Effects of L-Methionine and DL-Methionine on Growth Performance, Methionine-Metabolizing Enzyme Activities, Feather Traits, and Intestinal Morphology of Medium-Growing, Yellow-Feathered Chickens between 1 and 30 Days of Age
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Experimental Design, and Diets
2.2. Measurement of Growth Performance
2.3. Evaluation of Feather Traits
2.4. Sample Collection
2.5. Measurement of Methionine Metabolizing Enzymes and Biochemical Indices in Plasma
2.6. Measurement of Intestinal Morphology
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Feather Traits
3.3. Plasma Biochemical Variables
3.4. Small Intestinal Morphology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lemme, A.; Naranjo, V.; Paula, D.J.C. Utilization of methionine sources for growth and Met+Cys deposition in broilers. Animals 2020, 10, 2240. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.L.; Mcbreairty, L.E.; Randell, E.W.; Janet, A.B.; Robert, F.B. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet. J. Nutr. Biochem. 2016, 35, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Tsiagbe, V.K.; Cook, M.E.; Harper, A.E.; Sunde, M.L. Enhanced immune responses in broiler chicks fed methionine-supplemented diets. Poult. Sci. 1987, 66, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Xu, R.S.; Min, L.; Ruan, D.; Kim, H.Y.; Hong, Y.G.; Chen, W.; Wang, S.; Xia, W.G.; Luo, X.; et al. Effects of L-methionine on growth performance, carcass quality, feather traits, and small intestinal morphology of Pekin ducks compared with conventional DL-methionine. Poult. Sci. 2019, 98, 6866–6872. [Google Scholar] [CrossRef]
- Majdeddin, M.; Golian, A.; Kermanshahi, H.; Michiels, J.; De-Smet, S. Effects of methionine and guanidinoacetic acid supplementation on performance and energy metabolites in breast muscle of male broiler chickens fed corn-soybean diets. Br. Poult. Sci. 2019, 60, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Martinez, Y.; Li, X.; Liu, G.; Peng, B.; Yan, W.X.; Dairon, M.; Manuel, V.; Hu, C.A.; Ren, W.K.; Yin, Y.L. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef]
- Moghadam, M.; Shehab, A.; Cherian, G. Methionine supplementation augments tissue n-3 fatty acid and tocopherol content in broiler birds fed flaxseed. Anim. Feed Sci. Technol. 2017, 228, 149–158. [Google Scholar] [CrossRef]
- Zeitz, J.O.; Mohrmann, S.; Kading, S.C.; Devlikamov, M.; Niewalda, I.; Whelan, R.; Helmbrecht, A.; Eder, K. Effects of methionine on muscle protein synthesis and degradation pathways in broilers. J. Anim. Physiol. Anim. Nutr. 2019, 103, 191–203. [Google Scholar] [CrossRef]
- Xue, J.J.; Xie, M.; Tang, J.; Huang, W.; Zhang, Q.; Hou, S.S. Effects of excess DL- and L-methionine on growth performance of starter Pekin ducks. Poult. Sci. 2018, 97, 946–950. [Google Scholar] [CrossRef]
- Fagundes, N.S.; Milfort, M.C.; Williams, S.M.; Costa, M.D.J.; Fuller, A.L.; Menten, J.F.; Rekaya, R.; Aggrey, S.E. Dietary methionine level alters growth, digestibility, and gene expression of amino acid transporters in meat-type chickens. Poult. Sci. 2020, 99, 67–75. [Google Scholar] [CrossRef]
- Brachet, P.; Puigserver, A. Regional differences for the D-amino acid oxidase-catalysed oxidation of D-methionine in chicken small intestine. Comp. Biochem. Phys. B 1992, 101, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Mastrototaro, L.; Sponder, G.; Saremi, B.; Aschenbach, J.R. Gastrointestinal methionine shuttle: Priority handling of precious goods. IUBMB Life 2016, 68, 924–934. [Google Scholar] [CrossRef]
- Romanet, S.; Aschenbach, J.R.; Pieper, R.; Zentek, J.; Htoo, J.K.; Whelan, R.A.; Mastrototaro, L. Expression of proposed methionine transporters along the gastrointestinal tract of pigs and their regulation by dietary methionine sources. Genes Nutr. 2021, 16, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Zaghari, M.; Ghaziani, F. Comparison of absorption kinetics and utilisation of DL-methionine (DL-Met), Met-Met product (AQUAVI® Met-Met), and protein-bound methionine (PB-Met) by female broiler chickens. Br. Poult. Sci. 2021, 62, 539–551. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, J.; Wang, X.; Jiao, H.; Lin, H. Use of encapsulated L-lysine-HCl and DL-methionine improves postprandial amino acid balance in laying hens. J. Anim. Sci. 2020, 98, skaa315. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.D.; Atwell, C.A.; Vazquez-Anon, M.; Dibner, J.J. Comparative in vitro and in vivo absorption of 2-hydroxy-4(methylthio) butanoic acid and methionine in the broiler chicken. Poult. Sci. 2005, 84, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.B.; Ferket, P.; Park, I.; Malheiros, R.D.; Kim, S.W. Effects of feed grade l-methionine on intestinal redox status, intestinal development, and growth performance of young chickens compared with conventional dl-methionine. J. Anim. Sci. 2015, 93, 2977–2986. [Google Scholar] [CrossRef] [PubMed]
- Powell, C.D.; Chowdhury, M.A.K.; Bureau, D.P. Assessingthe bioavailability of l-methionine and a methionine hydroxyanalogue (MHA-Ca) compared to dl-methionine in rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2017, 48, 332–346. [Google Scholar] [CrossRef]
- Park, I.; Pasquetti, T.; Malheiros, R.D.; Ferket, P.R.; Kim, S.W. Effects of supplemental l-methionine on growth performance and redox status of turkey poults compared with the use of dl-methionine. Poult. Sci. 2018, 97, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Lugata, J.K.; Oláh, J.; Ozsváth, X.E.; Knop, R.; Angyal, E.; Szabó, C. Effects of DL and L-Methionine on Growth Rate, Feather Growth, and Hematological Parameters of Tetra-SL Layers from 1–28 Days of Age. Animals 2022, 12, 1928. [Google Scholar] [CrossRef]
- Tang, J.Y.; He, Z.; Liu, Y.G.; Xu, L.; Gong, D.Q. Effect of supplementing hydroxy selenomethionine on meat quality of yellow feather broiler. Poult. Sci. 2021, 100, 101389–101402. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.F.; Cai, B.L.; Li, X.J.; Zhou, Z.; Fang, X.; Yang, X.; Cai, D.F.; Luo, X.H.; Guo, S.Y.; Nie, Q.H. Assessment of selective breeding effects and selection signatures in Qingyuan partridge chicken and its strains. Poult. Sci. 2024, 103, 103626. [Google Scholar] [CrossRef] [PubMed]
- NY/T 823-2020; Nutrient Requirements for Yellow-feathered Broilers. Ministry of Agriculture and Rural Affairs of the People’s Republic of China (PRC): Beijing, China, 2020.
- GB/T 15399-2018; Determination of Sulfur-containing Amino Acids in Feed by Ion Exchange Chromatography. National Standardization Administration of the People’s Republic of China (PRC): Beijing, China, 2018.
- GB/T 18246-2019; Determination of Amino Acids in Feed. National Standardization Administration of the People’s Republic of China (PRC): Beijing, China, 2019.
- Littell, R.C.; Henry, P.R. Estimation of relative bioavailability of nutrients using SAS procedures. J. Anim. Sci. 1997, 75, 2672–2683. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.B.; Weaver, A.C.; Kim, S.W. Effect of feed grade l-methionine on growth performance and gut health in nursery pigs compared with conventional dl-methionine. J. Anim. Sci. 2014, 92, 5530–5539. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Levine, R.L. Methionine in proteins defends against oxidative stress. FASEB J. 2009, 23, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Dilger, R.N.; Baker, D.H. DL-methionine is as efficacious as L-methionine, but modest L-cystine excesses are anorexigenic in sulfur amino acid-deficient purified and practical-type diets fed to chicks. Poult. Sci. 2007, 86, 2367–2374. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, W.X.; Lai, W.C.; Kong, A.; Zhang, Z.; Pang, Y.N.; Wang, Z.; Shen, J.; Wu, X.F.; Mai, K.S.; et al. Effect of dietary methionine on growth performance, lipid metabolism and antioxidant capacity of large yellow croaker (Larimichthys crocea) fed with high lipid diets. Aquaculture 2021, 536, 8476–8486. [Google Scholar] [CrossRef]
- Esteve-Garcia, E.; Khan, D.R. Relative bioavailability of DL and L-methionine in broilers. Open J. Anim. Sci. 2018, 8, 151–162. [Google Scholar] [CrossRef]
- Asasi, R.; Ahmadi, H.; Torshizi, M.A.K.; Torshizi, R.V.; Shariatmadari, F. Assessing the nutritional equivalency of DL-methionine and L-methionine in broiler chickens: A meta-analytical study. Poult. Sci. 2023, 102, 103143. [Google Scholar] [CrossRef]
- Wheeler, K.B.; Latshaw, J.D. Sulfur amino acid requirements and interactions in broilers during two growth periods. Poult. Sci. 1981, 60, 228–236. [Google Scholar] [CrossRef]
- Zeng, Q.F.; Zhang, Q.; Chen, X.; Doster, A.; Murdoch, R.; Makagon, M.; Gardner, A.; Applegate, T.J. Effect of dietary methionine content on growth performance, carcass traits, and feather growth of Pekin duck from 15 to 35 days of age. Poult. Sci. 2015, 94, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Guo, F. Effects of Methionine on Feather Development of Started Peking Ducks of 0 to 21d of Age. Master’s Thesis, The Chinese Academy of Agricultural Sciences, Beijing, China, 2011. [Google Scholar]
- Castellano, R.; Perruchot, M.H.; Conde-Aguilera, J.A.; Jaap, V.M.; Anne, C.; Sophie, T.; Yves, M.; Florence, G. A methionine Deficient Diet Enhances Adipose Tissue Lipid metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs. PLoS ONE 2015, 10, e130514. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Wang, Y.; Yang, H.M.; Xu, L.; Gong, D.Q. Effects of dietary methionine and betaine on slaughter performance, biochemical and enzymatic parameters in goose liver and hepatic composition. Anim. Feed Sci. Technol. 2017, 228, 48–58. [Google Scholar] [CrossRef]
- Tang, B.Q.; Mustafa, A.; Gupta, S.; Melnyk, S.; James, S.J.; Kruger, W.D. Methionine-deficient diet induces post-transcriptional downregulation of cystathionine beta-synthase. Nutrition 2010, 26, 1170–1175. [Google Scholar] [CrossRef]
- Mato, J.M.; Lu, S.C. The hepatocarcinogenic effect of methionine and choline deficient diets: An adaptation to the warburg effect. Alcohol Clin. Exp. Res. 2011, 35, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Souza, M.R.; Baggio, R.A.; Boito, J.P.; Pasquetti, T.J.T.; Santos, M.B.D.; Moresco, R.N.; Silva, A.S.D.; Paiano, D. Pigs fed various levels of crude protein and raised above the thermoneutral zone: Effects on protein metabolism and nitrogen balance. Res. Soc. Dev. 2021, 10, e21210111345–e21210111360. [Google Scholar] [CrossRef]
- Levitt, D.G.; Levitt, M.D. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016, 9, 229–255. [Google Scholar] [CrossRef]
- Donsbough, A.L.; Powell, S.; Waguespack, A.; Bidner, T.D.; Southern, L.L. Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers. Poult. Sci. 2010, 89, 287–294. [Google Scholar] [CrossRef]
- Shamimul, H.M.; Humphrey, R.M.; Crenshaw, M.; James, A.B.; Liao, S.F. Inclusion of GuarPro F-71 in a corn and soybean meal based diet: Effects on growth performance and nutrient metabolism in growing pigs. J. Anim. Sci. 2019, 97 (Suppl. S2), 52–53. [Google Scholar] [CrossRef]
- Ho, T.T.; Htoo, J.K.K.; Dao, T.B.A.; Carpena, M.E.; Le, N.A.T.; Vu, C.C.; Nguyen, Q.L. Estimation of the standardized ileal digestible lysine requirement and optimal sulphur amino acids to lysine ratio for 30–50 kg pigs. J. Anim. Physiol. Anim. Nutr. 2018, 103, 258–268. [Google Scholar] [CrossRef]
- Martínvenegas, R.; Geraert, P.A.; Ferrer, R. Conversion of the methionine hydroxy analogue DL-2-hydroxy-(4-methylthio) butanoic acid to sulfur-containing amino acids in the chicken small intestine. Poult. Sci. 2006, 85, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, D.; Dai, Z.; Piao, X.; Wu, Z.; Wang, B.; Zhu, Y.; Zeng, Z. L-methionine supplementation maintains the integrity and barrier function of the small-intestinal mucosa in post-weaning piglets. Amino Acids 2014, 46, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.Y.; Liu, G.; Choi, J.; Yadav, S.; Wei, F.; Kim, W.K. Effects of levels of methionine supplementations in forms of L- or DL-methionine on the performance, intestinal development, immune response, and antioxidant system in broilers challenged with Eimeria spp. Poult. Sci. 2023, 102, 102586. [Google Scholar] [CrossRef] [PubMed]
Met Source | Met Supplemental Level, % | Total Dietary Met, % 1 | Total Dietary Met + Cys, % 1 |
---|---|---|---|
- | 0 | 0.28 (0.28) | 0.59 (0.59) |
DL-Met | 0.04 | 0.32 (0.30) | 0.63 (0.61) |
0.08 | 0.36 (0.35) | 0.67 (0.65) | |
0.12 | 0.40 (0.39) | 0.71 (0.70) | |
0.16 | 0.44 (0.44) | 0.75 (0.74) | |
0.20 | 0.48 (0.48) | 0.79 (0.79) | |
L-Met | 0.04 | 0.32 (0.32) | 0.63 (0.62) |
0.08 | 0.36 (0.34) | 0.67 (0.64) | |
0.12 | 0.40 (0.40) | 0.71 (0.70) | |
0.16 | 0.44 (0.42) | 0.75 (0.72) | |
0.20 | 0.48 (0.48) | 0.79 (0.78) |
Ingredients | Nutrient Levels 3 | ||
---|---|---|---|
Corn (CP 7.83%) 1 | 603.9 | ME(MJ/kg) | 11.92 |
Soybean meal (CP 46.22%) 1 | 250.05 | CP | 199.0 |
Peanut meal (CP 47.01%) 1 | 50.0 | Ca | 10.0 |
Pea protein powder (CP 77.78%) 1 | 24.1 | P | 7.4 |
Soybean oil | 27.4 | Non-phytate P | 4.8 |
CaHPO4 | 16.8 | Lys | 10.5 |
NaCl | 3.0 | Met | 2.8 |
Limestone | 10.9 | Met + Cys | 5.9 |
L-Lys·HCl | 1.00 | Thr | 7.2 |
Unified bran | 2.40 | Trp | 2.2 |
Premix 2 | 10.0 | Arg | 14.0 |
Total | 1000.0 | Ile | 7.7 |
Val | 9.0 |
Molting Degree | Feather Class | Score |
---|---|---|
The back, breast, and abdomen have not yet moulted. | 0− | 1 |
0 | 2 | |
0+ | 3 | |
A few feathers on the back, breast, and abdomen began to molt. | 1− | 4 |
1 | 5 | |
1+ | 6 | |
The back, breast, and abdomen are moulting, and there are more down feathers left. | 2− | 7 |
2 | 8 | |
2+ | 9 | |
The back, breast, and abdomen are moulting more, and there are fewer down feathers left. | 3− | 10 |
3 | 11 | |
3+ | 12 |
Variable | IBW (g) | 30 d FBW (g) | ADFI (g/d) | ADG (g/d) | F:G | |
---|---|---|---|---|---|---|
Met source | Supplemental Dietary Met level | |||||
CON | 0.00 | 38.79 | 486.08 | 31.81 | 15.97 | 2.00 |
DL-Met | 0.04 | 38.81 | 563.85 | 34.75 | 18.75 | 1.87 |
0.08 | 38.81 | 570.09 | 34.40 | 18.97 | 1.82 | |
0.12 | 38.78 | 616.85 | 36.99 | 20.73 | 1.82 | |
0.16 | 38.83 | 579.86 | 33.87 | 19.30 | 1.76 | |
0.20 | 38.82 | 613.20 | 34.99 | 20.51 | 1.71 | |
L-Met | 0.04 | 38.82 | 587.50 | 35.06 | 19.57 | 1.79 |
0.08 | 38.79 | 587.42 | 33.92 | 19.61 | 1.74 | |
0.12 | 38.80 | 597.45 | 34.60 | 19.95 | 1.74 | |
0.16 | 38.85 | 626.03 | 36.41 | 20.97 | 1.77 | |
0.20 | 38.84 | 618.53 | 36.03 | 20.70 | 1.76 | |
SEM | 0.03 | 9.31 | 0.63 | 0.33 | 0.03 | |
DL-Met 2 | 38.81 | 589.23 | 35.00 | 19.65 | 1.80 | |
L-Met 3 | 38.82 | 603.31 | 35.20 | 20.16 | 1.76 | |
p-values | ||||||
CON vs. DL-Met | 0.54 | <0.01 | <0.01 | <0.01 | <0.01 | |
CON vs. L-Met | 0.39 | <0.01 | <0.01 | <0.01 | <0.01 | |
DL-Met vs. L-Met | 0.67 | 0.02 | 0.61 | 0.02 | 0.07 |
Variable | Regression Equation 1 | R2 | RBV | 95% Confidence Intervals |
---|---|---|---|---|
ADG | Y = 16.03 + 4.47 × [1 − Exp − (19.09 X1 + 27.72 X2)] | 0.93 | 145.2% | 0.12~0.38 |
Variables | Met Source | Model | Regression Equation 1 | R2 | p Value | Met Supplemental Level, % | Met Requirement 4,% | Met Requirement, mg/d |
---|---|---|---|---|---|---|---|---|
ADG | DL-Met | QP 2 | Y = −165.91 × X2 + 52.76 × X + 16.27 | 0.76 | <0.01 | 0.16 | 0.44 | 152 |
Two-slope BL 3 | Y = 16.40 + 37.50 × X, X < 0.10, Y = 20.19, X ≥ 0.10 | 0.71 | <0.01 | 0.10 | 0.38 | 131 | ||
L-Met | QP | Y = −167.25 × X2 + 54.46 × X + 16.40 | 0.76 | <0.01 | 0.15 | 0.43 | 149 | |
BL with plateau | Y = 15.97 + 83.87 × X, X < 0.05, Y = 20.31, X ≥ 0.05 | 0.76 | <0.01 | 0.05 | 0.33 | 112 | ||
F:G | DL-Met | QP | Y = 7.54 × X2 − 2.91 × X + 1.99 | 0.87 | <0.01 | 0.18 | 0.46 | 168 |
BL with plateau | Y = 2.00 − 3.21 × X, X < 0.08, Y = 1.76, X ≥ 0.08 | 0.77 | <0.01 | 0.08 | 0.36 | 124 | ||
L-Met | QP | Y = 14.68X2 − 3.85X + 1.97 | 0.77 | <0.01 | 0.12 | 0.40 | 138 | |
BL with plateau | Y = 2.00 − 1.00 × X, X < 0.04, Y = 1.76, X ≥ 0.04 | 0.84 | <0.01 | 0.04 | 0.32 | 110 |
Variable | Length of Fourth Primary Feather (cm) | Moulting Score | |
---|---|---|---|
Met source | Met supplemental level | ||
CON | 0.00 | 6.34 | 6.64 |
DL-Met | 0.04 | 6.85 | 7.73 |
0.08 | 6.65 | 7.49 | |
0.12 | 6.81 | 7.52 | |
0.16 | 6.85 | 7.67 | |
0.20 | 6.87 | 7.71 | |
L-Met | 0.04 | 7.03 | 7.75 |
0.08 | 7.79 | 8.26 | |
0.12 | 6.77 | 7.52 | |
0.16 | 7.00 | 7.58 | |
0.20 | 8.14 | 10.86 | |
SEM | 0.08 | 0.14 | |
DL-Met 2 | 6.83 | 7.66 | |
L-Met 3 | 7.35 | 8.40 | |
p-values | |||
CON vs. DL-Met | 0.05 | 0.02 | |
CON vs. L-Met | <0.01 | <0.01 | |
DL-Met vs. L-Met | <0.01 | 0.07 |
Variable | MAT (pg/mL) | GNMT (ng/L) | BHMT (ng/L) | CBS (pg/mL) | Uric Acid (μmol/L) | Total Protein (μg/mL) | Albumin (μg/mL) | |
---|---|---|---|---|---|---|---|---|
Met source | Met supplemental level | |||||||
CON | 0.00 | 16.60 | 10.44 | 22.54 | 141.79 | 247.09 | 29.09 | 8.49 |
DL-Met | 0.04 | 15.49 | 10.39 | 22.11 | 154.93 | 251.55 | 28.71 | 10.71 |
0.08 | 15.63 | 11.06 | 21.93 | 165.08 | 275.51 | 31.78 | 11.22 | |
0.12 | 14.99 | 10.86 | 21.75 | 158.50 | 310.00 | 28.00 | 11.76 | |
0.16 | 16.93 | 10.35 | 21.36 | 155.04 | 301.12 | 32.49 | 12.37 | |
0.20 | 14.89 | 10.21 | 21.18 | 139.87 | 280.05 | 26.39 | 13.61 | |
L-Met | 0.04 | 16.36 | 10.27 | 18.68 | 135.15 | 300.08 | 34.53 | 11.93 |
0.08 | 14.38 | 9.97 | 28.42 | 169.46 | 311.17 | 25.93 | 12.40 | |
0.12 | 14.31 | 11.02 | 24.94 | 161.14 | 243.08 | 27.17 | 13.06 | |
0.16 | 13.38 | 10.06 | 25.33 | 158.88 | 223.46 | 28.43 | 13.75 | |
0.20 | 13.77 | 11.45 | 24.03 | 170.28 | 226.99 | 30.05 | 13.54 | |
SEM | 0.694 | 0.43 | 1.14 | 4.08 | 23.57 | 1.28 | 0.72 | |
DL-Met 2 | 15.61 | 10.59 | 22.53 | 154.29 | 283.77 | 29.47 | 12.19 | |
L-Met 3 | 14.42 | 10.48 | 23.96 | 157.70 | 258.88 | 29.22 | 12.68 | |
p-values | ||||||||
CON vs. DL-Met | 0.14 | 0.75 | 0.45 | <0.01 | 0.20 | 0.78 | <0.01 | |
CON vs. L-Met | <0.01 | 0.79 | 0.13 | <0.01 | 0.68 | 0.69 | <0.01 | |
DL-Met vs. L-Met | <0.01 | 0.94 | 0.21 | 0.06 | 0.11 | 0.74 | 0.32 |
Variable | Duodenal Villus Height (μm) | Duodenal Crypt Depth (μm) | Duodenal V/C | Jejunum Villus Height (μm) | Jejunum Crypt Depth (μm) | Jejunum V/C | |
---|---|---|---|---|---|---|---|
Met source | Met supplemental level | ||||||
CON | 0.00 | 1175.26 | 365.40 | 3.22 | 947.84 | 333.25 | 3.03 |
DL-Met | 0.08 | 1344.31 | 365.75 | 3.76 | 892.48 | 394.28 | 2.30 |
0.20 | 1413.39 | 319.66 | 4.61 | 959.44 | 341.21 | 2.87 | |
L-Met | 0.08 | 1332.96 | 330.38 | 4.18 | 879.90 | 387.09 | 2.63 |
0.20 | 1339.45 | 317.98 | 4.41 | 1061.65 | 304.65 | 3.59 | |
SEM | 24.05 | 10.51 | 0.17 | 66.34 | 28.62 | 0.34 | |
DL-Met 2 | 1378.85 | 342.71 | 4.19 | 928.20 | 365.98 | 2.60 | |
L-Met 3 | 1335.56 | 325.42 | 4.27 | 957.79 | 351.76 | 3.04 | |
p-values | |||||||
CON vs. DL-Met | <0.01 | 0.40 | 0.02 | 0.81 | 0.34 | 0.30 | |
CON vs. L-Met | <0.01 | 0.17 | 0.02 | 0.90 | 0.59 | 0.97 | |
DL-Met vs. L-Met | 0.35 | 0.49 | 0.81 | 0.69 | 0.66 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Ruan, D.; Lin, Z.; Xiong, T.; Zhang, S.; Fan, Q.; Dong, X.; Deng, Y.; Jiang, Z.; Jiang, S. Effects of L-Methionine and DL-Methionine on Growth Performance, Methionine-Metabolizing Enzyme Activities, Feather Traits, and Intestinal Morphology of Medium-Growing, Yellow-Feathered Chickens between 1 and 30 Days of Age. Animals 2024, 14, 2135. https://doi.org/10.3390/ani14142135
Lin X, Ruan D, Lin Z, Xiong T, Zhang S, Fan Q, Dong X, Deng Y, Jiang Z, Jiang S. Effects of L-Methionine and DL-Methionine on Growth Performance, Methionine-Metabolizing Enzyme Activities, Feather Traits, and Intestinal Morphology of Medium-Growing, Yellow-Feathered Chickens between 1 and 30 Days of Age. Animals. 2024; 14(14):2135. https://doi.org/10.3390/ani14142135
Chicago/Turabian StyleLin, Xiajing, Dong Ruan, Zeling Lin, Taidi Xiong, Sheng Zhang, Qiuli Fan, Xiaoli Dong, Yuanfan Deng, Zongyong Jiang, and Shouqun Jiang. 2024. "Effects of L-Methionine and DL-Methionine on Growth Performance, Methionine-Metabolizing Enzyme Activities, Feather Traits, and Intestinal Morphology of Medium-Growing, Yellow-Feathered Chickens between 1 and 30 Days of Age" Animals 14, no. 14: 2135. https://doi.org/10.3390/ani14142135
APA StyleLin, X., Ruan, D., Lin, Z., Xiong, T., Zhang, S., Fan, Q., Dong, X., Deng, Y., Jiang, Z., & Jiang, S. (2024). Effects of L-Methionine and DL-Methionine on Growth Performance, Methionine-Metabolizing Enzyme Activities, Feather Traits, and Intestinal Morphology of Medium-Growing, Yellow-Feathered Chickens between 1 and 30 Days of Age. Animals, 14(14), 2135. https://doi.org/10.3390/ani14142135