Vet. Sci. 2012, 2012, 704825. [Google Scholar] [CrossRef] [PubMed]
- Andreani, G.; Carpené, E.; Cannavacciuolo, A.; Di Girolamo, N.; Ferlizza, E.; Isani, G. Reference values for hematology and plasma biochemistry variables, and protein electrophoresis of healthy Hermann’s tortoises (Testudo hermanni ssp.). Vet. Clin. Pathol. 2014, 43, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Erler, M. Saisonale Veränderungen Hämatologischer und Blutbiochemischer Werte bei Europäischen Landschildkröten (Testudo graeca, Testudo hermanni, Testudo marginata). Ph.D. Thesis, Tierärztliche Fakultät der Ludwig-Maximilians-Universität München, München, Germany, 2003. [Google Scholar]
- Geisler, G.; Leineweber, C.; Pees, M.; Öfner, S.; Marschang, R.E. The effects of sex, season, and natural sunlight on plasma vitamin D3 levels in two chelonian species (Testudo hermanni, Trachemys scripta) and their interaction with calcium, phosphate, and magnesium as associated plasma compounds. Front. Amphib. Reptile Sci. 2023, 1, 1268801. [Google Scholar] [CrossRef]
- Holz, A. Bestimmung Hämatologischer und Biochemischer Parameter bei der Gesunden Europäischen Landschildkröte—Testudo hermanni, Testudo graeca, Testudo marginata, Testudo horsfieldii. Ph.D. Thesis, Tierärztliche Hochschule Hannover, Hannover, Germany, 2007. [Google Scholar]
- Kölle, P.; Donhauser, J.; Krause, D.; Hoffmann, R. Blutwerte bei europäischen Landschildkröten (Testudo hermanni, Testudo graeca, Testudo marginata, Agrionemys horsfieldii). Tierärztl. Prax. 2001, 29, 386–392. [Google Scholar]
- Leineweber, C.; Stöhr, A.C.; Öfner, S.; Mathes, K.; Marschang, R.E. Changes in plasma chemistry parameters in Hermann’s tortoises (Testudo hermanni) influenced by season and sex. J. Herp. Med. Surg. 2019, 29, 113–122. [Google Scholar] [CrossRef]
- Mathes, K.A.; Holz, A.; Fehr, M. Blutreferenzwerte in Deutschland gehaltener europäischer Landschildkröten (Testudo spp.). Tierärztl. Prax. 2006, 34, 268–274. [Google Scholar]
- Scope, A.; Schwendenwein, I.; Schauberger, G. Characterization and quantification of the influence of season and gender on plasma chemistries of Hermann’s tortoises (Testudo hermanni, Gmelin 1789). Res. Vet. Sci. 2013, 95, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Stephan, H.K.; Hollandt, T.; Öfner, S.; Caron, S.; Ballouard, J.M.; Reese, S.; Zablotski, Y.; Kölle, P. Trace element levels in the serum of Hermann’s tortoises (Testudo hermanni). Anim. Vet. Sci. 2021, 9, 50–55. [Google Scholar] [CrossRef]
- Knoop, J.; Garnebode, N.; Kartaschew, K.; Oppermann, U.; Fromentoux, L. Easy and Fast Determination of Trace Elements in Clinical Samples Using Quadrupole ICP-MS. Available online: https://vdocuments.site/shimadzu-icpms-2030-trace-elements-in-clinical-samples-clinical-samples-using.html?page=1 (accessed on 30 August 2021).
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Geffré, A.; Concordet, D.; Braun, J.P.; Trumel, C. Reference Value Advisor: A new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet. Clin. Pathol. 2011, 40, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Hamooda, A.E.F.; El-Mansoury, A.; Mehdi, A. Some blood indexes of the tortoise Testudo graeca Linn. 1758 from benghazi province, Libya. Sci. Res. J. 2014, 2, 36–40. [Google Scholar]
- Konz, T.; Migliavacca, E.; Dayon, L.; Bowman, G.; Oikonomidi, A.; Popp, J.; Rezzi, S. ICP-MS/MS-Based ionomics: A validated methodology to investigate the biological variability of the human ionome. J. Proteome Res. 2017, 16, 2080–2090. [Google Scholar] [CrossRef]
- Luna, G.; López-Alonso, M.; Cedeño, Y.; Rigueira, L.; Pereira, V.; Miranda, M. Determination of essential and toxic elements in cattle blood:serum vs plasma. Animals 2019, 9, 465. [Google Scholar] [CrossRef]
- Gülen, E.; Gül, C. Determining of plasma biochemical parameters according to different reproductive periods in the population of Testudo graeca (Çanakkale, Turkey). Appl. Ecol. Environ. Res. 2018, 16, 3305–3313. [Google Scholar] [CrossRef]
- Guirlet, E.; Das, K.; Girondot, M. Maternal transfer of trace elements in leatherback turtles (Dermochelys coriacea) of French Guiana. Aquat. Toxicol. 2008, 88, 267–276. [Google Scholar] [CrossRef]
- Bertolero, A.; Cheylan, M.; Hailey, A.; Livoreil, B.; Willemsen, R.E. Testudo hermanni (Gemelin 1789)—Hermann’s tortoise. In Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group; Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B., Mittermeier, R.A., Eds.; Chelonian Research Monographs, No. 5; Chelonian Research Foundation: Lunenburg, MA, USA, 2011; pp. 059.1–059.20. [Google Scholar]
- Hartmann, C. Untersuchungen zur Zusammensetzung von Reptilieneiern. Ph.D. Thesis, Veterinary Faculty, Ludwig-Maximilians-University, Munich, Germany, 2009. [Google Scholar]
- Soni, K.; Samtiya, M.; Krishnan, V.; Dhewa, T. Antinutritional factors: Nutrient bioavailability and health beneficial effects. In Conceptualizing Plant-Based Nutrition; Ramesh, S.V., Praveen, S., Eds.; Springer: Singapore, 2022; pp. 157–179. [Google Scholar]
- Hopkins, W.A.; Snodgrass, J.W.; Baionno, J.A.; Roe, J.H.; Staub, B.P.; Jackson, B.P. Functional relationships among selenium concentrations in the diet, target tissues, and nondestructive tissue samples of two species of snakes. Environ. Toxicol. Chem. 2005, 24, 344–351. [Google Scholar] [CrossRef] [PubMed]
Element | Unit | Mean | SD | Minimum | Maximum | Median | 10th Percentile | 90th Percentile | Lower RI (CI) | Upper RI (CI) | D | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chromium (Cr) | µg/L | 0.49 | 0.49 | 0.05 | 7.19 | 0.45 | 0.05 | 0.87 | 0.1 (0.1–0.1) | 1.3 (1.0–1.6) | NG | <0.001 |
Cobalt (Co) | µg/L | 3.25 | 3.62 | 0.10 | 25.00 | 2.13 | 0.80 | 6.59 | 0.5 (0.4–0.6) | 14.2 (13.2–15.7) | NG | <0.001 |
Copper (Cu) | mg/L | 0.53 | 0.18 | 0.16 | 1.33 | 0.51 | 0.33 | 0.78 | 0.3 (0.2–0.3) | 1.0 (0.9–1.0) | NG | <0.001 |
Iron (Fe) | mg/L | 2.11 | 2.67 | 0.26 | 38.43 | 1.34 | 0.69 | 4.21 | 0.5 (0.5–0.6) | 8.2 (7.1–10.2) | NG | <0.001 |
Magnesium (Mg) | mg/L | 62.35 | 14.91 | 30.95 | 167.17 | 60.00 | 47.94 | 8.22 | 41.9 (39.6–43.1) | 98.6 (90.1–106.1) | NG | <0.001 |
Manganese (Mn) | µg/L | 9.17 | 8.52 | 0.50 | 54.30 | 6.40 | 2.70 | 20.40 | 1.7 (1.4–1.9) | 34.9 (30.0–39.4) | NG | <0.001 |
Molybdenum (Mo) | µg/L | 11.84 | 9.83 | 0.50 | 82.20 | 8.96 | 2.67 | 24.55 | 1.6 (1.4–1.8) | 40.1 (31.1–45.1) | NG | < 0.001 |
Selenium (Se) | µg/L | 15.67 | 8.97 | 0.70 | 79.30 | 13.80 | 6.25 | 27.10 | 4.2 (3.9–4.8) | 38.00 (34.5–41.8) | NG | <0.001 |
Zinc (Zn) | mg/L | 2.39 | 0.84 | 0.25 | 10.12 | 2.34 | 1.46 | 3.28 | 0.9 (0.5–1.1) | 4.2 (3.8–4.3) | NG | <0.001 |
Element | Unit | Category | Mean | SD | Minimum | Maximum | Median | 10th Percentile | 90th Percentile | Lower RI (CI) | Upper RI (CI) | D | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copper (Cu) | mg/L | Male | 0.58 | 0.19 | 0.16 | 1.33 | 0.56 | 0.36 | 0.83 | 0.3 (0.3–0.3) | 1.0 (0.9–1.2) | NG | <0.001 |
Female | 0.47 | 0.15 | 0.17 | 1.31 | 0.45 | 0.29 | 0.64 | 0.2 (0.2–0.3) | 0.8 (0.7–1.0) | NG | <0.001 | ||
Magnesium (Mg) | mg/L | Male | 58.81 | 11.90 | 30.95 | 158.34 | 56.59 | 46.89 | 71.36 | 41.3 (37.8–43.8) | 85.9 (78.3–90.3) | NG | <0.001 |
Female | 67.93 | 17.31 | 34.78 | 167.17 | 65.08 | 50.80 | 87.35 | 41.9 (36.3–44.7) | 112.9 (100.7–129.9) | NG | <0.001 | ||
Manganese (Mn) | µg/L | Male | 6.38 | 5.23 | 0.50 | 54.30 | 5.10 | 2.50 | 11.20 | 1.6 (0.5–1.7) | 16.4 (14.5–26.9) | NG | <0.001 |
Female | 13.56 | 10.61 | 1.00 | 54.10 | 10.00 | 3.30 | 29.10 | 2.1 (1.1–2.3) | 43.7 (34.9–52.9) | NG | <0.001 |
Element | Unit | Category | Mean | SD | Minimum | Maximum | Median | 10th Percentile | 90th Percentile | Lower RI (CI) | Upper RI (CI) | D | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chromium (Cr) | µg/L | Spring | 0.46 | 0.34 | 0.05 | 2.52 | 0.36 | 0.18 | 0.86 | 0.1 (0.1–0.1) | 1.3 (1.0–2.5) | NG | <0.001 |
Early summer | 0.63 | 0.65 | 0.05 | 7.19 | 0.54 | 0.22 | 0.91 | 0.1 (0.1–0.1) | 1.7 (1.3–5.7) | NG | <0.001 | ||
Late summer | 0.36 | 0.29 | 0.05 | 1.64 | 0.32 | 0.05 | 0.75 | 0.1 (0.1–0.1) | 1.0 (0.9–1.4) | NG | <0.001 | ||
Copper (Cu) | mg/L | Spring | 0.51 | 0.16 | 0.27 | 0.92 | 0.51 | 0.30 | 0.73 | 0.3 (0.3–0.3) | 0.8 (0.8–0.9) | NG | 0.043 |
Early summer | 0.56 | 0.17 | 0.16 | 1.31 | 0.53 | 0.37 | 0.78 | 0.3 (0.2–0.3) | 1.0 (0.9–1.2) | NG | <0.001 | ||
Late summer | 0.52 | 0.20 | 0.17 | 1.33 | 0.48 | 0.31 | 0.79 | 0.2 (0.2–0.3) | 1.0 (1.0–1.2) | NG | <0.001 | ||
Manganese (Mn) | µg/L | Spring | 7.00 | 5.19 | 1.00 | 31.20 | 5.60 | 2.20 | 13.80 | 1.2 (1.0–1.7) | 22.9 (15.7–31.2) | NG | <0.001 |
Early Summer | 11.14 | 9.25 | 0.50 | 52.90 | 7.50 | 3.20 | 24.85 | 1.5 (0.5–2.2) | 36.5 (32.0–44.1) | NG | <0.001 | ||
Late Summer | 8.20 | 8.57 | 0.50 | 54.30 | 5.56 | 2.60 | 15.40 | 2.0 (1.7–2.2) | 38.4 (26.9–54.1) | NG | <0.001 | ||
Molybdenum (Mo) | µg/L | Spring | 8.08 | 4.68 | 1.55 | 20.90 | 7.78 | 2.48 | 16.0 | 1.8 (1.6–2.2) | 17.4 (16.7–20.9) | NG | 0.001 |
Early Summer | 10.03 | 9.47 | 0.50 | 82.20 | 7.75 | 1.85 | 19.85 | 1.2 (1.1–1.5) | 29.3 (26.1–53.4) | NG | <0.001 | ||
Late Summer | 15.20 | 10.74 | 2.41 | 54.80 | 12.40 | 4.57 | 28.30 | 3.4 (2.7–3.8) | 44.0 (40.0–51.1) | NG | <0.001 | ||
Selenium (Se) | µg/L | Spring | 18.02 | 8.59 | 0.70 | 56.30 | 16.20 | 10.40 | 28.40 | 3.6 (0.7–5.7) | 42.2 (33.3–56.3) | NG | <0.001 |
Early Summer | 17.72 | 10.54 | 3.60 | 79.30 | 16.20 | 6.03 | 30.45 | 4.5 (3.9–5.3) | 43.3 (36.0–52.3) | NG | <0.001 | ||
Late Summer | 12.66 | 6.23 | 2.30 | 38.20 | 11.54 | 6.04 | 20.90 | 4.0 (2.5–5.0) | 28.2 (25.6–33.3) | NG | <0.001 |
Element | Unit | Category | Mean | SD | Minimum | Maximum | Median | 10th Percentile | 90th Percentile | Lower RI (CI) | Upper RI (CI) | D | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chromium (Cr) | µg/L | North | 0.71 | 0.38 | 0.05 | 2.52 | 0.68 | 0.35 | 1.07 | 0.1 (0.1–0.3) | 2.1 (1.3–2.5) | NG | <0.001 |
West | 0.25 | 0.13 | 0.05 | 0.71 | 0.23 | 0.11 | 0.38 | 0.1 (0.1–0.1) | 0.7 (0.4–0.7) | NG | 0.119 | ||
East | 0.54 | 0.30 | 0.05 | 1.87 | 0.51 | 0.25 | 0.91 | 0.1 (0.1–0.2) | 1.4 (1.0–1.9) | NG | <0.001 | ||
South | 0.45 | 0.60 | 0.05 | 7.19 | 0.39 | 0.05 | 0.82 | 0.1 (0.1–0.1) | 1.2 (1.0–1.7) | NG | <0.001 | ||
Copper (Cu) | mg/L | North | 0.59 | 0.18 | 0.16 | 1.06 | 0.59 | 0.36 | 0.79 | 0.2 (0.2–0.3) | 1.0 (0.9–1.1) | G | 0.743 |
West | 0.50 | 0.16 | 0.22 | 0.94 | 0.48 | 0.32 | 0.71 | 0.2 (0.2–0.3) | 0.9 (0.8–0.9) | G | 0.457 | ||
East | 0.51 | 0.15 | 0.27 | 1.21 | 0.50 | 0.32 | 0.70 | 0.3 (0.3–0.3) | 0.9 (0.8–1.2) | NG | 0.027 | ||
South | 0.54 | 0.20 | 0.17 | 1.33 | 0.50 | 0.33 | 0.80 | 0.2 (0.2–0.3) | 1.0 (1.0–1.2) | NG | <0.001 | ||
Iron (Fe) | mg/L | North | 1.83 | 1.72 | 0.60 | 11.02 | 1.24 | 0.72 | 3.78 | 0.6 (0.6–0.7) | 8.7 (4.9–11.0) | NG | <0.001 |
West | 3.41 | 2.56 | 0.64 | 15.70 | 2.95 | 1.45 | 4.86 | 0.6 (0.6–0.9) | 15.1 (7.5–15.7) | NG | <0.001 | ||
East | 2.48 | 3.78 | 0.43 | 38.43 | 1.58 | 0.73 | 5.12 | 0.5 (0.4–0.7) | 11.9 (7.1–38.4) | NG | <0.001 | ||
South | 1.77 | 1.94 | 0.26 | 17.46 | 1.12 | 0.64 | 3.46 | 0.5 (0.3–0.5) | 7.6 (6.3–10.1) | NG | <0.001 | ||
Magnesium (Mg) | mg/L | North | 56.53 | 9.65 | 30.95 | 75.62 | 56.42 | 44.28 | 69.14 | 34.2 (31.0–42.4) | 75.2 (71.9–75.6) | G | 0.907 |
West | 69.57 | 14.25 | 46.14 | 113.47 | 65.28 | 55.13 | 88.09 | 46.3 (46.1–53.1) | 112.4 (90.5–113.5) | NG | 0.014 | ||
East | 63.91 | 15.34 | 37.48 | 129.90 | 60.27 | 48.40 | 82.48 | 42.9 (37.5–46.2) | 108.8 (90.1–129.9) | NG | <0.001 | ||
South | 61.63 | 15.18 | 34.78 | 167.17 | 59.43 | 47.76 | 75.21 | 40.3 (36.3–43.8) | 97.4 (87.3–120.9) | NG | <0.001 | ||
Molybdenum (Mo) | µg/L | North | 8.64 | 3.20 | 2.35 | 15.80 | 8.60 | 4.35 | 13.30 | 2.5 (2.4–3.4) | 15.6 (13.7–15.8) | G | 0.931 |
West | 14.47 | 14.84 | 1.21 | 82.20 | 9.18 | 2.68 | 27.60 | 1.2 (1.2–2.1) | 80.0 (29.7–82.2) | NG | <0.001 | ||
East | 10.46 | 7.27 | 1.55 | 53.40 | 9.04 | 2.82 | 19.30 | 2.1 (1.6–2.4) | 26.4 (21.5–53.4) | NG | <0.001 | ||
South | 12.87 | 10.75 | 0.50 | 54.80 | 8.96 | 2.31 | 27.10 | 1.4 (1.1–1.7) | 42.3 (35.1–46.9) | NG | <0.001 | ||
Selenium (Se) | µg/L | North | 13.19 | 8.38 | 3.60 | 43.30 | 10.65 | 5.80 | 23.70 | 3.7 (3.6–5.2) | 39.5 (29.9–43.3) | NG | <0.001 |
West | 11.53 | 6.22 | 3.90 | 31.50 | 10.55 | 5.35 | 20.70 | 3.9 (3.9–4.8) | 31.2 (21.4–31.5) | NG | 0.001 | ||
East | 20.10 | 9.41 | 0.70 | 56.30 | 18.10 | 10.70 | 33.50 | 4.2 (0.7–5.3) | 42.3 (38.0–56.3) | NG | <0.001 | ||
South | 14.40 | 8.32 | 2.30 | 79.30 | 12.64 | 6.35 | 24.25 | 4.3 (2.9–5.3) | 33.5 (28.6–44.7) | NG | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leineweber, C.; Geisler, G.; Pees, M.; Öfner, S.; Marschang, R.E. Trace Elements in Hermann’s Tortoises (Testudo hermanni) According to Sex, Season, and Sampling Region in Central Europe. Animals 2024, 14, 2178. https://doi.org/10.3390/ani14152178
Leineweber C, Geisler G, Pees M, Öfner S, Marschang RE. Trace Elements in Hermann’s Tortoises (Testudo hermanni) According to Sex, Season, and Sampling Region in Central Europe. Animals. 2024; 14(15):2178. https://doi.org/10.3390/ani14152178
Chicago/Turabian StyleLeineweber, Christoph, Gregor Geisler, Michael Pees, Sabine Öfner, and Rachel E. Marschang. 2024. "Trace Elements in Hermann’s Tortoises (Testudo hermanni) According to Sex, Season, and Sampling Region in Central Europe" Animals 14, no. 15: 2178. https://doi.org/10.3390/ani14152178
APA StyleLeineweber, C., Geisler, G., Pees, M., Öfner, S., & Marschang, R. E. (2024). Trace Elements in Hermann’s Tortoises (Testudo hermanni) According to Sex, Season, and Sampling Region in Central Europe. Animals, 14(15), 2178. https://doi.org/10.3390/ani14152178