Safety of Gonadal Tissue-Derived Mesenchymal Stem Cell Therapy in Geriatric Dogs with Chronic Disease
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
Inclusion and Exclusion Criteria
2.2. Tissue Collection and Cell Preparations
2.2.1. Origin Tissue Collection from Donor
2.2.2. MSCs Preparation (Isolation, Culture, Harvest, Dilution)
Tissue Preparation and Cell Isolation
MSCs Subculture
Cell Harvest and Dilution
2.2.3. Cell Characterization
2.3. Patient Preparation and MSC Therapy
2.4. Medical Records
2.5. Adverse Events
2.6. Assessment of MSC Therapy Response
2.7. Statistical Analysis
3. Results
3.1. MSC Characterization and Differentiation
3.2. Study Animals
3.3. MSC Target Disease Category
3.4. Classification of MSCs
3.4.1. Distribution of MSC Sources
3.4.2. Distribution of MSC Origin
3.5. The Elements of MSC Application
3.5.1. Delivery Routes of MSCs
3.5.2. Dose and Passage of MSCs
3.5.3. Sessions of MSCs Administration
3.6. Adverse Effects of Gonadal Tissue-Derived MSC Therapy
3.6.1. Clinical Parameters
3.6.2. Physical Parameters
3.6.3. Hematological Parameter
3.7. Therapeutic Outcomes of MSC Therapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Via, A.G.; Frizziero, A.; Oliva, F. Biological properties of mesenchymal Stem Cells from different sources. Muscles Ligaments Tendons J. 2012, 2, 154–162. [Google Scholar]
- Dias, I.E.; Pinto, P.O.; Barros, L.C.; Viegas, C.A.; Dias, I.R.; Carvalho, P.P. Mesenchymal stem cells therapy in companion animals: Useful for immune-mediated diseases? BMC Vet. Res. 2019, 15, 358. [Google Scholar] [CrossRef]
- Black, L.L.; Gaynor, J.; Gahring, D.; Adams, C.; Aron, D.; Harman, S.; Gingerich, D.A.; Harman, R. Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: A randomized, double-blinded, multicenter, controlled trial. Vet. Ther. 2007, 8, 272–284. [Google Scholar]
- Voga, M.; Adamic, N.; Vengust, M.; Majdic, G. Stem Cells in Veterinary Medicine—Current State and Treatment Options. Front. Vet. Sci. 2020, 7, 278. [Google Scholar] [CrossRef]
- Gugjoo, M.B.; Amarpal, A.; Sharma, G.T. Mesenchymal stem cell basic research and applications in dog medicine. J. Cell. Physiol. 2019, 234, 16779–16811. [Google Scholar] [CrossRef]
- Armitage, A.J.; Miller, J.M.; Sparks, T.H.; Georgiou, A.E.; Reid, J. Efficacy of autologous mesenchymal stromal cell treatment for chronic degenerative musculoskeletal conditions in dogs: A retrospective study. Front. Vet. Sci. 2023, 9, 1014687. [Google Scholar] [CrossRef]
- Mocchi, M.; Dotti, S.; Bue, M.D.; Villa, R.; Bari, E.; Perteghella, S.; Torre, M.L.; Grolli, S. Veterinary Regenerative Medicine for Musculoskeletal Disorders: Can Mesenchymal Stem/Stromal Cells and Their Secretome Be the New Frontier? Cells 2020, 9, 1453. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, S.; Cheng, B.; Nie, X.; Enhe, J.; Feng, C.; Fu, X. Mesenchymal stem cells: A revolution in therapeutic strategies of age-related diseases. Ageing Res. Rev. 2013, 12, 103–115. [Google Scholar] [CrossRef]
- Shah, K.; Drury, T.; Roic, I.; Hansen, P.; Malin, M.; Boyd, R.; Sumer, H.; Ferguson, R. Outcome of Allogeneic Adult Stem Cell Therapy in Dogs Suffering from Osteoarthritis and Other Joint Defects. Stem Cells Int. 2018, 2018, 7309201. [Google Scholar] [CrossRef]
- McCune, S.; Promislow, D. Healthy, Active Aging for People and Dogs. Front. Vet. Sci. 2021, 8, 655191. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Dias-Pereira, P. Morbidity and mortality in elderly dogs—A model for human aging. BMC Vet. Res. 2022, 18, 457. [Google Scholar] [CrossRef]
- Liu, B.; Qu, J.; Zhang, W.; Izpisua Belmonte, J.C.; Liu, G.H. A stem cell aging framework, from mechanisms to interventions. Cell Rep. 2022, 41, 111451. [Google Scholar] [CrossRef]
- Ayala-Cuellar, A.P.; Kang, J.H.; Jeung, E.B.; Choi, K.C. Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation. Biomol. Ther. 2019, 27, 25–33. [Google Scholar] [CrossRef]
- Baechle, J.J.; Chen, N.; Makhijani, P.; Winer, S.; Furman, D.; Winer, D.A. Chronic inflammation and the hallmarks of aging. Mol. Metab. 2023, 74, 101755. [Google Scholar] [CrossRef]
- Chung, H.Y.; Kim, D.H.; Lee, E.K.; Chung, K.W.; Chung, S.; Lee, B.; Seo, A.Y.; Chung, J.H.; Jung, Y.S.; Im, E.; et al. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis. 2019, 10, 367–382. [Google Scholar] [CrossRef]
- Stimpfel, M.; Cerkovnik, P.; Novakovic, S.; Maver, A.; Virant-Klun, I. Putative mesenchymal stem cells isolated from adult human ovaries. J Assist. Reprod. Genet. 2014, 31, 959–974. [Google Scholar] [CrossRef]
- Terauchi, M.; Kajiyama, H.; Shibata, K.; Ino, K.; Nawa, A.; Mizutani, S.; Kikkawa, F. Inhibition of APN/CD13 leads to suppressed progressive potential in ovarian carcinoma cells. BMC Cancer 2007, 7, 140. [Google Scholar] [CrossRef]
- Gonzalez, R.; Griparic, L.; Vargas, V.; Burgee, K.; SantaCruz, P.; Anderson, R.; Schiewe, M.; Silva, F.; Patel, A. A putative mesenchymal stem cells population isolated from adult human testes. Biochem. Biophys. Res. Commun. 2009, 385, 570–575. [Google Scholar] [CrossRef]
- Rahman, M. Isolation, Propagation and Characterization of Mouse Testis-Derived Mesenchymal Stromal Cells. Ph.D. Thesis, The American University in Cairo, AUC Knowledge Fountain, New Cairo, Egypt, 2015. [Google Scholar]
- Ismail, H.Y.; Hussein, S.; Shaker, N.A.; Rizk, H.; Wally, Y.R. Stem Cell Treatment Trials for Regeneration of Testicular Tissue in Laboratory Animals. Reprod. Sci. 2023, 30, 1770–1781. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, M.; Tian, Y.; Li, Q.; Huang, X. Mesenchymal Stem Cells in Premature Ovarian Insufficiency: Mechanisms and Prospects. Front. Cell Dev. Biol. 2021, 9, 718192. [Google Scholar] [CrossRef]
- Kang, M.H.; Park, H.M. Challenges of stem cell therapies in companion animal practice. J. Vet. Sci. 2020, 21, e42. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.S.; Kim, C.L.; Byeon, J.S.; Gu, N.Y.; Cho, I.S.; Cha, S.H. Effect of donor age on the proliferation and multipotency of canine adipose-derived mesenchymal stem cells. J. Vet. Sci. 2017, 18, 141–148. [Google Scholar] [CrossRef]
- Taguchi, T.; Borjesson, D.L.; Osmond, C.; Griffon, D.J. Influence of Donor‘s Age on Immunomodulatory Properties of Canine Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Dev. 2019, 28, 1562–1571. [Google Scholar] [CrossRef]
- Ra, J.C.; Shin, I.S.; Kim, S.H.; Kang, S.K.; Kang, B.C.; Lee, H.Y.; Kim, Y.J.; Jo, J.Y.; Yoon, E.J.; Choi, H.J.; et al. Safety of Intravenous Infusion of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Animals and Humans. Stem Cells Dev. 2011, 20, 1297–1308. [Google Scholar] [CrossRef]
- Jeung, S.; Kim, S.; Ah, J.; Seo, S.; Jan, U.; Lee, H.; Lee, J.I. Exploring the Tumor-Associated Risk of Mesenchymal Stem Cell Therapy in Veterinary Medicine. Animals 2024, 14. [Google Scholar] [CrossRef]
- Vilar, J.M.; Batista, M.; Morales, M.; Santana, A.; Cuervo, B.; Rubio, M.; Cugat, R.; Sopena, J.; Carrillo, J.M. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet. Res. 2014, 10, 143. [Google Scholar] [CrossRef]
- Kriston-Pál, É.; Czibula, Á.; Gyuris, Z.; Balka, G.; Seregi, A.; Sükösd, F.; Süth, M.; Kiss-Tóth, E.; Haracska, L.; Uher, F.; et al. Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis. Can. J. Vet. Res. 2017, 81, 73–78. [Google Scholar]
- Cabon, Q.; Febre, M.; Gomez, N.; Cachon, T.; Pillard, P.; Carozzo, C.; Saulnier, N.; Robert, C.; Livet, V.; Rakic, R.; et al. Long-Term Safety and Efficacy of Single or Repeated Intra-Articular Injection of Allogeneic Neonatal Mesenchymal Stromal Cells for Managing Pain and Lameness in Moderate to Severe Canine Osteoarthritis Without Anti-inflammatory Pharmacological Support: Pilot Clinical Study. Front. Vet. Sci. 2019, 6, 10. [Google Scholar] [CrossRef]
- Zeira, O.; Asiag, N.; Aralla, M.; Ghezzi, E.; Pettinari, L.; Martinelli, L.; Zahirpour, D.; Dumas, M.P.; Lupi, D.; Scaccia, S.; et al. Adult autologous mesenchymal stem cells for the treatment of suspected non-infectious inflammatory diseases of the canine central nervous system: Safety, feasibility and preliminary clinical findings. J. Neuroinflamm. 2015, 12, 181. [Google Scholar] [CrossRef]
- Granger, N.; Blamires, H.; Franklin, R.J.M.; Jeffery, N.D. Autologous olfactory mucosal cell transplants in clinical spinal cord injury: A randomized double-blinded trial in a canine translational model. Brain 2012, 135, 3227–3237. [Google Scholar] [CrossRef]
- Sousa, M.G.; Paulino-Junior, D.; Pascon, J.P.E.; Pereira-Neto, G.B.; Carareto, R.; Champion, T.; Camacho, A.A. Cardiac function in dogs with chronic Chagas cardiomyopathy undergoing autologous stem cell transplantation into the coronary arteries. Can. Vet. J. 2011, 52, 869–874. [Google Scholar]
- Nunes, M.C.P.; Beaton, A.; Acquatella, H.; Bern, C.; Bolger, A.F.; Echeverría, L.E.; Dutra, W.O.; Gascon, J.; Morillo, C.A.; Oliveira-Filho, J.; et al. Chagas Cardiomyopathy: An Update of Current Clinical Knowledge and Management: A Scientific Statement From the American Heart Association. Circulation 2018, 138, e169–e209. [Google Scholar] [CrossRef]
- Ahamad, N.; Singh, B.B. Calcium channels and their role in regenerative medicine. World J. Stem Cells 2021, 13, 260–280. [Google Scholar] [CrossRef]
- Kawano, S.; Shoji, S.; Ichinose, S.; Yamagata, K.; Tagami, M.; Hiraoka, M. Characterization of Ca2+ signaling pathways in human mesenchymal stem cells. Cell Calcium 2002, 32, 165–174. [Google Scholar] [CrossRef]
- Lee, M.N.; Hwang, H.-S.; Oh, S.-H.; Roshanzadeh, A.; Kim, J.-W.; Song, J.H.; Kim, E.-S.; Koh, J.-T. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp. Mol. Med. 2018, 50, 1–16. [Google Scholar] [CrossRef]
- Parrington, J.; Tunn, R. Ca2+ signals, NAADP and two-pore channels: Role in cellular differentiation. Acta Physiol. 2014, 211, 285–296. [Google Scholar] [CrossRef]
- Kariminekoo, S.; Movassaghpour, A.; Rahimzadeh, A.; Talebi, M.; Shamsasenjan, K.; Akbarzadeh, A. Implications of mesenchymal stem cells in regenerative medicine. Artif. Cells Nanomed. Biotechnol. 2016, 44, 749–757. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J.; Xu, H.; Yang, Y.; Li, W.; Wu, H.; Liu, C. Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca2+ and activating the FAK/Rho GTPases signaling pathways in vitro. Stem Cell Res. Ther. 2018, 9, 143. [Google Scholar] [CrossRef]
- Busher, J.T. Serum Albumin and Globulin. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Tothova, C.; Nagy, O.; Kovac, G. Serum proteins and their diagnostic utility in veterinary medicine: A review. Veter. Med. 2016, 61, 475–496. [Google Scholar] [CrossRef]
- Lee, K.S.; Kang, H.W.; Lee, H.T.; Kim, H.J.; Kim, C.L.; Song, J.Y.; Lee, K.W.; Cha, S.H. Sequential sub-passage decreases the differentiation potential of canine adipose-derived mesenchymal stem cells. Res. Vet. Sci. 2014, 96, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Blanc, K.L.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Kabat, M.; Bobkov, I.; Kumar, S.; Grumet, M. Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range? Stem Cells Transl. Med. 2020, 9, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Gugjoo, M.B.; Pal, A.; Sharma, G.T. Dog Mesenchymal Stem Cell Basic Research and Potential Applications. In Mesenchymal Stem Cell in Veterinary Sciences; Gugjoo, M.B., Pal, A., Eds.; Springer: Downtown Core, Singapore, 2020; pp. 213–282. [Google Scholar]
- Baranovskii, D.S.; Klabukov, I.D.; Arguchinskaya, N.V.; Yakimova, A.O.; Kisel, A.A.; Yatsenko, E.M.; Ivanov, S.A.; Shegay, P.V.; Kaprin, A.D. Adverse events, side effects and complications in mesenchymal stromal cell-based therapies. Stem Cell Investig. 2022, 9, 7. [Google Scholar] [CrossRef] [PubMed]
Grade | Assessment Characterization | Score |
---|---|---|
None | No adverse events | 0 |
Mild | Transient fever, local pain, fatigue, and allergic reactions | 1 |
Moderate | Pulmonary edema, gastrointestinal disturbances such as nausea, vomiting, and diarrhea, as well as respiratory distress, hypotension, and arrhythmias | 2 |
Severe | Tumor formation, thromboembolism, death, and potentially fatal outcomes | 3 |
Variables | Gonadal Group | Adipose Group | ||
---|---|---|---|---|
Breeds (N) | Beagle | 1 | Chihuahua | 1 |
Cocker Spaniel | 1 | Maltese | 3 | |
Long coat Chihuahua | 3 | Mixed | 1 | |
Maltese | 2 | Poodles | 2 | |
Pomeranian | 1 | Weimaraner | 1 | |
Poodles | 1 | Yorkshire Terrier | 1 | |
Welsh Corgi | 1 | Chihuahua | 1 | |
Total | 10 | 9 |
Variables | Gonadal Group | Adipose Group |
---|---|---|
Age (Mean ± SD years, range) | 11.40 ± 3.07 years (range, 8~17) | 13.67 ± 4.00 years (range, 9~20) |
Median age | 10.50 years | 15 years |
Body weight (Mean ± SD kg, range) | 5.36 ± 3.35 kg (range, 2.53~11.8) | 6.56 ± 7.44 kg (range, 1.65~27) |
Median body weight | 4.00 kg | 4.00 kg |
Sex (N) | Spayed female (5) Castrated male (5) | Spayed female (6) Castrated male (3) |
MSC sources (N) | Ovaries (6) Testes (4) | Adipose (9) |
MSC origin (N) | Allogeneic (10) Autologous (0) | Allogeneic (9) Autologous (0) |
Variables | Gonadal Group | Adipose Group | ||||
---|---|---|---|---|---|---|
Disease category (N *) | Cardiovascular disease | 6 | MMVD | Renal disease | 4 | CKD |
Renal disease | 4 | CKD, Proteinuria | Orthopedic disease | 3 | DJD, OA | |
Neurologic disease | 2 | IVDD, CDS | Cardiovascular disease | 1 | MMVD | |
Orthopedic disease | 1 | DJD, OA, MPL, CCLR | Neurologic disease | 2 | IVDD, CDS | |
Ophthalmic disease | 1 | PRA |
Variables | Gonadal Group | Adipose Group |
---|---|---|
Dose (Mean ± SD, cells/kg) | 1.28 ± 0.87 × 106 | 1.24 ± 0.33 × 106 |
Median dose (cells/kg) | 1 × 106 | 1.07 × 106 |
Delivery route | Intravenous | Intravenous |
Passage | P4 | P4 |
Frequency (Mean ± SD, range, sessions) | 9.50 ± 3.35 (range, 3~12) | 4.44 ± 2.75 (range, 3~12) |
Median frequency (sessions) | 12 | 3 |
Variables | Gonadal Group | Adipose Group |
---|---|---|
None (Score 0) | 10 | 8 |
Mild (Score 1) | 0 | 1 |
Moderate (Score 2) | 0 | 0 |
Severe (Score 3) | 0 | 0 |
Total score | 0 | 1 |
Variable | Gonadal Group (N = 10) | Adipose Group (N = 9) | |||
---|---|---|---|---|---|
Items | Mean ± SD (N) | p-Value between the Baseline and Each Point | Mean ± SD (N) | p-Value between the Baseline and Each Point | p-Value between Gonadal and Adipose Group |
Bodyweight, kg | |||||
Baseline | 5.36 ± 3.54 (10) | - | 6.56 ± 7.89 (9) | - | 0.9873 |
1 month | 5.37 ± 3.48 (10) | 0.9990 | 6.65 ± 8.02 (9) | 0.9743 | 0.9840 |
3 month | 5.29 ± 3.58 (10) | 0.8134 | 6.55 ± 7.75 (8) | 0.8167 | 0.9914 |
12 month | 4.86 ± 3.14 (8) | 0.9950 | 4.10 ± 2.37 (5) | 0.8633 | 0.9932 |
Temperature, °C | |||||
Baseline | 38.45 ± 0.46 (10) | - | 38.48 ± 0.46 (9) | - | 0.9999 |
1 month | 38.36 ± 0.38 (10) | 0.8974 | 38.19 ± 0.59 (9) | 0.1575 | 0.8701 |
3 month | 38.39 ± 0.40 (10) | 0.9661 | 38.20 ± 0.48 (8) | 0.4766 | 0.8376 |
12 month | 38.31 ± 0.36 (8) | 0.9012 | 38.38 ± 0.24 (5) | 0.9643 | 0.9980 |
Systolic blood pressure, mmHg | |||||
Baseline | 141.30 ± 18.95 (10) | - | 153.22 ± 10.88 (9) | - | 0.3856 |
1 month | 143.50 ± 14.15 (10) | 0.9816 | 149.22 ± 24.80 (9) | 0.8955 | 0.9054 |
3 month | 138.50 ± 17.00 (10) | 0.9634 | 144.75 ± 11.46 (8) | 0.8911 | 0.8865 |
12 month | 144.88 ± 13.15 (8) | 0.9959 | 145.00 ± 10.00 (5) | 0.7726 | >0.9999 |
Mean ± SD | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Blood Analysis | Category | Baseline (N) | 1 Month (N) | 3 Month (N) | 12 Month (N) | Reference Range | Unit | Baseline 1 Month | Baseline 3 Month | Baseline 12 Month |
CBC | Hematocrit | 45.17 ± 6.76 (10) | 44.4 ± 5.80 (4) | 44.36 ± 5.31 (10) | 44.77 ± 6.20 (7) | 37.3–61.7 | % | 0.9985 | 0.9467 | 0.8695 |
WBC | 8.02 ± 2.77 (10) | 11.39 ± 6.44 (4) | 8.93 ± 3.28 (10) | 9.95 ± 3.45 (7) | 5.05–16.76 | K/µL | 0.2415 | 0.8378 | 0.5619 | |
Neutrophils | 5.61 ± 2.38 (10) | 8.82 ± 6.11 (4) | 6.13 ± 2.17 (10) | 7.12 ± 3.07 (7) | 2.9–11.64 | K/µL | 0.3226 | 0.9541 | 0.7208 | |
Lymphocytes | 1.53 ± 0.57 (10) | 1.8 ± 0.58 (4) | 1.75 ± 0.71 (10) | 1.68 ± 0.69 (7) | 1.05–5.10 | K/µL | 0.0541 | 0.1381 | 0.7999 | |
Monocytes | 0.42 ± 0.14 (10) | 0.47 ± 0.16 (4) | 0.48 ± 0.16 (10) | 0.58 ± 0.16 (7) | 0.16–1.12 | K/µL | 0.5322 | 0.7379 | 0.1291 | |
Platelets | 359.3 ± 149.2 (10) | 418.5 ± 120.4 (4) | 360.9 ± 191.3 (10) | 391.4 ± 147.1 (7) | 148–484 | K/µL | 0.9919 | >0.9999 | 0.8775 | |
Serum chemistry | Glucose | 105.4 ± 15.22 (9) | 105.8 ± 14.91 (4) | 97.67 ± 13.39 (9) | 99.43 ± 14.48 (7) | 60–120 | mg/dL | 0.9953 | 0.2242 | 0.1632 |
BUN | 18.83 ± 11.9 (10) | 20.9 ± 10.48 (6) | 24.88 ± 13.33 (10) | 25.88 ± 20.01 (8) | 7–27 | mg/dL | 0.9966 | 0.4453 | 0.1998 | |
Creatinine | 1.19 ± 0.57 (10) | 1.22 ± 0.21 (6) | 1.24 ± 0.92 (10) | 1.08 ± 0.57 (8) | 0.5–1.8 | mg/dL | 0.7769 | 0.9846 | 0.8062 | |
ALP | 185.7 ± 107.5 (9) | 214.6 ± 128.4 (5) | 145.1 ± 105.8 (9) | 154.1 ± 60.23 (7) | 23–212 | U/L | >0.9999 | 0.3497 | 0.8657 | |
ALT | 165.8 ± 237 (9) | 196.2 ± 132.7 (5) | 103.3 ± 54.95 (9) | 113.3 ± 96.4 (7) | 10–100 | U/L | >0.9999 | 0.7767 | 0.7381 | |
Total protein | 6.51 ± 0.41 (9) | 7.34 ± 0.64 (5) | 6.94 ± 0.52 (9) | 6.66 ± 0.6 (7) | 5.2–8.2 | g/dL | 0.039 | 0.1181 | 0.9855 | |
Albumin | 3.21 ± 0.42 (9) | 3.42 ± 0.5 (5) | 3.28 ± 0.38 (9) | 3.09 ± 0.24 (7) | 2.2–3.9 | g/dL | 0.7978 | 0.9588 | 0.815 | |
Total bilirubin | 0.3 ± 0.1 (5) | N/A | 0.43 ± 0.28 (7) | 0.28 ± 0.15 (4) | 0.0–0.9 | mg/dL | N/A | 0.2367 | 0.9551 | |
GGT | 6.83 ± 5.35 (6) | N/A | 7.29 ± 7.72 (7) | 3 ± 4.2 (6) | 0–10 | U/L | N/A | 0.9439 | 0.7331 | |
Total cholesterol | 188.2 ± 32.17 (6) | N/A | 193.3 ± 45.92 (7) | 187.8 ± 27.11 (5) | 110–320 | mg/dL | N/A | 0.9966 | 0.9975 | |
Phosphorus | 3.62 ± 0.96 (7) | 3.45 ± 0.5 (2) | 4.06 ± 1.92 (8) | 3.88 ± 0.78 (6) | 2.5–6.8 | mg/dL | 0.9285 | 0.56 | 0.619 | |
Amylase | 876.2 ± 768.4 (6) | N/A | 700.1 ± 442.4 (7) | 1040 ± 774.5 (5) | 226–1063 | U/L | N/A | 0.8887 | 0.8823 | |
Lipase | 813.8 ± 126.2 (4) | N/A | 658.3 ± 140.5 (7) | 746.8 ± 254.1 (5) | 200–1800 | U/L | N/A | 0.6039 | 0.1188 | |
AST | 40.43 ± 20.48 (7) | 44 ± 0 (1) | 39.71 ± 14.47 (7) | 39.67 ± 7.941 (6) | 0–50 | IU/I | 0.6017 | 0.9934 | 0.9939 | |
Triglycerides | 58.57 ± 21.97 (7) | N/A | 92.86 ± 53.83 (7) | 81.5 ± 27.7 (6) | 10–100 | mg/dL | N/A | 0.3248 | 0.9872 | |
Electrolytes | Na+ | 149.5 ± 3.6 (10) | 148.5 ± 2.65 (4) | 150.3 ± 1.5 (9) | 151.1 ± 1.07 (7) | 145–151 | mmol/L | 0.8261 | 0.6053 | 0.234 |
K+ | 4.44 ± 0.43 | 4.14 ± 0.31 | 4.25 ± 0.49 | 4.23 ± 0.3 | 3.9–5.1 | mmol/L | 0.9922 | 0.2574 | 0.8142 | |
Ca2+ | 1.3 ± 0.07 | 1.34 ± 0.04 | 1.37 ± 0.05 | 1.32 ± 0.02 | 1.16–1.40 | mmol/L | 0.0408 | 0.0029 | 0.6557 | |
Cl− | 115.6 ± 5.13 | 113 ± 9.27 | 114.3 ± 5.05 | 115.4 ± 2.64 | 110–119 | mmol/L | 0.7373 | 0.8902 | 0.8872 |
Mean ± SD | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Blood Analysis | Category | Baseline (N) | 1 Month (N) | 3 Month (N) | 12 Month (N) | Reference Range | Unit | Baseline 1 Month | Baseline 3 Month | Baseline 12 Month |
CBC | Hematocrit | 38.1 ± 6.18 (8) | 34.94 ± 10.35 (7) | 37.88 ± 6.33 (5) | 41.58 ± 8.73 (5) | 37.3–61.7 | % | 0.8496 | >0.9999 | 0.8889 |
WBC | 10.06 ± 4.39 (8) | 12.76 ± 9.12 (7) | 11.92 ± 7.96 (5) | 10.94 ± 2.07 (5) | 5.05–16.76 | K/µL | 0.6965 | 0.6861 | 0.3765 | |
Neutrophils | 6.63 ± 2.78 (8) | 8.88 ± 6.95 (7) | 8.21 ± 5.62 (5) | 7.44 ± 2.73 (5) | 2.9–11.64 | K/µL | 0.6604 | 0.5776 | 0.352 | |
Lymphocytes | 1.81 ± 0.70 (8) | 2.28 ± 1.66 (7) | 1.70 ± 0.85 (5) | 1.93 ± 1.21 (5) | 1.05–5.10 | K/µL | 0.522 | 0.9959 | 0.8897 | |
Monocytes | 1.17 ± 1.54 (8) | 1.24 ± 1.25 (7) | 1.73 ± 2.25 (5) | 1.08 ± 0.31 (5) | 0.16–1.12 | K/µL | 0.9997 | 0.5926 | 0.3974 | |
Platelets | 423.1 ± 155.8 (8) | 424.6 ± 151.5 (7) | 611.4 ± 250.6 (5) | 514.4 ± 238.1 (5) | 148–484 | K/µL | 0.9967 | 0.1362 | 0.9306 | |
Serum chemistry | Glucose | 105.3 ± 11.59 (7) | 97.8 ± 17.34 (5) | 103 ± 13.32 (5) | 106.6 ± 23.53 (5) | 60–120 | mg/dL | 0.9984 | 0.9939 | 0.9584 |
BUN | 28.89 ± 14.68 (8) | 40.13 ± 38.34 (7) | 28.74 ± 12 (5) | 36.08 ± 25.28 (5) | 7–27 | mg/dL | 0.7318 | 0.9997 | 0.2581 | |
Creatinine | 1.44 ± 1.22 (8) | 1.437 ± 1.39 (7) | 1.29 ± 0.86 (5) | 1.03 ± 0.90 (5) | 0.5–1.8 | mg/dL | 0.9276 | 0.9982 | 0.86 | |
ALP | 156 ± 106.4 (7) | 150.6 ± 94.74 (5) | 179.6 ± 118.7 (5) | 357 ± 300.3 (5) | 23–212 | U/L | 0.9327 | 0.9405 | 0.115 | |
ALT | 175.1 ± 144.3 (7) | 95 ± 51.91 (6) | 68.6 ± 47.05 (5) | 157.6 ± 168.4 (5) | 10–100 | U/L | 0.5806 | 0.6918 | 0.9998 | |
Total protein | 7.01 ± 0.78 (7) | 6.64 ± 0.81 (5) | 6.6 ± 0.52 (5) | 6.84 ± 1.47 (5) | 5.2–8.2 | g/dL | 0.7865 | 0.6627 | 0.9444 | |
Albumin | 3.24 ± 0.36 (7) | 2.95 ± 0.38 (6) | 2.88 ± 0.24 (5) | 2.96 ± 0.55 (5) | 2.2–3.9 | g/dL | 0.9251 | 0.3949 | 0.3004 | |
Total bilirubin | 0.24 ± 0.08 (6) | 0.88 ± 1.58 (5) | 0.21 ± 0.08 (5) | 0.31 ± 0.14 (4) | 0.0–0.9 | mg/dL | 0.9004 | 0.733 | 0.991 | |
GGT | 14.5 ± 20.56 (6) | 12.2 ± 9.68 (5) | 16.4 ± 17.29 (5) | 39.75 ± 46.38 (4) | 0–10 | U/L | 0.9276 | 0.9812 | 0.1444 | |
Total cholesterol | 193.3 ± 13.02 (6) | 178 ± 14 (5) | 182.2 ± 17.75 (5) | 249.8 ± 74.75 (4) | 110–320 | mg/dL | 0.509 | 0.9348 | 0.4823 | |
Phosphorus | 5.46 ± 0.84 (7) | 5.17 ± 1.38 (6) | 4.98 ± 0.77 (5) | 5.64 ± 1.01 (5) | 2.5–6.8 | mg/dL | 0.9168 | 0.6009 | 0.191 | |
Amylase | 1195 ± 726.5 (6) | 1542 ± 851.3 (5) | 1554 ± 642.3 (5) | 1463 ± 1042 (4) | 226–1063 | U/L | 0.8725 | 0.8249 | 0.0631 | |
Lipase | 2096 ± 1450 (5) | 3266 ± 1652 (4) | 2093 ± 2134 (4) | 697 ± 261.6 (2) | 200–1800 | U/L | >0.9999 | 0.9962 | 0.9781 | |
AST | 39.33 ± 17 (6) | 40.25 ± 20.56 (4) | 31.75 ± 7.411 (4) | 44.5 ± 29.89 (4) | 0–50 | IU/I | 0.9147 | 0.9734 | 0.8229 | |
Triglycerides | 91.5 ± 42.11 (6) | 65.5 ± 31.51 (4) | 67.25 ± 20.6 (4) | 128 ± 167.3 (4) | 10–100 | mg/dL | 0.5832 | 0.8017 | 0.2828 | |
Electrolytes | Na+ | 150.7 ± 2.43 (7) | 150.3 ± 3.15 (7) | 150.4 ± 5.86 (5) | 147.3 ± 8.22 (4) | 145–151 | mmol/L | 0.9993 | 0.9972 | 0.6714 |
K+ | 4.94 ± 0.53 (7) | 4.76 ± 0.38 (7) | 4.67 ± 0.67 (5) | 4.93 ± 0.25 (4) | 3.9–5.1 | mmol/L | 0.4296 | 0.1949 | 0.9979 | |
Ca2+ | 1.30 ± 0.05 (7) | 1.27 ± 0.09 (7) | 1.27 ± 0.12 (5) | 1.23 ± 0.18 (4) | 1.16–1.40 | mmol/L | 0.9998 | 0.9986 | 0.4783 | |
Cl− | 115.1 ± 4.49 (7) | 116.7 ± 6.75 (7) | 117.4 ± 5.13 (5) | 111.5 ± 111.5 (4) | 110–119 | mmol/L | 0.8779 | 0.4756 | 0.8899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeung, S.-Y.; An, J.-H.; Kim, S.-S.; Youn, H.-Y. Safety of Gonadal Tissue-Derived Mesenchymal Stem Cell Therapy in Geriatric Dogs with Chronic Disease. Animals 2024, 14, 2134. https://doi.org/10.3390/ani14142134
Jeung S-Y, An J-H, Kim S-S, Youn H-Y. Safety of Gonadal Tissue-Derived Mesenchymal Stem Cell Therapy in Geriatric Dogs with Chronic Disease. Animals. 2024; 14(14):2134. https://doi.org/10.3390/ani14142134
Chicago/Turabian StyleJeung, So-Young, Ju-Hyun An, Sung-Soo Kim, and Hwa-Young Youn. 2024. "Safety of Gonadal Tissue-Derived Mesenchymal Stem Cell Therapy in Geriatric Dogs with Chronic Disease" Animals 14, no. 14: 2134. https://doi.org/10.3390/ani14142134
APA StyleJeung, S.-Y., An, J.-H., Kim, S.-S., & Youn, H.-Y. (2024). Safety of Gonadal Tissue-Derived Mesenchymal Stem Cell Therapy in Geriatric Dogs with Chronic Disease. Animals, 14(14), 2134. https://doi.org/10.3390/ani14142134