Effects of Tryptophan Supplementation in Diets with Different Protein Levels on the Production Performance of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Feeding Management
2.2. Production Performance
2.3. Slaughtering and Sample Collection
2.4. Serum Parameters
2.5. Real-Time RT–PCR
2.6. Statistical Analyses
3. Results
3.1. Feed Intake
3.2. Production Performance
3.3. Serum Parameters (Glycolipid Metabolism-Related)
3.4. GLP-1, GLP-1R, and FXR Expression in the Intestine and Brain
4. Discussion
4.1. Effects of Low-Protein Diets on the F/G of Broilers
4.2. Effects of Additional Tryptophan in Low-Protein Diets on Feed Intake of Broilers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abou-Elkhair, R.; Ahmed, H.; Ketkat, S.; Selim, S. Supplementation of a low-protein diet with tryptophan, threonine, and valine and its impact on growth performance, blood biochemical constituents, immune parameters, and carcass traits in broiler chickens. Vet. World 2020, 13, 1234–1244. [Google Scholar] [CrossRef]
- Bregendahl, K.; Sell, J.L.; Zimmerman, D.R. Effect of low-protein diets on growth performance and body composition of broiler chicks. Poult. Sci. 2002, 81, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Mund, M.D.; Riaz, M.; Mirza, M.A.; Rahman, Z.U.; Mahmood, T.; Ahmad, F.; Ammar, A. Effect of dietary tryptophan supplementation on growth performance, immune response and anti-oxidant status of broiler chickens from 7 to 21 days. Vet. Med. Sci. 2020, 6, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Yang, Y.; Wen, Y.; Zhou, Y.; Fu, X.; Ding, S.; Liu, G.; Yao, K.; Wu, X.; Deng, Z.; et al. Metabolomic analysis of amino acid and fat metabolism in rats with L-tryptophan supplementation. Amino Acids 2014, 46, 2681–2691. [Google Scholar] [CrossRef] [PubMed]
- Khattak, F.; Helmbrecht, A. Effect of different levels of tryptophan on productive performance, egg quality, blood biochemistry, and caecal microbiota of hens housed in enriched colony cages under commercial stocking density. Poult. Sci. 2019, 98, 2094–2104. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef]
- He, Z.; Guo, J.; Zhang, H.; Yu, J.; Zhou, Y.; Wang, Y.; Li, T.; Yan, M.; Li, B.; Chen, Y.; et al. Atractylodes macrocephala Koidz polysaccharide improves glycolipid metabolism disorders through activation of aryl hydrocarbon receptor by gut flora-produced tryptophan metabolites. Int. J. Biol. Macromol. 2023, 253, 126987. [Google Scholar] [CrossRef]
- Favennec, M.; Hennart, B.; Caiazzo, R.; Leloire, A.; Yengo, L.; Verbanck, M.; Arredouani, A.; Marre, M.; Pigeyre, M.; Bessede, A.; et al. The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity 2015, 23, 2066–2074. [Google Scholar] [CrossRef]
- Chimerel, C.; Emery, E.; Summers, D.K.; Keyser, U.; Gribble, F.M.; Reimann, F. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 2014, 9, 1202–1208. [Google Scholar] [CrossRef]
- Brierley, D.I.; Holt, M.K.; Singh, A.; de Araujo, A.; McDougle, M.; Vergara, M.; Afaghani, M.H.; Lee, S.J.; Scott, K.; Maske, C.; et al. Central and peripheral GLP-1 systems independently suppress eating. Nat. Metab. 2021, 3, 258–273. [Google Scholar] [CrossRef]
- Singh, I.; Wang, L.; Xia, B.; Liu, J.; Tahiri, A.; El Ouaamari, A.; Wheeler, M.B.; Pang, Z.P. Activation of arcuate nucleus glucagon-like peptide-1 receptor-expressing neurons suppresses food intake. Cell Biosci. 2022, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.M.; Chen, W.; Ruan, D.; Wang, S.; Xia, W.; Zheng, C. Effects of dietary lysine supplementation on performance, egg quality, and development of reproductive system in egg-laying ducks. J. Appl. Anim. Res. 2017, 46, 386–391. [Google Scholar] [CrossRef]
- Fouad, A.M.; Ruan, D.; Lin, Y.C.; Zheng, C.T.; Zhang, H.X.; Chen, W.; Wang, S.; Xia, W.G.; Li, Y. Effects of dietary methionine on performance, egg quality and glutathione redox system in egg-laying ducks. Br. Poult. Sci. 2016, 57, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.M.; Zhang, H.X.; Chen, W.; Xia, W.G.; Ruan, D.; Wang, S.; Zheng, C.T. Estimation of L-threonine requirements for Longyan laying ducks. Asian-Australas. J. Anim. Sci. 2017, 30, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.Q.; Gou, Z.Y.; Lin, X.J.; Li, L. Effects of dietary tryptophan levels on performance and biochemical variables of plasma and intestinal mucosa in yellow-feathered broiler breeders. J. Anim. Physiol. Anim. Nutr. 2018, 102, e387–e394. [Google Scholar] [CrossRef] [PubMed]
- Harms, R.H.; Russell, G.B. Evaluation of tryptophan requirement of the commercial layer by using a corn-soybean meal basal diet. Poult. Sci. 2000, 79, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.M.; El-Senousey, H.K.; Ruan, D.; Wang, S.; Xia, W.; Zheng, C. Tryptophan in poultry nutrition: Impacts and mechanisms of action. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1146–1153. [Google Scholar] [CrossRef]
- Ahmadi-Sefat, A.A.; Taherpour, K.; Ghasemi, H.A.; Akbari Gharaei, M.; Shirzadi, H.; Rostami, F. Effects of an emulsifier blend supplementation on growth performance, nutrient digestibility, intestinal morphology, and muscle fatty acid profile of broiler chickens fed with different levels of energy and protein. Poult. Sci. 2022, 101, 102145. [Google Scholar] [CrossRef]
- Kamran, Z.; Sarwar, M.; Nisa, M.; Nadeem, M.A.; Mahmood, S.; Babar, M.E.; Ahmed, S. Effect of low-protein diets having constant energy-to-protein ratio on performance and carcass characteristics of broiler chickens from one to thirty-five days of age. Poult. Sci. 2008, 87, 468–474. [Google Scholar] [CrossRef]
- Sklan, D.; Plavnik, I. Interactions between dietary crude protein and essential amino acid intake on performance in broilers. Br. Poult. Sci. 2002, 43, 442–449. [Google Scholar] [CrossRef]
- Bavarsadi, M.; Mahdavi, A.H.; Ansari-Mahyari, S.; Jahanian, E. Effects of different levels of sanguinarine on antioxidant indices, immunological responses, ileal microbial counts and jejunal morphology of laying hens fed diets with different levels of crude protein. J. Anim. Physiol. Anim. Nutr. 2017, 101, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Mells, J.E.; Anania, F.A. The role of gastrointestinal hormones in hepatic lipid metabolism. Semin. Liver Dis. 2013, 33, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Huang, S.; Zhao, G.; Ma, Q. Dietary supplementation of porcine bile acids improves laying performance, serum lipid metabolism and cecal microbiota in late-phase laying hens. Anim. Nutr. 2022, 11, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Azad, M.A.K.; Zhu, Q.; Yu, Z.; Kong, X. Dietary bile acid supplementation alters plasma biochemical and hormone indicators, intestinal digestive capacity, and microbiota of piglets with normal birth weight and intrauterine growth retardation. Front. Microbiol. 2022, 13, 1053128. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, T.; Kadomoto, Y.; Khan, M.S.I.; Makino, R.; Cline, M.A. Effect of l-tryptophan and its metabolites on food passage from the crop in chicks. Domest. Anim. Endocrinol. 2018, 64, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Acar, I.; Cetinkaya, A.; Lay, I.; Ileri-Gurel, E. The role of calcium sensing receptors in GLP-1 and PYY secretion after acute intraduodenal administration of L-Tryptophan in rats. Nutr. Neurosci. 2020, 23, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Furuse, M.; Matsumoto, M.; Mori, R.; Sugahara, K.; Kano, K.; Hasegawa, S. Influence of fasting and neuropeptide Y on the suppressive food intake induced by intracerebroventricular injection of glucagon-like peptide-1 in the neonatal chick. Brain Res. 1997, 764, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, T.; Hirofuji, K.; Matsumoto, M.; Furuse, M.; Hasegawa, S.; Yoshizawa, F.; Sugahara, K. The hypothalamus is involved in the anorexic effect of glucagon-like peptide-1 in chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2004, 137, 183–188. [Google Scholar] [CrossRef]
- Roberts, R.E.; Glicksman, C.; Alaghband-Zadeh, J.; Sherwood, R.A.; Akuji, N.; le Roux, C.W. The relationship between postprandial bile acid concentration, GLP-1, PYY and ghrelin. Clin. Endocrinol. 2011, 74, 67–72. [Google Scholar] [CrossRef]
- Wu, T.; Bound, M.J.; Standfield, S.D.; Gedulin, B.; Jones, K.L.; Horowitz, M.; Rayner, C.K. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes. Metab. 2013, 15, 474–477. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Wang, Y.; Zhong, M.; Zhang, G.; Liu, S.; Wu, T.; Rayner, C.K.; Hu, S. Comparative Effects of Bile Diversion and Duodenal-Jejunal Bypass on Glucose and Lipid Metabolism in Male Diabetic Rats. Obes. Surg. 2016, 26, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Jankiewicz, A.; Guzman-Quevedo, O.; Fenelon, V.S.; Zizzari, P.; Quarta, C.; Bellocchio, L.; Tailleux, A.; Charton, J.; Fernandois, D.; Henricsson, M.; et al. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 2021, 33, 1483–1492.e1410. [Google Scholar] [CrossRef] [PubMed]
- Albaugh, V.L.; Banan, B.; Antoun, J.; Xiong, Y.; Guo, Y.; Ping, J.; Alikhan, M.; Clements, B.A.; Abumrad, N.N.; Flynn, C.R. Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery. Gastroenterology 2019, 156, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.R.; Pesti, G.M. Effects of tryptophan supplementation to a maize-based diet on lipid metabolism in laying hens. Br. Poult. Sci. 1992, 33, 195–200. [Google Scholar] [CrossRef]
- Watanabe, H.; Akasaka, D.; Ogasawara, H.; Sato, K.; Miyake, M.; Saito, K.; Takahashi, Y.; Kanaya, T.; Takakura, I.; Hondo, T.; et al. Peripheral serotonin enhances lipid metabolism by accelerating bile acid turnover. Endocrinology 2010, 151, 4776–4786. [Google Scholar] [CrossRef]
Gender | Groups | Dietary Protein Level % | Dietary Tryptophan Level % | Tryptophan Added % |
---|---|---|---|---|
Male | L: CP L: Trp | 17.2 | 0.149 | 0 |
L: CP H: Trp | 17.2 | 0.25 | 0.101 | |
M: CP L: Trp | 19.2 | 0.154 | 0 | |
M: CP H: Trp | 19.2 | 0.25 | 0.096 | |
H: CP L: Trp | 21.2 | 0.162 | 0 | |
H: CP H: Trp | 21.2 | 0.25 | 0.088 | |
Female | L: CP L: Trp | 17.2 | 0.149 | 0 |
L: CP H: Trp | 17.2 | 0.25 | 0.101 | |
M: CP L: Trp | 19.2 | 0.154 | 0 | |
M: CP H: Trp | 19.2 | 0.25 | 0.096 | |
H: CP L: Trp | 21.2 | 0.162 | 0 | |
H: CP H: Trp | 21.2 | 0.25 | 0.088 |
Ingredients | Treatments | ||
---|---|---|---|
Low-Protein Diet | Medium-Protein Diet | High-Protein Diet | |
Corn | 71.11 | 64.57 | 58.01 |
Soybean meal | 16.4 | 22.2 | 28.0 |
Corn gluten meal | 5.0 | 5.0 | 5.0 |
Soybean oil | 2.62 | 3.42 | 4.21 |
CaHPO4 | 1.68 | 1.66 | 1.65 |
Stone powder | 1.05 | 1.01 | 0.98 |
Premixa 1 | 1.0 | 1.0 | 1.0 |
L-Lysine HCl | 0.36 | 0.33 | 0.30 |
Sodium chloride | 0.41 | 0.41 | 0.41 |
DL- Methionine (98%) | 0.15 | 0.18 | 0.22 |
L-Threonine (98%) | 0.12 | 0.12 | 0.12 |
Choline Chloride (50%) | 0.1 | 0.1 | 0.1 |
Composition | |||
Crude protein (%) | 17.2 | 19.2 | 21.2 |
Metabolizable Energy (MJ/kg) | 12.76 | 12.76 | 12.76 |
Ca (%) | 0.8 | 0.8 | 0.8 |
Phosphorus (%) | 0.6 | 0.61 | 0.63 |
Available P (%) | 0.4 | 0.4 | 0.4 |
L-Lysine HCl (%) | 0.99 | 1.1 | 1.21 |
DL-Methionine (%) | 0.452 | 0.517 | 0.583 |
DL-Met + L-Cystine (%) | 0.75 | 0.84 | 0.93 |
L-Threonine (%) | 0.72 | 0.88 | 0.88 |
L-Tryptophan (%) 2 | 0.149 | 0.154 | 0.162 |
Standardized ileal digestible amino acids | |||
L-Lysine HCl (%) | 0.9 | 1 | 1.1 |
DL-Methionine (%) | 0.43 | 0.49 | 0.56 |
DL-Met + L-Cystine (%) | 0.68 | 0.76 | 0.84 |
L-Threonine (%) | 0.62 | 0.68 | 0.75 |
L-Tryptophan (%) | 0.121 | 0.125 | 0.132 |
Target Gene | Primer Sequence (5′ to 3′) | |
---|---|---|
GCG | Sense: | GTTCAAGGCAGCTGGCAAAATCCT |
Antisense: | TCCTCGTCCATTCACTAACCAAGC | |
FXR | Sense: | TCTTTCAGAGCCAATGAGTT |
Antisense: | TTGGAGTAATAAGGTGGTGGTGAT | |
GLP-1R | Sense: | GCTGCTGGAGCAGGAACTAT |
Antisense: | TGTTGGCTGGACACTTCAGA | |
GAPDH | Sense: | AGGTCGGTGTGAACGGATTTG |
Antisense: | TGTAGACCATGTAGTTGAGGTCA |
Treatments | Cumulative Feed Intake (g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gender | Protein (%) | Tryptophan (%) | 3 Day | 7 Day | 10 Day | 14 Day | 17 Day | 21 Day | 24 Day | 28 Day |
Male | 17.2 | 0.149 | 202.04 ± 45.38 | 541.35 ± 96.51 | 871.94 ± 130.58 | 1296.73 ± 171.1 | 1559.64 ± 204.64 | 2089.35 ± 271.77 | 2494.34 ± 321.97 | 2948.43 ± 396.76 |
0.25 | 199.55 ± 33.24 | 527.08 ± 69.62 | 830.25 ± 119.58 | 1239.26 ± 160.05 | 1441.58 ± 196.04 | 1975.33 ± 265.08 | 2366.62 ± 318.42 | 2856.9 ± 384.48 | ||
19.2 | 0.154 | 201.47 ± 36.56 | 533.22 ± 75.32 | 829.07 ± 131.53 | 1237.72 ± 184.57 | 1459.52 ± 219.9 | 2007.23 ± 281.47 | 2424.46 ± 362.71 | 2898.81 ± 435.4 | |
0.25 | 206.15 ± 44.35 | 540.8 ± 79.83 | 846.53 ± 107.57 | 1259.86 ± 174.04 | 1470.1 ± 195.36 | 1977.42 ± 264.21 | 2334.55 ± 334.81 | 2754.13 ± 448.61 | ||
21.2 | 0.162 | 184.09 ± 28.33 | 500.78 ± 64.39 | 802.26 ± 116.01 | 1177.62 ± 193.05 | 1379.69 ± 227.84 | 1856.23 ± 288.01 | 2231.43 ± 357.79 | 2663.64 ± 487.85 | |
0.25 | 201.39 ± 27.62 | 531.65 ± 72.52 | 838.24 ± 112.94 | 1224.49 ± 162.18 | 1436.95 ± 185.5 | 1922.84 ± 245.88 | 2302.41 ± 304.12 | 2742.4 ± 346.67 | ||
Female | 17.2 | 0.149 | 198.22 ± 36.24 | 504.46 ± 103.6 a | 748.28 ± 126.23 a | 1038.27 ± 179.9 a | 1230.08 ± 240.29 | 1608.38 ± 337.67 | 1855.15 ± 376.75 | 2217.17 ± 395.17 |
0.25 | 169.28 ± 57.01 | 443.15 ± 130.37 b | 675.33 ± 177.18 b | 930.14 ± 242.35 b | 1105.61 ± 290.89 | 1548.91 ± 369.88 | 1794.94 ± 420.74 | 2150.4 ± 522.03 | ||
19.2 | 0.154 | 171.2 ± 29.86 | 470.55 ± 59.97 ab | 714.7 ± 70.59 ab | 1030.53 ± 104.15 ab | 1203.84 ± 132.16 | 1633.26 ± 212.87 | 1913.6 ± 246.97 | 2264.68 ± 268.78 | |
0.25 | 174.66 ± 28.17 | 470.53 ± 64.1 ab | 739.32 ± 76.94 ab | 1080.21 ± 134.58 ab | 1242.77 ± 197.13 | 1667.34 ± 278.05 | 2001.3 ± 336.12 | 2370.77 ± 385.74 | ||
21.2 | 0.162 | 170.41 ± 35.21 | 450.1 ± 77.89 ab | 692.58 ± 111.46 ab | 979.11 ± 143.51 ab | 1121.06 ± 181.51 | 1524.68 ± 282.78 | 1858.33 ± 327.24 | 2227.8 ± 362.45 | |
0.25 | 168.9 ± 28.46 | 451.09 ± 77.6 ab | 686.69 ± 118.94 ab | 970.75 ± 194.08 ab | 1116.94 ± 224.29 | 1532.04 ± 279.12 | 1844.4 ± 304.78 | 2228.8 ± 300.89 |
Treatments | Production Performance | ||||
---|---|---|---|---|---|
Gender | Protein (%) | Tryptophan (%) | ADFI (g) | ADG (g/d) | F/G (g/g) |
Male | 17.2 | 0.149 | 105.30 ± 14.17 | 41.73 ± 7.65 | 1.75 ± 0.19 a |
0.25 | 102.03 ± 13.73 | 39.59 ± 9.24 | 1.78 ± 0.15 a | ||
19.2 | 0.154 | 103.53 ± 15.55 | 41.29 ± 7.65 | 1.75 ± 0.22 a | |
0.25 | 98.36 ± 16.02 | 42.48 ± 7.61 | 1.60 ± 0.12 b | ||
21.2 | 0.162 | 95.3 ± 17.42 | 40.96 ± 9.44 | 1.59 ± 0.16 b | |
0.25 | 97.94 ± 12.38 | 38.89 ± 3.28 | 1.68 ± 0.16 ab | ||
Female | 17.2 | 0.149 | 79.24 ± 14.80 | 28.62 ± 9.16 | 3.02 ± 1.15 |
0.25 | 74.15 ± 16.73 | 28.08 ± 8.60 | 2.73 ± 0.37 | ||
19.2 | 0.154 | 80.88 ± 9.60 | 34.47 ± 6.25 | 2.40 ± 0.42 | |
0.25 | 84.67 ± 13.78 | 33.85 ± 5.92 | 2.52 ± 0.25 | ||
21.2 | 0.162 | 79.56 ± 12.94 | 33.65 ± 8.98 | 2.49 ± 0.63 | |
0.25 | 79.60 ± 10.75 | 31.56 ± 5.84 | 2.58 ± 0.45 | ||
Protein (%) | |||||
Male | 17.2 | 103.73 ± 13.77 | 40.70 ± 8.34 | 1.76 ± 0.17 a | |
19.2 | 101.23 ± 15.67 | 41.82 ± 7.51 | 1.69 ± 0.19 ab | ||
21.2 | 96.41 ± 15.06 | 40.01 ± 7.24 | 1.63 ± 0.16 b | ||
Female | 17.2 | 76.59 ± 3.27 | 28.34 ± 8.67 b | 2.87 ± 0.83 a | |
19.2 | 82.78 ± 11.79 | 34.16 ± 5.97 a | 2.46 ± 0.35 b | ||
21.2 | 79.58 ± 11.60 | 32.56 ± 7.43 ab | 2.54 ± 0.54 b | ||
Tryptophan | |||||
Male | Low Tryptophan | 101.59 ± 15.91 | 41.3 ± 8.02 | 1.70 ± 0.20 | |
High Tryptophan | 99.53 ± 13.92 | 40.40 ± 7.30 | 1.69 ± 0.16 | ||
Female | Low Tryptophan | 79.94 ± 12.14 | 32.41 ± 8.33 | 2.62 ± 0.80 | |
High Tryptophan | 79.61 ± 14.17 | 31.25 ± 7.08 | 2.61 ± 0.37 | ||
p value | |||||
Male | Protein | 0.274 | 0.670 | 0.044 | |
Tryptophan | 0.597 | 0.718 | 0.424 | ||
Protein × Tryptophan | 0.641 | 0.830 | 0.021 | ||
Female | Protein | 0.460 | 0.023 | 0.050 | |
Tryptophan | 0.885 | 0.552 | 0.992 | ||
Protein × Tryptophan | 0.722 | 0.915 | 0.575 |
Treatments | Glycolipid Metabolism-Related Parameters | |||||||
---|---|---|---|---|---|---|---|---|
Protein (%) | Tryptophan (%) | GLU | GLP-1 | Insulin | TG | T-CHO | Leptin | TBA |
17.2 | 0.149 | 13.13 ± 0.32 a | 1.53 ± 0.30 a | 17.73 ± 1.45 ab | 0.69 ± 0.16 b | 2.86 ± 0.25 ac | 1.39 ± 0.09 | 10.35 ± 1.72 b |
0.25 | 13.52 ± 1.17 a | 2.52 ± 0.30 b | 17.73 ± 1.73 ab | 1.00 ± 0.11 b | 3.82 ± 0.27 b | 1.49 ± 0.08 | 14.70 ± 0.97 c | |
19.2 | 0.154 | 18.52 ± 0.53 b | 2.66 ± 0.44 b | 19.37 ± 1.15 b | 0.60 ± 0.11 a | 3.46 ± 0.58 bc | 1.16 ± 0.03 | 4.31 ± 0.80 a |
0.25 | 19.88 ± 0.63 b | 2.75 ± 0.64 ab | 15.39 ± 1.34 a | 0.45 ± 0.05 a | 2.99 ± 0.08 ab | 1.39 ± 0.05 | 8.94 ± 1.93 b | |
21.2 | 0.162 | 12.75 ± 0.54 a | 1.89 ± 0.34 ab | 17.20 ± 2.79 ab | 0.54 ± 0.04 a | 2.42 ± 0.27 a | 1.60 ± 0.11 | 7.87 ± 1.65 ab |
0.25 | 13.06 ± 0.89 a | 2.02 ± 0.63 ab | 15.17 ± 0.32 a | 0.47 ± 0.06 a | 2.47 ± 0.29 a | 1.34 ± 0.08 | 9.91 ± 1.53 b | |
Protein (%) | ||||||||
17.2 | 13.33 ± 0.58 a | 1.99 ± 0.90 | 17.73 ± 1.07 | 0.84 ± 0.10 b | 3.31 ± 0.22 b | 1.44 ± 0.06 | 12.53 ± 1.12 b | |
19.2 | 19.30 ± 0.45 b | 2.71 ± 1.49 | 17.04 ± 1.16 | 0.53 ± 0.06 a | 3.26 ± 0.33 b | 1.29 ± 0.04 | 6.63 ± 1.17 a | |
21.2 | 12.91 ± 0.52 a | 1.96 ± 1.30 | 16.19 ± 1.37 | 0.51 ± 0.04 a | 2.44 ± 0.19 a | 1.46 ± 0.07 | 8.89 ± 1.12 a | |
Tryptophan | ||||||||
Low Tryptophan | 14.61 ± 0.64 | 2.03 ± 0.23 | 18.01 ± 1.09 | 0.61 ± 0.06 | 2.91 ± 0.24 | 1.37 ± 0.06 | 7.39 ± 0.94 a | |
High Tryptophan | 15.57 ± 0.83 | 2.44 ± 0.33 | 15.94 ± 0.77 | 0.65 ± 0.07 | 3.07 ± 0.19 | 1.41 ± 0.04 | 11.03 ± 1.01 b | |
p value | ||||||||
Protein | 0.01 | 0.20 | 0.62 | 0.00 | 0.04 | 0.94 | 0.00 | |
Tryptophan | 0.27 | 0.39 | 0.15 | 0.68 | 0.72 | 0.71 | 0.01 | |
Protein × Tryptophan | 0.74 | 0.71 | 0.50 | 0.06 | 0.25 | 0.01 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, K.; Feng, X.; Zhu, S.; Liang, J.; Mo, Y.; Feng, X.; Ye, S.; Zhou, Y.; Shu, G.; Wang, S.; et al. Effects of Tryptophan Supplementation in Diets with Different Protein Levels on the Production Performance of Broilers. Animals 2024, 14, 1838. https://doi.org/10.3390/ani14131838
Xie K, Feng X, Zhu S, Liang J, Mo Y, Feng X, Ye S, Zhou Y, Shu G, Wang S, et al. Effects of Tryptophan Supplementation in Diets with Different Protein Levels on the Production Performance of Broilers. Animals. 2024; 14(13):1838. https://doi.org/10.3390/ani14131838
Chicago/Turabian StyleXie, Kailai, Xiajie Feng, Shuqing Zhu, Jingwen Liang, Yingfen Mo, Xiaohua Feng, Shangwu Ye, Ying Zhou, Gang Shu, Songbo Wang, and et al. 2024. "Effects of Tryptophan Supplementation in Diets with Different Protein Levels on the Production Performance of Broilers" Animals 14, no. 13: 1838. https://doi.org/10.3390/ani14131838
APA StyleXie, K., Feng, X., Zhu, S., Liang, J., Mo, Y., Feng, X., Ye, S., Zhou, Y., Shu, G., Wang, S., Gao, P., Zhu, C., Fan, Y., Jiang, Q., & Wang, L. (2024). Effects of Tryptophan Supplementation in Diets with Different Protein Levels on the Production Performance of Broilers. Animals, 14(13), 1838. https://doi.org/10.3390/ani14131838