Effects of Mixed Organic Acids and Essential Oils in Drinking Water on Growth Performance, Intestinal Digestive Capacity, and Immune Status in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bird, Diets, Drinking Water, and Experimental Design
2.2. Growth Performance and Sample Collection
2.3. Gastrointestinal pH, Digestive Enzyme Activity, and Intestinal Histomorphology
2.4. Serum Lipid Metabolites and Immune Function
2.5. Microbial Determination
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Internal Organ Weights
3.2. Serum Immune Indicators and Lipid Metabolites
3.3. Gastrointestinal pH Value and Digestive Enzyme Activity
3.4. Intestinal Morphology
3.5. Potential Pathogenic Microorganisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huyghebaert, G.; Ducatelle, R.; Immerseel, F.V. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 2011, 187, 182–188. [Google Scholar] [CrossRef]
- Van Immerseel, F.; Russell, J.B.; Flythe, M.D.; Gantois, I.; Timbermont, L.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. The use of organic acids to combat salmonella in poultry: A mechanistic explanation of the efficacy. Avian Pathol. 2006, 35, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Mahfuz, S.; Wang, J.; Piao, X. Effect of dietary supplementation with mixed organic acids on immune function, antioxidative characteristics, digestive enzymes activity, and intestinal health in broiler chickens. Front. Nutr. 2021, 8, 673316. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Seok, W.J.; Kim, I.H. Organic acids mixture as a dietary additive for pigs-A Review. Animals 2020, 10, 952. [Google Scholar] [CrossRef]
- Wang, X.; Deng, T.; Zhou, X.; Chu, L.; Zeng, X.; Zhang, S.; Guan, W.; Chen, F. A Mixture of formic acid, benzoic acid, and essential oils enhanced growth performance via modulating nutrient uptake, mitochondrion metabolism, and immunomodulation in weaned piglets. Antioxidants 2024, 13, 246. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.H.; Xu, X.R.; Sun, D.F.; Tang, J.L.; Zhang, Y.K. Effects of drinking water acidification by organic acidifier on growth performance, digestive enzyme activity and caecal bacteria in growing rabbits. Anim. Feed. Sci. Technol. 2014, 190, 87–94. [Google Scholar] [CrossRef]
- Gómez-García, M.; Sol, C.; de Nova, P.J.G.; Puyalto, M.; Mesas, L.; Puente, H.; Mencía-Ares, Ó.; Miranda, R.; Argüello, H.; Rubio, P.; et al. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porc. Health Manag. 2019, 5, 32. [Google Scholar] [CrossRef]
- Humer, E.; Lucke, A.; Harder, H.; Metzler-Zebeli, B.; Böhm, J.; Zebeli, Q. Effects of citric and lactic acid on the reduction of deoxynivalenol and its serivatives in feeds. Toxins 2016, 8, 285. [Google Scholar] [CrossRef]
- Fascina, V.B.; Sartori, J.R.; Gonzales, E.; Carvalho, F.B.D.; Souza, I.M.G.P.; Polycarpo, G.D.V.; Stradiotti, A.C.; Pelícia, V.C. Phytogenic additives and organic acids in broiler chicken diets. Rev. Bras. Zoot. 2012, 41, 2189–2197. [Google Scholar] [CrossRef]
- Alam, S.; Shah, H.U.; Afzal, M.; Magan, N. Influence of calcium propionate, water activity and storage time on mold incidence and aflatoxins production in broiler starter feed. Anim. Feed. Sci. Technol. 2014, 188, 137–144. [Google Scholar] [CrossRef]
- Wang, J.; Dai, D.; Zhang, H.; Wu, S.; Han, Y.; Wu, Y.; Qi, G. Organic acids modulate systemic metabolic perturbation caused by salmonella pullorum challenge in early-stage broilers. Front. Physiol. 2019, 10, 1418. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, P.; Clark, T.; Kuenzel, C.; Foy, M.K.; Watkins, S. On farm monitoring of the impact of water system sanitation on microbial levels in broiler house water supplies. J. Appl. Poult. Res. 2016, 25, 266–271. [Google Scholar] [CrossRef]
- Hamid, H.; Shi, H.Q.; Ma, G.Y.; Fan, Y.; Li, W.X.; Zhao, L.H.; Zhang, J.Y.; Ji, C.; Ma, Q.G. Influence of acidified drinking water on growth performance and gastrointestinal function of broilers. Poult. Sci. 2018, 97, 3601–3609. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, L.; Shao, D.; Wang, Q.; Wu, Y.; Han, Y.; Shi, S. Selectived and reshaped early dominant microbial community in the cecum with similar proportions and better homogenization and species diversity due to organic acids as AGP alternatives mediate their effects on broilers growth. Front. Microbiol. 2020, 10, 2948. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Cao, Y.; Zhang, Z.; Nie, D.; Li, Y. Cinnamon and eucalyptus oils suppress the inflammation induced by lipopolysaccharide in vivo. Molecules 2021, 26, 7410. [Google Scholar] [CrossRef]
- Stefanello, C.; Rosa, D.P.; Dalmoro, Y.K.; Segatto, A.L.; Vieira, M.S.; Moraes, M.L.; Santin, E. Protected blend of organic acids and essential oils Improves growth performance, nutrient digestibility, and intestinal health of broiler chickens undergoing an intestinal challenge. Front. Vet. Sci. 2020, 6, 491. [Google Scholar] [CrossRef] [PubMed]
- Pathak, M.; Mandal, G.P.; Patra, A.K.; Samanta, I.; Pradhan, S.; Haldar, S. Effects of dietary supplementation of cinnamaldehyde and formic acid on growth performance, intestinal microbiota and immune response in broiler chickens. Anim. Prod. Sci. 2017, 57, 821. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Y.R.; Wu, S.; Xiao, Y.Q.; He, Q.; Shi, S.R. The dietary combination of essential oils and organic acids reduces Salmonella enteritidis in challenged chicks. Poul Sci. 2019, 98, 6349–6355. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Singh, A.K.; Chen, X.; Lv, J.; Kim, W.K. Application of organic acids and essential oils as alternatives to antibiotic growth promoters in broiler chickens. Animals 2022, 12, 2178. [Google Scholar] [CrossRef]
- Acikgoz, Z.; Bayraktar, H.; Altan, O. Effects of formic acid administration in the drinking water on performance, intestinal microflora and carcass contamination in male broilers under high ambient temperature. Asian Austral. J. Anim. 2011, 24, 96–102. [Google Scholar] [CrossRef]
- Hernandez, F.; Garcia, V.; Madrid, J.; Orengo, J.; Catala, P.; Megias, M.D. Effect of formic acid on performance, digestibility, intestinal histomorphology and plasma metabolite levels of broiler chickens. Br. Poult. Sci. 2006, 47, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, F.; Madrid, J.; Garcia, V.; Orengo, J.; Megias, M.D. Influence of two plant Extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 2004, 83, 169. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Lei, J.; Zhang, B. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil. Poult. Sci. 2020, 99, 4892–4903. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Luo, W.; Liu, H.; Zhang, K.; Wang, J.; Ding, X.; Zeng, Q.; Peng, H.; Bai, J.; Xuan, Y.; et al. Effects of high dietary iron on the lipid metabolism in the liver and adipose tissue of male broiler chickens. Anim. Feed. Sci. Technol. 2021, 282, 115131. [Google Scholar] [CrossRef]
- Saleem, K.; Saima; Rahman, A.; Pasha, T.N.; Mahmud, A.; Hayat, Z. Effects of dietary organic acids on performance, cecal microbiota, and gut morphology in broilers. Trop. Anim. Health Prod. 2020, 52, 3589–3596. [Google Scholar] [CrossRef]
- Sandford, E.E.; Orr, M.; Balfanz, E.; Bowerman, N.; Li, X.; Zhou, H.; Johnson, T.J.; Kariyawasam, S.; Liu, P.; Nolan, L.K.; et al. Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens. BMC Genom. 2011, 12, 469. [Google Scholar] [CrossRef] [PubMed]
- Al-Mutairi, H.M.S.; Hussein, E.O.S.; Jar El Nabi, A.R.; Swelum, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Al-Mufarrej, S.I. Does the consumption of acidified drinking water affect growth performance and lymphoid organs of broilers? Sustainability 2020, 12, 3093. [Google Scholar] [CrossRef]
- Ateya, A.I.; Arafat, N.; Saleh, R.M.; Ghanem, H.M.; Naguib, D.; Radwan, H.A.; Elseady, Y.Y. Intestinal gene expressions in broiler chickens infected with Escherichia coli and dietary supplemented with probiotic, acidifier and synbiotic. Vet. Res. Commun. 2019, 43, 131–142. [Google Scholar] [CrossRef]
- Kumar, A.; Toghyani, M.; Kheravii, S.K.; Pineda, L.; Han, Y.; Swick, R.A.; Wu, S. Potential of blended organic acids to improve performance and health of broilers infected with necrotic enteritis. Anim. Nutr. 2021, 7, 440–449. [Google Scholar] [CrossRef]
- Fouad, A.M.; El-Senousey, H.K. Nutritional Factors Affecting Abdominal Fat Deposition in Poultry: A Review. Asian Austral. J. Anim. 2014, 27, 1057–1068. [Google Scholar] [CrossRef]
- Mahdavi, R.; Torki, M. Study on Usage Period of Dietary Protected Butyric Acid on Performance, Carcass characteristics, serum metabolite levels and humoral immune response of broiler chickens. J. Anim. Vet. Adv. 2009, 8, 1702–1709. [Google Scholar]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Soliman, M.M.; Youssef, G.B.A.; Taha, A.E.; Soliman, S.M.; Ahmed, A.E.; El-kott, A.F.; et al. Alternatives to antibiotics for organic poultry production: Types, modes of action and impacts on bird’s health and production. Poult. Sci. 2022, 101, 101696. [Google Scholar] [CrossRef] [PubMed]
- Palamidi, I.; Paraskeuas, V.; Theodorou, G.; Breitsma, R.; Schatzmayr, G.; Theodoropoulos, G.; Fegeros, K.; Mountzouris, K.C. Effects of dietary acidifier supplementation on broiler growth performance, digestive and immune function indices. Anim. Prod. Sci. 2017, 57, 271. [Google Scholar] [CrossRef]
- Cione, E.; La Torre, C.; Cannataro, R.; Caroleo, M.C.; Plastina, P.; Gallelli, L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human microRNA modulation. Molecules 2020, 25, 63. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Lin, X.; Gou, Z.; Fan, Q.; Ye, J.; Jiang, S. Potential effects of aidifier and amylase as substitutes for antibiotic on the growth performance, nutrient digestion and gut Microbiota in yellow-feathered broilers. Animals 2020, 10, 1858. [Google Scholar] [CrossRef] [PubMed]
- Aljumaah, M.R.; Alkhulaifi, M.M.; Abudabos, A.M.; Alabdullatifb, A.; El-Mubarak, A.H.; Al Suliman, A.R.; Stanley, D. Organic acid blend supplementation increases butyrate and acetate production in Salmonella enterica serovar Typhimurium challenged broilers. PLoS ONE 2020, 15, e0232831. [Google Scholar] [CrossRef] [PubMed]
- Maes, S.; Vackier, T.; Nguyen Huu, S.; Heyndrickx, M.; Steenackers, H.; Sampers, I.; Raes, K.; Verplaetse, A.; De Reu, K. Occurrence and characterisation of biofilms in drinking water systems of broiler houses. BMC Microbiol. 2019, 19, 77. [Google Scholar] [CrossRef]
- Dagans, S.; Gauvry, E.; Onno, B.; Membre, J. Quantifying effect of lactic, acetic, and propionic acids on growth of molds isolated from spoiled bakery products. J. Food Protect. 2015, 78, 1689–1698. [Google Scholar] [CrossRef]
- Timbermont, L.; Lanckriet, A.; Dewulf, J.; Nollet, N.; Schwarzer, K.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils. Avian Pathol. 2010, 39, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Ji, B.; Zhang, H.; Jiang, H.; Yang, Z.; Li, J.; Li, J.; Ren, Y.; Yan, W. Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella Typhimurium. J. Food Protect. 2007, 70, 1704. [Google Scholar] [CrossRef]
- Harris, C.E.; Josselson, L.N.B.; Bourassa, D.V.; Fairchild, B.D.; Kiepper, B.H.; Buhr, R.J. Evaluation of drinking water antimicrobial interventions on water usage, feed consumption, and salmonella retention in broilers following feed and water withdrawal. J. Appl. Poult. Res. 2019, 28, 699–711. [Google Scholar] [CrossRef]
- Duncan, S.H.; Holtrop, G.; Lobley, G.E.; Calder, A.G.; Stewart, C.S.; Flint, H.J. Contribution of acetate to butyrate formation by human faecal bacteria. Br. J. Nutr. 2004, 91, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Humblot, C.; Bruneau, A.; Sutren, M.; Lhoste, E.F.; Doré, J.; Andrieux, C.; Rabot, S. Brussels sprouts, inulin and fermented milk alter the faecal microbiota of human microbiota-associated rats as shown by PCR-temporal temperature gradient gel electrophoresis using universal, Lactobacillus and Bifidobacterium 16S rRNA gene primers. Br. J. Nutr. 2005, 93, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Emili Vinolya, R.; Balakrishnan, U.; Yasir, B.; Chandrasekar, S. Effect of dietary supplementation of acidifiers and essential oils on growth performance and intestinal health of broiler. J. Appl. Poult. Res. 2021, 30, 100179. [Google Scholar] [CrossRef]
Ingredients, % | Starter Diet | Finisher Diet |
---|---|---|
Corn | 51.169 | 56.559 |
Soybean meal | 35.835 | 31.400 |
Wheat flour | 5.000 | 3.219 |
Soybean oil | 4.000 | 5.500 |
Limestone | 1.348 | 0.581 |
Dicalcium phosphate | 1.248 | 1.533 |
NaCl | 0.300 | 0.300 |
L-Lysine (78%) | 0.356 | 0.170 |
DL-Methionine (98%) | 0.215 | 0.208 |
Choline chloride (50%) | 0.150 | 0.150 |
Mineral premix 1 | 0.200 | 0.200 |
Enzyme blend 2 | 0.030 | 0.030 |
Vitamin premix 3 | 0.030 | 0.030 |
Phytase (5000 FTU/kg) | 0.020 | 0.020 |
Additive of Exp 4 | 0.100 | 0.100 |
Nutrient composition 4, % | ||
ME (mc/kg) | 3.00 | 3.15 |
CP, % | 21.50 | 19.50 |
Total Lysine, % | 1.41 | 1.16 |
Total Methionine, % | 0.53 | 0.50 |
Total Methionine + Cysteine, % | 0.85 | 0.80 |
Calcium, % | 1.00 | 0.79 |
Available phosphorus, % | 0.35 | 0.39 |
Item | Treatment 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Ctr | ACI | ACI+EO | ACII | |||
Average Body Weight | ||||||
Day 0/g | 43.0 | 42.3 | 43.3 | 43.6 | 0.020 | 0.128 |
Day 28/kg | 1.56 a | 1.50 b | 1.58 a | 1.57 a | 0.008 | 0.001 |
Day 42/kg | 2.74 b | 2.71 b | 2.83 a | 2.79 a | 0.012 | <0.001 |
Average Daily Gain | ||||||
Day 0–28/g | 54.13 a | 52.18 b | 54.89 a | 54.40 a | 0.279 | 0.001 |
Day 29–42/g | 84.25 c | 86.09 bc | 89.35 a | 87.72 ab | 0.622 | 0.014 |
Day 0–42/g | 64.17 b | 63.48 b | 66.37 a | 65.51 a | 0.295 | <0.001 |
Item | Treatment 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Ctr | ACI | ACI+EO | ACII | |||
Liver % | 2.19 | 2.29 | 2.22 | 2.19 | 0.026 | 0.896 |
Abdominal adipose % | 1.45 | 1.64 | 1.41 | 1.61 | 0.134 | 0.817 |
Spleen % | 0.08 b | 0.11 ab | 0.14 a | 0.13 a | 0.007 | 0.003 |
Thymus % | 0.19 | 0.24 | 0.22 | 0.20 | 0.016 | 0.528 |
Bursa of Fabricius % | 0.04 | 0.05 | 0.04 | 0.04 | 0.004 | 0.670 |
Item | Treatment 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Ctr | ACI | ACI+EO | ACII | |||
IL-6 (ng/L) | 50 a | 40 c | 45 b | 48 a | 0.7 | <0.001 |
IL-10 (ng/L) | 60 a | 62 a | 54 b | 61 a | 0.6 | <0.001 |
IgA (ng/L) | 5908 c | 7005 a | 7136 a | 6639 b | 93.3 | <0.001 |
IgG (ng/L) | 86 ab | 80 c | 87 a | 83 bc | 0.7 | <0.001 |
IgM (ng/L) | 4439 c | 4045 d | 5061 a | 4740 b | 72.8 | <0.001 |
Item | Treatment 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Ctr | ACI | ACI+EO | ACII | |||
Total cholesterol (mmol/L) | 3.18 a | 2.90 ab | 2.63 b | 2.59 b | 0.066 | 0.002 |
Total triglyceride (mmol/L) | 1.17 a | 0.92 ab | 0.73 ab | 0.57 b | 0.071 | 0.012 |
HDL (mmol/L) | 2.01 | 1.89 | 1.75 | 1.87 | 0.053 | 0.407 |
LDL (mmol/L) | 0.66 a | 0.57 ab | 0.48 b | 0.49 b | 0.026 | 0.033 |
Free fatty acid (μmol/L) | 320.16 b | 338.91 b | 386.42 b | 549.59 a | 21.878 | <0.001 |
Item | Treatment 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Ctr | ACI | ACI+EO | ACII | ||||
pH value | Crop | 4.08 a | 4.16 a | 3.40 b | 3.75 ab | 0.544 | 0.003 |
Proventriculus | 3.63 a | 3.61 a | 3.69 a | 3.19 b | 0.057 | 0.003 | |
Gizzard | 3.61 a | 3.55 a | 3.10 b | 3.04 b | 0.060 | <0.001 | |
Duodenum | 5.01 | 5.07 | 4.79 | 5.04 | 0.360 | 0.280 | |
Jejunum | 5.41 | 5.17 | 5.11 | 5.45 | 0.439 | 0.215 | |
Ileum | 5.79 | 5.50 | 5.74 | 5.91 | 0.372 | 0.082 | |
Cecum | 6.06 | 6.07 | 6.21 | 6.17 | 0.259 | 0.542 | |
Trypsin activity (U/mgprot) | Duodenum | 2880.23 | 2248.96 | 3409.75 | 4200.14 | 378.49 | 0.326 |
Jejunum | 5454.55 | 7480.88 | 9372.99 | 6839.91 | 663.21 | 0.214 | |
Ileum | 11,522.79 | 8425.48 | 8925.59 | 7214.97 | 727.15 | 0.199 | |
Lipase activity (U/mgprot) | Duodenum | 136.11 | 66.46 | 69.15 | 67.86 | 16.26 | 0.364 |
Jejunum | 157.04 b | 486.55 a | 429.94 a | 474.88 a | 48.51 | 0.040 | |
Ileum | 743.34 | 534.27 | 532.84 | 417.94 | 60.26 | 0.296 |
Item | Treatment 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Ctr | ACI | ACI+EO | ACII | ||||
Intestinal length/cm | Duodenum | 26.2 | 28.0 | 27.3 | 25.2 | 0.55 | 0.308 |
Jejunum | 62.0 | 71.0 | 66.0 | 59.1 | 1.67 | 0.062 | |
Ileum | 49.7 | 58.5 | 53.8 | 52.2 | 1.24 | 0.075 | |
Villus height/μm | Duodenum | 1804 | 1822 | 1762 | 1759 | 33.7 | 0.895 |
Jejunum | 1237 | 1374 | 1425 | 1378 | 51.1 | 0.615 | |
Ileum | 836 | 733 | 1009 | 983 | 45.3 | 0.101 | |
Crypt depth/μm | Duodenum | 255 | 251 | 244 | 208 | 8.1 | 0.165 |
Jejunum | 212 | 200 | 173 | 205 | 6.5 | 0.180 | |
Ileum | 139 | 154 | 153 | 158 | 5.2 | 0.638 | |
V/C 2 | Duodenum | 7.57 | 7.38 | 7.74 | 8.94 | 0.261 | 0.139 |
Jejunum | 7.20 | 7.08 | 7.20 | 6.91 | 0.207 | 0.959 | |
Ileum | 6.38 | 5.14 | 6.23 | 5.99 | 0.209 | 0.150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Gao, X.; Qiao, C.; Han, M.; Miao, Z.; Liu, C.; Yan, L.; Li, J. Effects of Mixed Organic Acids and Essential Oils in Drinking Water on Growth Performance, Intestinal Digestive Capacity, and Immune Status in Broiler Chickens. Animals 2024, 14, 2160. https://doi.org/10.3390/ani14152160
Dong Y, Gao X, Qiao C, Han M, Miao Z, Liu C, Yan L, Li J. Effects of Mixed Organic Acids and Essential Oils in Drinking Water on Growth Performance, Intestinal Digestive Capacity, and Immune Status in Broiler Chickens. Animals. 2024; 14(15):2160. https://doi.org/10.3390/ani14152160
Chicago/Turabian StyleDong, Yuanyang, Xulong Gao, Chenqi Qiao, Miaomiao Han, Zhiqiang Miao, Ci Liu, Lei Yan, and Jianhui Li. 2024. "Effects of Mixed Organic Acids and Essential Oils in Drinking Water on Growth Performance, Intestinal Digestive Capacity, and Immune Status in Broiler Chickens" Animals 14, no. 15: 2160. https://doi.org/10.3390/ani14152160
APA StyleDong, Y., Gao, X., Qiao, C., Han, M., Miao, Z., Liu, C., Yan, L., & Li, J. (2024). Effects of Mixed Organic Acids and Essential Oils in Drinking Water on Growth Performance, Intestinal Digestive Capacity, and Immune Status in Broiler Chickens. Animals, 14(15), 2160. https://doi.org/10.3390/ani14152160