Bayesian Meta-Analysis: Impacts of Eating Habits and Habitats on Omega-3 Long-Chain Polyunsaturated Fatty Acid Composition and Growth in Cultured Fish
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Search and Selection Criteria
2.2. Data Extraction and Analysis
3. Results and Discussion
3.1. Distribution of the Studies
3.2. Composition of Dietary Fatty Acids
3.3. Model Convergence and Publication Bias
3.4. Growth Performance
3.4.1. FBW
3.4.2. SGR
3.5. n-3 LC-PUFA Composition
3.5.1. Liver EPA and DHA
3.5.2. Muscle EPA and DHA
3.6. Insights into Dietary n-3 LC-PUFA Levels Affecting Growth of Marine and Carnivorous Fish
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Scientific Name | Habitat | Feeding Habits | Oil Sources | Replacement Level | Year | Ref. |
---|---|---|---|---|---|---|
Acanthopagrus schlegelii | M | C | Cc, Pr, Su, Ar, ED | 75, 100 | 2017 | [53] |
Acanthopagrus schlegelii | M | C | Ar | 50, 75, 100 | 2017 | [54] |
Acanthopagrus schlegelii | M | C | Fi-So, So | 25, 50, 75 | 2019 | [55] |
Acanthopagrus schlegelii | M | C | Cr | 25, 50 | 2013 | [56] |
Argyrosomus regius | M | C | Li-Pa-Ra, Fi-Li-Pa-Ra | 25, 50, 75 | 2019 | [57] |
Argyrosomus regius | M | C | Li-Ra | 25, 50, 75, 100 | 2023 | [58] |
Argyrosomus regius | M | C | Fi-So, So | 25, 50, 75, 100 | 2016 | [59] |
Barbonymus gonionotus | F | O | Cr, Li | 100 | 2018 | [60] |
Barbonymus gonionotus | F | O | Li, Fi-Li | 25, 75, 100 | 2017 | [61] |
Barbonymus gonionotus | F | O | Cr, Li, Cr + Li | 100 | 2020 | [62] |
Brachymystax lenok | F | C | Fi-Li, Li | 25, 50, 75, 100 | 2019 | [63] |
Carassius gibelio | F | O | Pk, Ra | 100 | 2016 | [64] |
Ctenopharyngodon idellus | F | H | Pk | 50, 75, 100 | 2011 | [65] |
Ctenopharyngodon idellus | F | H | Pk | 100 | 2015 | [66] |
Ctenopharyngodon idellus | F | H | So | 75 | 2022 | [67] |
Ctenopharyngodon idellus | F | H | Ov, Pe, Li | 100 | 2018 | [68] |
Cyclopterus lumpus | M | C | Fi-Ra, Ra | 50, 75, 100 | 2021 | [69] |
Cyprinus carpio | F | C | Ra | 100 | 2015 | [70] |
Dicentrarchus labrax | M | C | So | 100 | 2016 | [71] |
Dicentrarchus labrax | M | C | Fi-Pt-Ma, Pt-Ma | 50, 75, 100 | 2018 | [41] |
Dicentrarchus labrax | M | C | Fi-Ra-Pa | 75 | 2021 | [46] |
Dicentrarchus labrax | M | C | Fi-Ra, Ra | 50, 100 | 2016 | [72] |
Epinephelus fuscoguttatus x E. lanceolatus | M | C | W, Fi-W | 25, 50, 75 | 2019 | [73] |
Epinephelus fuscoguttatus x E. lanceolatus | M | C | Cr, Su, T, Ov, Ri, Fi-Cr-Su-T-Ov-Ri | 75, 100 | 2020 | [74] |
Gadus morhua | M | C | Cm | 100 | 2014 | [75] |
Gadus morhua | M | C | Cm, Fi-Cm | 25 | 2013 | [76] |
Huso huso | F | C | Su, So, Ra, Su-So-Ra | 50, 100 | 2011 | [77] |
Huso huso | F | C | So, Ra | 100 | 2010 | [78] |
Huso huso x Acipenser ruthenus | F | C | Li, So | 100 | 2018 | [79] |
Labeo rohita | F | O | G, Fi-G | 25, 50, 75, 100 | 2022 | [80] |
Larimichthys crocea | M | C | Pn | 25, 50, 75, 100 | 2020 | [81] |
Larimichthys crocea | M | C | So, B | 75 | 2012 | [82] |
Larimichthys crocea | M | C | So, Li, Ra, Pe | 50 | 2017 | [83] |
Megalobrama amblycephala | F | C | So, Pk | 100 | 2016 | [84] |
Megalobrama amblycephala | F | C | Ra, Pa, Pe, So | 100 | 2015 | [85] |
Megalobrama amblycephala | F | C | So, DHA + So | 50, 75, 100 | 2020 | [86] |
Megalobrama amblycephala | F | C | So, Pa, Fi-So-Pa | 75, 100 | 2017 | [87] |
Micropterus salmoides | F | C | Cc, Ra, Li | 75 | 2022 | [88] |
Monopterus albus | F | C | Li, Pk, Pe, So, Ar-Pe | 100 | 2011 | [89] |
Morone chrysops x M. saxatilis | M | C | Cr | 75 | 2011 | [90] |
Mylopharyngodon piceus | F | C | Ra, Fi-Ra | 25, 50, 75, 100 | 2011 | [91] |
Nibea albiflora | M | C | Fi-Li-Pk | 75 | 2020 | [92] |
Nibea coibor | M | C | Pa, Fi-Pa | 25, 50, 75, 100 | 2016 | [93] |
Oncorhynchus mykiss | F | C | Fi-Ra-Li-Pa-Su | 25, 50, 75 | 2018 | [94] |
Oncorhynchus mykiss | F | C | Fl, Fi-Fl | 50, 75 | 2013 | [95] |
Oncorhynchus mykiss | F | C | Cm, Fi-Cm | 50, 75 | 2014 | [96] |
Oncorhynchus mykiss | F | C | Fi-La | 25, 50 | 2017 | [97] |
Oncorhynchus mykiss | F | C | Se, Su, Li | 75 | 2015 | [98] |
Onychostoma macrolepis | F | O | So, Li, Al, So-Li-Al | 25, 75, 100 | 2021 | [99] |
Oreochromis niloticus | F | H | Li | 50, 75 | 2016 | [100] |
Oreochromis niloticus | F | H | Fi-Pa, Pa | 50, 75, 100 | 2018 | [101] |
Oreochromis niloticus var. GIFT | F | H | Cm, Fi-Cm | 25, 75, 100 | 2020 | [102] |
Oreochromis sp. | F | H | Pr, Ra, Su, Pa | 100 | 2016 | [103] |
Polydactylus sexfilis | M | C | Fi-So | 25, 50, 75 | 2014 | [104] |
Rachycentron canadum | M | C | So | 25, 50 | 2011 | [105] |
Rachycentron canadum | M | C | So | 50, 75 | 2013 | [106] |
Rachycentron canadum | M | C | Pr, Su | 50, 100 | 2018 | [107] |
Salmo salar | M | C | Ra | 75 | 2022 | [108] |
Salmo salar | M | C | Fi-Li-Pa-Ra | 50 | 2011 | [109] |
Salmo salar | F | C | Ra, Mi-Ra | 25 | 2023 | [20] |
Salvelinus alpinus | F | C | Fi-Ra-Pa, Ra-Pa | 75 | 2010 | [110] |
Scatophagus argus | F | C | So | 100 | 2021 | [111] |
Seriola dumerili | M | C | Fi-Li-Pa, Li-Pa | 50, 75 | 2018 | [112] |
Seriola lalandi | M | C | Ra, Pt | 100 | 2012 | [113] |
Seriola lalandi | M | C | Ra-Pa | 50 | 2020 | [114] |
Seriola quinqueradiata | M | C | Ra, Fi-Ra | 25, 50, 75 | 2017 | [115] |
Siganus canaliculatus | M | H | Fi-So, So | 50, 75 | 2012 | [19] |
Solea senegalensis | M | C | Li, So | 50, 75 | 2013 | [116] |
Solea senegalensis | M | C | Fi-Ra-So-Li, Ra-So-Li | 25, 50, 75 | 2014 | [117] |
Solea senegalensis | M | C | Fi-So-Ra-Li, So-Ra-Li | 50, 100 | 2019 | [118] |
Sparidentex hasta | M | C | Fi-Ra, Fi-Su, Fi-B, Ra, Su, B | 50, 75 | 2016 | [119] |
Sparidentex hasta | M | C | Oc | 75, 100 | 2015 | [120] |
Sparus aurata | M | C | Fi-Li-Ra-Pa | 75 | 2019 | [121] |
Sparus aurata | M | C | Cm, Ch, Fi-Cm, Fi-Ch | 50, 75 | 2020 | [122] |
Sparus aurata | M | C | Ra + Li + Pa | 50 | 2016 | [123] |
Sparus aurata | M | C | So | 25, 50 | 2011 | [124] |
Takifugu rubripes | M | C | So, Li | 25, 50, 75, 100 | 2011 | [125] |
Tor tambroides | F | H | Fi-Ov, Ov | 100 | 2012 | [126] |
Tor tambroides | F | H | Cr, Li, Cr + Li | 100 | 2021 | [127] |
Totoaba macdonaldi | M | C | B | 75, 100 | 2018 | [128] |
Trachinotus ovatus | M | C | Fi-So-Ra-Pr | 50 | 2020 | [129] |
References
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Chen, C.; Dong, Y.; You, C.; Wang, S.; Monroig, Ó.; Tocher, D.R.; Li, Y. Regulation of Long-Chain Polyunsaturated Fatty Acid Biosynthesis in Teleost Fish. Prog. Lipid Res. 2021, 82, 101095. [Google Scholar] [CrossRef] [PubMed]
- Monroig, Ó.; Shu-Chien, A.C.; Kabeya, N.; Tocher, D.R.; Castro, L.F.C. Desaturases and Elongases Involved in Long-Chain Polyunsaturated Fatty Acid Biosynthesis in Aquatic Animals: From Genes to Functions. Prog. Lipid Res. 2022, 86, 101157. [Google Scholar] [CrossRef] [PubMed]
- FAO. World Food and Agriculture—Statistical Yearbook 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136930-2. [Google Scholar]
- Craig, S.R.; Helfrich, L.A.; Kuhn, D.; Schwarz, M.H. Understanding Fish Nutrition, Feeds, and Feeding; Virginia Cooperative Extension: Fairfax, VA, USA, 2017; Publication 420–256; pp. 1–6. [Google Scholar]
- Parzanini, C.; Colombo, S.M.; Kainz, M.J.; Wacker, A.; Parrish, C.C.; Arts, M.T. Discrimination between Freshwater and Marine Fish Using Fatty Acids: Ecological Implications and Future Perspectives. Environ. Rev. 2020, 28, 546–559. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Lüdecke, D. Esc: Effect Size Computation for Meta Analysis, Version 0.5.1; Zenodo: Genève, Switzerland, 2019. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Egger, M. Funnel Plots for Detecting Bias in Meta-Analysis: Guidelines on Choice of Axis. J. Clin. Epidemiol. 2001, 54, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to Perform a Meta-Analysis with R: A Practical Tutorial. Evid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Sales, J.; Glencross, B. A Meta-Analysis of the Effects of Dietary Marine Oil Replacement with Vegetable Oils on Growth, Feed Conversion and Muscle Fatty Acid Composition of Fish Species. Aquac. Nutr. 2011, 17, e271–e287. [Google Scholar] [CrossRef]
- Alhazzaa, R.; Nichols, P.D.; Carter, C.G. Sustainable Alternatives to Dietary Fish Oil in Tropical Fish Aquaculture. Rev. Aquac. 2019, 11, 1195–1218. [Google Scholar] [CrossRef]
- Xu, H.; Turchini, G.M.; Francis, D.S.; Liang, M.; Mock, T.S.; Rombenso, A.; Ai, Q. Are Fish What They Eat? A Fatty Acid’s Perspective. Prog. Lipid Res. 2020, 80, 101064. [Google Scholar] [CrossRef] [PubMed]
- Bürkner, P.C. Brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 80, 1. [Google Scholar] [CrossRef]
- Harrer, M.; Cuijpers, P.; Furukawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021; ISBN 9781003107347. [Google Scholar]
- Qian, Y.; Wang, J.; Qiao, F.; Luo, Y.; Chen, L.; Zhang, M.; Du, Z. Modelling the Impact of Replacing Fish Oil with Plant Oils: A Meta-Analysis to Match the Optimal Plant Oil for Major Cultured Fish. Rev. Aquac. 2024, 16, 1395–1422. [Google Scholar] [CrossRef]
- Lugert, V.; Thaller, G.; Tetens, J.; Schulz, C.; Krieter, J. A Review on Fish Growth Calculation: Multiple Functions in Fish Production and Their Specific Application. Rev. Aquac. 2016, 8, 30–42. [Google Scholar] [CrossRef]
- Xu, S.; Wang, S.; Zhang, L.; You, C.; Li, Y. Effects of Replacement of Dietary Fish Oil with Soybean Oil on Growth Performance and Tissue Fatty Acid Composition in Marine Herbivorous Teleost Siganus canaliculatus. Aquac. Res. 2012, 43, 1276–1286. [Google Scholar] [CrossRef]
- Guerra, N.; Parrish, C.C.; Wei, M.; Perry, J.; Armenta, R.E.; Colombo, S.M. Effects of Replacement of Fish Oil with Microbial Oil (Schizochytrium sp. T18) on Membrane Lipid Composition of Atlantic Salmon Parr Muscle and Liver Tissues. Sustainability 2023, 15, 4594. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci. 1992, 7, 409–435. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and Fill: A Simple Funnel-Plot–Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Benedito-Palos, L.; Saera-Vila, A.; Calduch-Giner, J.A.; Kaushik, S.; Pérez-Sánchez, J. Combined Replacement of Fish Meal and Oil in Practical Diets for Fast Growing Juveniles of Gilthead Sea Bream (Sparus aurata L.): Networking of Systemic and Local Components of GH/IGF Axis. Aquaculture 2007, 267, 199–212. [Google Scholar] [CrossRef]
- Abdolmaleki, F.; Kovanen, P.T.; Mardani, R.; Gheibi-hayat, S.M.; Bo, S.; Sahebkar, A. Resolvins: Emerging Players in Autoimmune and Inflammatory Diseases. Clin. Rev. Allergy Immunol. 2020, 58, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Teles, A.O.; Couto, A.; Enes, P.; Peres, H. Dietary Protein Requirements of Fish—A Meta-Analysis. Rev. Aquac. 2020, 12, 1445–1477. [Google Scholar] [CrossRef]
- Castro, C.; Couto, A.; Diógenes, A.F.; Corraze, G.; Panserat, S.; Serra, C.R.; Oliva-Teles, A. Vegetable Oil and Carbohydrate-Rich Diets Marginally Affected Intestine Histomorphology, Digestive Enzymes Activities, and Gut Microbiota of Gilthead Sea Bream Juveniles. Fish Physiol. Biochem. 2019, 45, 681–695. [Google Scholar] [CrossRef]
- Metón, I.; Mediavilla, D.; Caseras, A.; Cantó, E.; Fernández, F.; Baanante, I.V. Effect of Diet Composition and Ration Size on Key Enzyme Activities of Glycolysis-Gluconeogenesis, the Pentose Phosphate Pathway and Amino Acid Metabolism in Liver of Gilthead Sea Bream (Sparus aurata). Br. J. Nutr. 1999, 82, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Viegas, I.; Jarak, I.; Rito, J.; Carvalho, R.A.; Metón, I.; Pardal, M.A.; Baanante, I.V.; Jones, J.G. Effects of Dietary Carbohydrate on Hepatic de Novo Lipogenesis in European Seabass (Dicentrarchus labrax L.). J. Lipid Res. 2016, 57, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Panserat, S.; Kaushik, S.; Terrier, F.; Plagnes-Juan, E.; Seiliez, I.; Skiba-Cassy, S. Hepatic Fatty Acid Biosynthesis Is More Responsive to Protein than Carbohydrate in Rainbow Trout during Acute Stimulations. Am. J. Physiol. Integr. Comp. Physiol. 2016, 310, R74–R86. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Li, X.; Zheng, S.; Wu, G. Amino Acids Are Major Energy Substrates for Tissues of Hybrid Striped Bass and Zebrafish. Amino Acids 2017, 49, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Solares, A.; Viegas, I.; Salgado, M.C.; Siles, A.M.; Sáez, A.; Metón, I.; Baanante, I.V.; Fernández, F. Diets Supplemented with Glutamate or Glutamine Improve Protein Retention and Modulate Gene Expression of Key Enzymes of Hepatic Metabolism in Gilthead Seabream (Sparus aurata) Juveniles. Aquaculture 2015, 444, 79–87. [Google Scholar] [CrossRef]
- Gaspar, C.; Silva-Marrero, J.I.; Fàbregas, A.; Miñarro, M.; Ticó, J.R.; Baanante, I.V.; Metón, I. Administration of Chitosan-Tripolyphosphate-DNA Nanoparticles to Knockdown Glutamate Dehydrogenase Expression Impairs Transdeamination and Gluconeogenesis in the Liver. J. Biotechnol. 2018, 286, 5–13. [Google Scholar] [CrossRef] [PubMed]
- González, J.D.; Caballero, A.; Viegas, I.; Metón, I.; Jones, J.G.; Barra, J.; Fernández, F.; Baanante, I.V. Effects of Alanine Aminotransferase Inhibition on the Intermediary Metabolism in Sparus aurata through Dietary Amino-Oxyacetate Supplementation. Br. J. Nutr. 2012, 107, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- González, J.D.; Silva-Marrero, J.I.; Metón, I.; Caballero-Solares, A.; Viegas, I.; Fernández, F.; Miñarro, M.; Fàbregas, A.; Ticó, J.R.; Jones, J.G.; et al. Chitosan-Mediated ShRNA Knockdown of Cytosolic Alanine Aminotransferase Improves Hepatic Carbohydrate Metabolism. Mar. Biotechnol. 2016, 18, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Egea, M.; Metón, I.; Córdoba, M.; Fernández, F.; Baanante, I.V. Role of Sp1 and SREBP-1a in the Insulin-Mediated Regulation of Glucokinase Transcription in the Liver of Gilthead Sea Bream (Sparus aurata). Gen. Comp. Endocrinol. 2008, 155, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Metón, I.; Egea, M.; Anemaet, I.G.; Fernández, F.; Baanante, I.V. Sterol Regulatory Element Binding Protein-1a Transactivates 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase Gene Promoter. Endocrinology 2006, 147, 3446–3456. [Google Scholar] [CrossRef] [PubMed]
- Silva-Marrero, J.I.; Villasante, J.; Rashidpour, A.; Palma, M.; Fàbregas, A.; Almajano, M.P.; Viegas, I.; Jones, J.G.; Miñarro, M.; Ticó, J.R.; et al. The Administration of Chitosan-Tripolyphosphate-DNA Nanoparticles to Express Exogenous SREBP1a Enhances Conversion of Dietary Carbohydrates into Lipids in the Liver of Sparus aurata. Biomolecules 2019, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Rashidpour, A.; Wu, Y.; Almajano, M.P.; Fàbregas, A.; Metón, I. Chitosan-Based Sustained Expression of Sterol Regulatory Element-Binding Protein 1a Stimulates Hepatic Glucose Oxidation and Growth in Sparus aurata. Mar. Drugs 2023, 21, 562. [Google Scholar] [CrossRef] [PubMed]
- Storlien, L.H.; Kraegen, E.W.; Chisholm, D.J.; Ford, G.L.; Bruce, D.G.; Pascoe, W.S. Fish Oil Prevents Insulin Resistance Induced by High-Fat Feeding in Rats. Science 1987, 237, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Flachs, P.; Rossmeisl, M.; Kopecky, J. The Effect of N-3 Fatty Acids on Glucose Homeostasis and Insulin Sensitivity. Physiol. Res. 2014, 63, S93–S118. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.; Matos, E.; Ramos, R.; Campos, I.; Valente, L.M.P. A Blend of Land Animal Fats Can Replace up to 75% Fish Oil without Affecting Growth and Nutrient Utilization of European Seabass. Aquaculture 2018, 487, 22–31. [Google Scholar] [CrossRef]
- Magalhães, R.; Martins, N.; Fontinha, F.; Moutinho, S.; Olsen, R.E.; Peres, H.; Oliva-Teles, A. Effects of Dietary Arachidonic Acid and Docosahexanoic Acid at Different Carbohydrates Levels on Gilthead Sea Bream Growth Performance and Intermediary Metabolism. Aquaculture 2021, 545, 737233. [Google Scholar] [CrossRef]
- Bouraoui, L.; Sánchez-Gurmaches, J.; Cruz-Garcia, L.; Gutiérrez, J.; Benedito-Palos, L.; Pérez-Sánchez, J.; Navarro, I. Effect of Dietary Fish Meal and Fish Oil Replacement on Lipogenic and Lipoprotein Lipase Activities and Plasma Insulin in Gilthead Sea Bream (Sparus aurata). Aquac. Nutr. 2011, 17, 54–63. [Google Scholar] [CrossRef]
- Menoyo, D.; Izquierdo, M.S.; Robaina, L.; Ginés, R.; Lopez-Bote, C.J.; Bautista, J.M. Adaptation of Lipid Metabolism, Tissue Composition and Flesh Quality in Gilthead Sea Bream (Sparus aurata) to the Replacement of Dietary Fish Oil by Linseed and Soyabean Oils. Br. J. Nutr. 2004, 92, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Campos, I.; Matos, E.; Maia, M.R.G.; Marques, A.; Valente, L.M.P. Partial and Total Replacement of Fish Oil by Poultry Fat in Diets for European Seabass (Dicentrarchus labrax) Juveniles: Effects on Nutrient Utilization, Growth Performance, Tissue Composition and Lipid Metabolism. Aquaculture 2019, 502, 107–120. [Google Scholar] [CrossRef]
- Tsopelakos, A.; Zogopoulou, E.; Panagiotaki, P.; Miliou, H. Combined Effects of Dietary n-3 Long-Chain Polyunsaturated Fatty Acid Levels and Saturated to Monounsaturated Fatty Acid Ratios on Growth, Fillet Composition and Blood Parameters of European Sea Bass, Dicentrarchus labrax L. Aquac. Res. 2021, 52, 5213–5228. [Google Scholar] [CrossRef]
- Wu, Y.; Rashidpour, A.; Fàbregas, A.; Almajano, M.P.; Metón, I. Chitosan-Based Delivery of Fish Codon-Optimised Caenorhabditis Elegans FAT-1 and FAT-2 Boosts EPA and DHA Biosynthesis in Sparus aurata. Rev. Fish Biol. Fish. 2024. [Google Scholar] [CrossRef]
- Person-Le Ruyet, J.; Skalli, A.; Dulau, B.; Le Bayon, N.; Le Delliou, H.; Robin, J.H. Does Dietary N−3 Highly Unsaturated Fatty Acids Level Influence the European Sea Bass (Dicentrachus labrax) Capacity to Adapt to a High Temperature? Aquaculture 2004, 242, 571–588. [Google Scholar] [CrossRef]
- Cozzolino, D.; Chree, A.; Murray, I.; Scaife, J.R. The Assessment of the Chemical Composition of Fishmeal by near Infrared Reflectance Spectroscopy. Aquac. Nutr. 2002, 8, 149–155. [Google Scholar] [CrossRef]
- Zatti, K.M.; Ceballos, M.J.; Vega, V.V.; Denstadli, V. Full Replacement of Fish Oil with Algae Oil in Farmed Atlantic Salmon (Salmo salar)—Debottlenecking Omega 3. Aquaculture 2023, 574, 739653. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Scaife, M.A.; Armenta, R.E. Apparent Digestibility of Proximate Nutrients, Energy and Fatty Acids in Nutritionally-Balanced Diets with Partial or Complete Replacement of Dietary Fish Oil with Microbial Oil from a Novel Schizochytrium sp. (T18) by Juvenile Atlantic Salmon (Salmo salar L.). Aquaculture 2020, 520, 735003. [Google Scholar] [CrossRef]
- Vasilaki, A.; Mente, E.; Fountoulaki, E.; Henry, M.; Nikoloudaki, C.; Berillis, P.; Kousoulaki, K.; Nengas, I. Fishmeal, Plant Protein, and Fish Oil Substitution with Single-Cell Ingredients in Organic Feeds for European Sea Bass (Dicentrarchus labrax). Front. Physiol. 2023, 14, 1199497. [Google Scholar] [CrossRef]
- Jin, M.; Yuan, Y.; Lu, Y.; Ma, H.; Sun, P.; Li, Y.; Qiu, H.; Ding, L.; Zhou, Q. Regulation of Growth, Tissue Fatty Acid Composition, Biochemical Parameters and Lipid Related Genes Expression by Different Dietary Lipid Sources in Juvenile Black Seabream, Acanthopagrus schlegelii. Aquaculture 2017, 479, 25–37. [Google Scholar] [CrossRef]
- Jin, M.; Lu, Y.; Yuan, Y.; Li, Y.; Qiu, H.; Sun, P.; Ma, H.-N.; Ding, L.-Y.; Zhou, Q.-C. Regulation of Growth, Antioxidant Capacity, Fatty Acid Profiles, Hematological Characteristics and Expression of Lipid Related Genes by Different Dietary n-3 Highly Unsaturated Fatty Acids in Juvenile Black Seabream (Acanthopagrus schlegelii). Aquaculture 2017, 471, 55–65. [Google Scholar] [CrossRef]
- Jin, M.; Lu, Y.; Pan, T.; Zhu, T.; Yuan, Y.; Sun, P.; Zhou, F.; Ding, X.; Zhou, Q. Effects of Dietary N-3 LC-PUFA/n-6 C18 PUFA Ratio on Growth, Feed Utilization, Fatty Acid Composition and Lipid Metabolism Related Gene Expression in Black Seabream, Acanthopagrus schlegelii. Aquaculture 2019, 500, 521–531. [Google Scholar] [CrossRef]
- Ma, J.; Shao, Q.; Xu, Z.; Zhou, F. Effect of Dietary n-3 Highly Unsaturated Fatty Acids on Growth, Body Composition and Fatty Acid Profiles of Juvenile Black Seabream, Acanthopagrus schlegeli (Bleeker). J. World Aquac. Soc. 2013, 44, 311–325. [Google Scholar] [CrossRef]
- Carvalho, M.; Castro, P.; Montero, D.; Peres, H.; Acosta, F.; Fontanillas, R.; Rosenlund, G.; Robaina, L.; Izquierdo, M. Essential Fatty Acid Deficiency Increases Hepatic Non-Infectious Granulomatosis Incidence in Meagre (Argyrosomus regius, Asso 1801) Fingerlings. Aquaculture 2019, 505, 393–404. [Google Scholar] [CrossRef]
- Pfalzgraff, T.; Borges, P.; Robaina, L.; Kaushik, S.; Izquierdo, M. Essential Fatty Acid Requirement of Juvenile Meagre (Argyrosomus regius). Aquaculture 2023, 572, 739532. [Google Scholar] [CrossRef]
- Emre, Y.; Kurtoğlu, A.; Emre, N.; Güroy, B.; Güroy, D. Effect of Replacing Dietary Fish Oil with Soybean Oil on Growth Performance, Fatty Acid Composition and Haematological Parameters of Juvenile Meagre, Argyrosomus regius. Aquac. Res. 2016, 47, 2256–2265. [Google Scholar] [CrossRef]
- Janaranjani, M.; Mah, M.-Q.; Kuah, M.-K.; Fadhilah, N.; Hing, S.-R.; Han, W.-Y.; Shu-Chien, A.C. Capacity for Eicosapentaenoic Acid and Arachidonic Acid Biosynthesis in Silver Barb (Barbonymus gonionotus): Functional Characterisation of a Δ6/Δ8/Δ5 Fads2 Desaturase and Elovl5 Elongase. Aquaculture 2018, 497, 469–486. [Google Scholar] [CrossRef]
- Nayak, M.; Saha, A.; Pradhan, A.; Samanta, M.; Giri, S.S. Dietary Fish Oil Replacement by Linseed Oil: Effect on Growth, Nutrient Utilization, Tissue Fatty Acid Composition and Desaturase Gene Expression in Silver Barb (Puntius gonionotus) Fingerlings. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2017, 205, 1–12. [Google Scholar] [CrossRef]
- Janaranjani, M.; Shu-Chien, A.C. Complete Repertoire of Long-Chain Polyunsaturated Fatty Acids Biosynthesis Enzymes in a Cyprinid, Silver Barb (Barbonymus gonionotus): Cloning, Functional Characterization and Dietary Regulation of Elovl2 and Elovl4. Aquac. Nutr. 2020, 26, 1835–1853. [Google Scholar] [CrossRef]
- Yu, J.; Li, S.; Chang, J.; Niu, H.; Hu, Z.; Han, Y. Effect of Variation in the Dietary Ratio of Linseed Oil to Fish Oil on Growth, Body Composition, Tissues Fatty Acid Composition, Flesh Nutritional Value and Immune Indices in Manchurian Trout, Brachymystax lenok. Aquac. Nutr. 2019, 25, 377–387. [Google Scholar] [CrossRef]
- Zhou, L.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Xie, S. Effects of Total Replacement of Fish Oil by Pork Lard or Rapeseed Oil and Recovery by a Fish Oil Finishing Diet on Growth, Health and Fish Quality of Gibel Carp (Carassius auratus gibelio). Aquac. Res. 2016, 47, 2961–2975. [Google Scholar] [CrossRef]
- Ji, H.; Li, J.; Liu, P. Regulation of Growth Performance and Lipid Metabolism by Dietary n-3 Highly Unsaturated Fatty Acids in Juvenile Grass Carp, Ctenopharyngodon idellus. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2011, 159, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, P.; Ji, H.; Huang, J.; Zhang, W. Dietary n-3 Highly Unsaturated Fatty Acids Affect the Biological and Serum Biochemical Parameters, Tissue Fatty Acid Profile, Antioxidation Status and Expression of Lipid-Metabolism-Related Genes in Grass Carp, Ctenopharyngodon idellus. Aquac. Nutr. 2015, 21, 373–383. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, Y.; Han, Z.; Zheng, Y.; Wang, X.; Zhang, M.; Li, H.; Xu, J.; Chen, X.; Ding, Z.; et al. Comparative Effects of Dietary Soybean Oil and Fish Oil on the Growth Performance, Fatty Acid Composition and Lipid Metabolic Signaling of Grass Carp, Ctenopharyngodon idella. Aquac. Rep. 2022, 22, 101002. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, J.; Lin, Y.; Ji, H.; Li, Y.; Wang, J. Effects of Dietary Lipid Source on Fatty Acid Composition, Expression of Genes Involved in Lipid Metabolism and Antioxidant Status of Grass Carp (Ctenopharyngodon idellus). Aquac. Nutr. 2018, 24, 1456–1465. [Google Scholar] [CrossRef]
- Willora, F.P.; Grønevik, B.; Liu, C.; Palihawadana, A.; Sørensen, M.; Hagen, Ø. Total Replacement of Marine Oil by Rapeseed Oil in Plant Protein Rich Diets of Juvenile Lumpfish (Cyclopterus lumpus): Effects on Growth Performance, Chemical and Fatty Acid Composition. Aquac. Rep. 2021, 19, 100560. [Google Scholar] [CrossRef]
- Ljubojević, D.; Radosavljević, V.; Puvača, N.; Živkov Baloš, M.; Dordević, V.; Jovanović, R.; Ćirković, M. Interactive Effects of Dietary Protein Level and Oil Source on Proximate Composition and Fatty Acid Composition in Common Carp (Cyprinus carpio L.). J. Food Compos. Anal. 2015, 37, 44–50. [Google Scholar] [CrossRef]
- Torrecillas, S.; Caballero, M.J.; Montero, D.; Sweetman, J.; Izquierdo, M. Combined Effects of Dietary Mannan Oligosaccharides and Total Fish Oil Substitution by Soybean Oil on European Sea Bass (Dicentrarchus labrax) Juvenile Diets. Aquac. Nutr. 2016, 22, 1079–1090. [Google Scholar] [CrossRef]
- Yılmaz, H.A.; Corraze, G.; Panserat, S.; Eroldoğan, O.T. Effects of Alternate Feeding with Different Lipid Sources on Fatty Acid Composition and Bioconversion in European Sea Bass (Dicentrarchus labrax). Aquaculture 2016, 464, 28–36. [Google Scholar] [CrossRef]
- Baoshan, L.; Jiying, W.; Yu, H.; Tiantian, H.; Shixin, W.; BingShan, H.; Yongzhi, S. Effects of Replacing Fish Oil with Wheat Germ Oil on Growth, Fat Deposition, Serum Biochemical Indices and Lipid Metabolic Enzyme of Juvenile Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Aquaculture 2019, 505, 54–62. [Google Scholar] [CrossRef]
- Yan, X.B.; Dong, X.H.; Tan, B.P.; Zhang, S.; Chi, S.Y.; Liu, H.Y.; Yang, Y.Z. Influence of Different Oil Sources on Growth, Disease Resistance, Immune Response and Immune-Related Gene Expression on the Hybrid Grouper (♀ Epinephelus fuscoguttatus × ♂ E. Lanceolatu), to Vibrio parahaemolyticus Challenge. Fish Shellfish Immunol. 2020, 99, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Hixson, S.M.; Parrish, C.C.; Anderson, D.M. Use of Camelina Oil to Replace Fish Oil in Diets for Farmed Salmonids and Atlantic Cod. Aquaculture 2014, 431, 44–52. [Google Scholar] [CrossRef]
- Hixson, S.M.; Parrish, C.C.; Anderson, D.M. Effect of Replacement of Fish Oil with Camelina (Camelina sativa) Oil on Growth, Lipid Class and Fatty Acid Composition of Farmed Juvenile Atlantic Cod (Gadus morhua). Fish Physiol. Biochem. 2013, 39, 1441–1456. [Google Scholar] [CrossRef] [PubMed]
- Nikzad Hassankiadeh, M.; Khara, H.; Yazdani Sadati, M.A.; Parandavar, H. Effects of Dietary Fish Oil Substitution with Mixed Vegetable Oils on Growth and Fillet Fatty Acid Composition of Juvenile Caspian Great Sturgeon (Huso huso). Aquac. Int. 2013, 21, 143–155. [Google Scholar] [CrossRef]
- Hosseini, S.V.; Kenari, A.A.; Regenstein, J.M.; Rezaei, M.; Nazari, R.M.; Moghaddasi, M.; Kaboli, S.A.; Grant, A.A.M. Effects of Alternative Dietary Lipid Sources on Growth Performance and Fatty Acid Composition of Beluga Sturgeon, Huso huso, Juveniles. J. World Aquac. Soc. 2010, 41, 471–489. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Ma, Z.; Li, T.; Xing, W.; Jiang, N.; Li, W.; Li, C.; Luo, L. Effects of Totally Replacing Dietary Fish Oil by Linseed Oil or Soybean Oil on Juvenile Hybrid Sturgeon, Acipenser baeri Brandt ♀ × A. schrenckii Brandt ♂. Aquac. Nutr. 2018, 24, 184–194. [Google Scholar] [CrossRef]
- Siddiqua, K.S.; Khan, M.A. Replacement of Fish Oil with Groundnut Oil for Developing Sustainable Feeds for Labeo rohita Fingerling. Front. Sustain. Food Syst. 2022, 6, 862054. [Google Scholar] [CrossRef]
- Zuo, R.; Ai, Q.; Mai, K.; Xu, W.; Wang, J.; Xu, H.; Liufu, Z.; Zhang, Y. Effects of Dietary n-3 Highly Unsaturated Fatty Acids on Growth, Nonspecific Immunity, Expression of Some Immune Related Genes and Disease Resistance of Large Yellow Croaker (Larmichthys crocea) Following Natural Infestation of Parasites (Cryptocaryon irritans). Fish Shellfish Immunol. 2012, 32, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Li, Y.J.; Hou, C.L.; Gao, Y.; Wang, Y.Z. Influence of Different Dietary Lipid Sources on the Growth, Tissue Fatty Acid Composition, Histological Changes and Peroxisome Proliferator-Activated Receptor γ Gene Expression in Large Yellow Croaker (Pseudosciaena crocea R.). Aquac. Res. 2012, 43, 281–291. [Google Scholar] [CrossRef]
- Qiu, H.; Jin, M.; Li, Y.; Lu, Y.; Hou, Y.; Zhou, Q. Dietary Lipid Sources Influence Fatty Acid Composition in Tissue of Large Yellow Croaker (Larmichthys crocea) by Regulating Triacylglycerol Synthesis and Catabolism at the Transcriptional Level. PLoS ONE 2017, 12, e0169985. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, X.; Zhang, Y.; Gao, J. Effects of Different Dietary Soybean Oil Levels on Growth, Lipid Deposition, Tissues Fatty Acid Composition and Hepatic Lipid Metabolism Related Gene Expressions in Blunt Snout Bream (Megalobrama amblycephala) Juvenile. Aquaculture 2016, 451, 16–23. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Zhang, Y.; Liang, X.; Zhang, Y.; Gao, J. Growth Performance, Fatty Acid Composition, Peroxisome Proliferator-activated Receptors Gene Expressions, and Antioxidant Abilities of Blunt Snout Bream, Megalobrama amblycephala, Fingerlings Fed Different Dietary Oil Sources. J. World Aquac. Soc. 2015, 46, 395–408. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, G.; Cao, X.; Dai, Y.; Huang, Y.; Li, X.; Liu, W. Effects of Dietary Docosahexaenoic Acid on Growth Performance, Fatty Acid Profile and Lipogenesis of Blunt Snout Bream (Megalobrama amblycephala). Aquac. Nutr. 2020, 26, 502–515. [Google Scholar] [CrossRef]
- Wang, B.-K.; Liu, W.-B.; Xu, C.; Cao, X.-F.; Zhong, X.-Q.; Shi, H.-J.; Li, X.-F. Dietary Carbohydrate Levels and Lipid Sources Modulate the Growth Performance, Fatty Acid Profiles and Intermediary Metabolism of Blunt Snout Bream Megalobrama amblycephala in an Interactive Pattern. Aquaculture 2017, 481, 140–153. [Google Scholar] [CrossRef]
- Liang, C.; Zhao, X.; Jiao, L.; Shen, Y.; Luo, J.; Zhu, T.; Zhao, W.; Gen, Z.; Zhou, Q.; Jin, M. Effects of Different Lipid Sources on Growth Performance, Fatty Acids Composition in Tissue and Expression of Genes Related to Lipid Metabolism in Largemouth Bass (Micropterus salmoides). Aquac. Rep. 2022, 23, 101013. [Google Scholar] [CrossRef]
- Zhou, Q.-B.; Wu, H.-D.; Zhu, C.-S.; Yan, X.-H. Effects of Dietary Lipids on Tissue Fatty Acids Profile, Growth and Reproductive Performance of Female Rice Field Eel (Monopterus albus). Fish Physiol. Biochem. 2011, 37, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Trushenski, J.T.; Gause, B.; Lewis, H.A. Selective Fatty Acid Metabolism, Not the Sequence of Dietary Fish Oil Intake, Prevails in Fillet Fatty Acid Profile Change in Sunshine Bass. N. Am. J. Aquac. 2011, 73, 204–211. [Google Scholar] [CrossRef]
- Sun, S.; Ye, J.; Chen, J.; Wang, Y.; Chen, L. Effect of Dietary Fish Oil Replacement by Rapeseed Oil on the Growth, Fatty Acid Composition and Serum Non-Specific Immunity Response of Fingerling Black Carp, Mylopharyngodon piceus. Aquac. Nutr. 2011, 17, 441–450. [Google Scholar] [CrossRef]
- Wabike, E.E.; Wu, X.; Zhu, W.; Lou, B.; Chen, R.; Xu, D.; Wang, L.; Zhou, S.; Tan, P. Partial Replacement of Fish Oil with Terrestrial Lipid Blend and Effects on Growth Performance, Body Composition, Immune Parameter and Growth-Related Genes in Yellow Drum (Nibea albiflora). Aquac. Nutr. 2020, 26, 954–963. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, X.; Li, S.; Li, W.; Zhu, D. Effects of Dietary Fish Oil Replacement with Palm Oil on the Growth, Feed Utilization, Biochemical Composition, and Antioxidant Status of Juvenile Chu’s Croaker, Nibea coibor. J. World Aquac. Soc. 2016, 47, 786–797. [Google Scholar] [CrossRef]
- Fickler, A.; Staats, S.; Hasler, M.; Rimbach, G.; Schulz, C. Dietary Buglossoides arvensis Oil as a Potential Candidate to Substitute Fish Oil in Rainbow Trout Diets. Lipids 2018, 53, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Masiha, A.; Mahboobi Soofiani, N.; Ebrahimi, E.; Kadivar, M.; Karimi, M.R. Effect of Dietary Flaxseed Oil Level on the Growth Performance and Fatty Acid Composition of Fingerlings of Rainbow Trout, Oncorhynchus mykiss. Springerplus 2013, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Hixson, S.M.; Parrish, C.C.; Anderson, D.M. Changes in Tissue Lipid and Fatty Acid Composition of Farmed Rainbow Trout in Response to Dietary Camelina Oil as a Replacement of Fish Oil. Lipids 2014, 49, 97–111. [Google Scholar] [CrossRef]
- Dernekbaşı, S.; Karayücel, İ.; Akyüz, A.P. Effect of Diets Containing Laurel Seed Oil on Growth and Fatty Acid Composition of Rainbow Trout, Oncorhynchus mykiss. Aquac. Nutr. 2017, 23, 219–227. [Google Scholar] [CrossRef]
- Yildiz, M.; Köse, İ.; Issa, G.; Kahraman, T. Effect of Different Plant Oils on Growth Performance, Fatty Acid Composition and Flesh Quality of Rainbow Trout (Oncorhynchus mykiss). Aquac. Res. 2015, 46, 2885–2896. [Google Scholar] [CrossRef]
- Gou, N.; Ji, H.; Zhong, M.; Chang, Z.; Deng, W. Effects of Dietary Fish Oil Replacements with Three Vegetable Oils on Growth, Fatty Acid Composition, Antioxidant Capacity, Serum Parameters and Expression of Lipid Metabolism Related Genes in Juvenile Onychostoma macrolepis. Aquac. Nutr. 2021, 27, 163–175. [Google Scholar] [CrossRef]
- Li, F.J.; Lin, X.; Lin, S.M.; Chen, W.Y.; Guan, Y. Effects of Dietary Fish Oil Substitution with Linseed Oil on Growth, Muscle Fatty Acid and Metabolism of Tilapia (Oreochromis niloticus). Aquac. Nutr. 2016, 22, 499–508. [Google Scholar] [CrossRef]
- Larbi Ayisi, C.; Zhao, J.; Wu, J.-W. Replacement of Fish Oil with Palm Oil: Effects on Growth Performance, Innate Immune Response, Antioxidant Capacity and Disease Resistance in Nile Tilapia (Oreochromis niloticus). PLoS ONE 2018, 13, e0196100. [Google Scholar] [CrossRef] [PubMed]
- Toyes-Vargas, E.A.; Parrish, C.C.; Viana, M.T.; Carreón-Palau, L.; Magallón-Servín, P.; Magallón-Barajas, F.J. Replacement of Fish Oil with Camelina (Camelina sativa) Oil in Diets for Juvenile Tilapia (var. GIFT Oreochromis niloticus) and Its Effect on Growth, Feed Utilization and Muscle Lipid Composition. Aquaculture 2020, 523, 735177. [Google Scholar] [CrossRef]
- Teoh, C.-Y.; Ng, W.-K. The Implications of Substituting Dietary Fish Oil with Vegetable Oils on the Growth Performance, Fillet Fatty Acid Profile and Modulation of the Fatty Acid Elongase, Desaturase and Oxidation Activities of Red Hybrid Tilapia, Oreochromis sp. Aquaculture 2016, 465, 311–322. [Google Scholar] [CrossRef]
- Deng, D.F.; Ju, Z.Y.; Dominy, W.G.; Conquest, L.; Smiley, S.; Bechtel, P.J. Effect of Replacing Dietary Menhaden Oil with Pollock or Soybean Oil on Muscle Fatty Acid Composition and Growth Performance of Juvenile Pacific Threadfin (Polydactylus sexfilis). Aquaculture 2014, 422–423, 91–97. [Google Scholar] [CrossRef]
- Trushenski, J.; Schwarz, M.; Lewis, H.; Laporte, J.; Delbos, B.; Takeuchi, R.; Sampaio, L.A. Effect of Replacing Dietary Fish Oil with Soybean Oil on Production Performance and Fillet Lipid and Fatty Acid Composition of Juvenile Cobia Rachycentron canadum. Aquac. Nutr. 2011, 17, e437–e447. [Google Scholar] [CrossRef]
- Trushenski, J.; Woitel, F.; Schwarz, M.; Yamamoto, F. Saturated Fatty Acids Limit the Effects of Replacing Fish Oil with Soybean Oil with or without Phospholipid Supplementation in Feeds for Juvenile Cobia. N. Am. J. Aquac. 2013, 75, 316–328. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, Y.; Li, W.; Ding, Z. Dietary Polyunsaturated Fatty Acid Supplementations Could Significantly Promote the Δ6 Fatty Acid Desaturase and Fatty Acid Elongase Gene Expression, Long Chain Polyunsaturated Fatty Acids, and Growth of Juvenile Cobia. Eur. J. Lipid Sci. Technol. 2018, 120, 1800212. [Google Scholar] [CrossRef]
- Hundal, B.K.; Lutfi, E.; Sigholt, T.; Rosenlund, G.; Liland, N.S.; Glencross, B.; Sissener, N.H. A Piece of the Puzzle—Possible Mechanisms for Why Low Dietary EPA and DHA Cause Hepatic Lipid Accumulation in Atlantic Salmon (Salmo salar). Metabolites 2022, 12, 159. [Google Scholar] [CrossRef] [PubMed]
- Torstensen, B.E.; Espe, M.; Stubhaug, I.; Lie, Ø. Dietary Plant Proteins and Vegetable Oil Blends Increase Adiposity and Plasma Lipids in Atlantic Salmon (Salmo salar L.). Br. J. Nutr. 2011, 106, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, A.; Pickova, J.; Brännäs, E. Swimming Performance at Different Temperatures and Fatty Acid Composition of Arctic Charr (Salvelinus alpinus) Fed Palm and Rapeseed Oils. Aquaculture 2010, 300, 176–181. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, D.; Shi, H.; Mustapha, U.F.; Deng, S.; Liu, Z.; Li, W.; Chen, H.; Zhu, C.; Li, G. Liver Transcriptomic Analysis of the Effects of Dietary Fish Oil Revealed a Regulated Expression Pattern of Genes in Adult Female Spotted Scat (Scatophagus argus). Front. Mar. Sci. 2021, 8, 784845. [Google Scholar] [CrossRef]
- Monge-Ortiz, R.; Tomás-Vidal, A.; Rodriguez-Barreto, D.; Martínez-Llorens, S.; Pérez, J.A.; Jover-Cerdá, M.; Lorenzo, A. Replacement of Fish Oil with Vegetable Oil Blends in Feeds for Greater Amberjack (Seriola dumerili) Juveniles: Effect on Growth Performance, Feed Efficiency, Tissue Fatty Acid Composition and Flesh Nutritional Value. Aquac. Nutr. 2018, 24, 605–615. [Google Scholar] [CrossRef]
- Bowyer, J.N.; Rout-Pitt, N.; Bain, P.A.; Stone, D.A.J.; Schuller, K.A. Dietary Fish Oil Replacement with Canola Oil Up-Regulates Glutathione Peroxidase 1 Gene Expression in Yellowtail Kingfish (Seriola lalandi). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012, 162, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Fukada, H.; Kitagima, R.; Shinagawa, J.; Morino, H.; Masumoto, T. Effects of Complete Replacement of Fish Oil with Plant Oil Mixtures and Algal Meal on Growth Performance and Fatty Acid Composition in Juvenile Yellowtail Seriola quinqueradiata. Fish. Sci. 2020, 86, 107–118. [Google Scholar] [CrossRef]
- Fukada, H.; Taniguchi, E.; Morioka, K.; Masumoto, T. Effects of Replacing Fish Oil with Canola Oil on the Growth Performance, Fatty Acid Composition and Metabolic Enzyme Activity of Juvenile Yellowtail Seriola quinqueradiata (Temminck & Schlegel, 1845). Aquac. Res. 2017, 48, 5928–5939. [Google Scholar] [CrossRef]
- Benítez-Dorta, V.; Caballero, M.J.; Izquierdo, M.; Manchado, M.; Infante, C.; Zamorano, M.J.; Montero, D. Total Substitution of Fish Oil by Vegetable Oils in Senegalese Sole (Solea senegalensis) Diets: Effects on Fish Performance, Biochemical Composition, and Expression of Some Glucocorticoid Receptor-Related Genes. Fish Physiol. Biochem. 2013, 39, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Reis, B.; Cabral, E.M.; Fernandes, T.J.R.; Castro-Cunha, M.; Oliveira, M.B.P.P.; Cunha, L.M.; Valente, L.M.P. Long-Term Feeding of Vegetable Oils to Senegalese Sole until Market Size: Effects on Growth and Flesh Quality. Recovery of Fatty Acid Profiles by a Fish Oil Finishing Diet. Aquaculture 2014, 434, 425–433. [Google Scholar] [CrossRef]
- Pereira, R.; Basto, A.; Conde-Sieira, M.; Linares, F.; Rodríguez Villanueva, J.L.; Sieira, G.P.; Soengas, J.L.; Valente, L.M.P. Growth Performance and Nutrient Utilisation of Senegalese Sole Fed Vegetable Oils in Plant Protein-Rich Diets from Juvenile to Market Size. Aquaculture 2019, 511, 734229. [Google Scholar] [CrossRef]
- Mozanzadeh, M.T.; Agh, N.; Yavari, V.; Marammazi, J.G.; Mohammadian, T.; Gisbert, E. Partial or Total Replacement of Dietary Fish Oil with Alternative Lipid Sources in Silvery-Black Porgy (Sparidentex hasta). Aquaculture 2016, 451, 232–240. [Google Scholar] [CrossRef]
- Mozanzadeh, M.T.; Marammazi, J.G.; Yavari, V.; Agh, N.; Mohammadian, T.; Gisbert, E. Dietary n-3 LC-PUFA Requirements in Silvery-Black Porgy Juveniles (Sparidentex hasta). Aquaculture 2015, 448, 151–161. [Google Scholar] [CrossRef]
- Torno, C.; Staats, S.; Fickler, A.; de Pascual-Teresa, S.; Soledad Izquierdo, M.; Rimbach, G.; Schulz, C. Combined Effects of Nutritional, Biochemical and Environmental Stimuli on Growth Performance and Fatty Acid Composition of Gilthead Sea Bream (Sparus aurata). PLoS ONE 2019, 14, e0216611. [Google Scholar] [CrossRef] [PubMed]
- Ofori-Mensah, S.; Yıldız, M.; Arslan, M.; Eldem, V. Fish Oil Replacement with Different Vegetable Oils in Gilthead Seabream, Sparus aurata Diets: Effects on Fatty Acid Metabolism Based on Whole-Body Fatty Acid Balance Method and Genes Expression. Aquaculture 2020, 529, 735609. [Google Scholar] [CrossRef]
- Castro, C.; Corraze, G.; Firmino-Diógenes, A.; Larroquet, L.; Panserat, S.; Oliva-Teles, A. Regulation of Glucose and Lipid Metabolism by Dietary Carbohydrate Levels and Lipid Sources in Gilthead Sea Bream Juveniles. Br. J. Nutr. 2016, 116, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Bandarra, N.M.; Rema, P.; Batista, I.; Pousão-Ferreira, P.; Valente, L.M.P.; Batista, S.M.G.; Ozório, R.O.A. Effects of Dietary n−3/n−6 Ratio on Lipid Metabolism of Gilthead Seabream (Sparus aurata). Eur. J. Lipid Sci. Technol. 2011, 113, 1332–1341. [Google Scholar] [CrossRef]
- Kikuchi, K.; Furuta, T.; Iwata, N.; Onuki, K.; Noguchi, T.; Sugita, H. Effect of Dietary Fatty Acid Composition on the Growth of the Tiger Puffer Takifugu rubripes. Fish. Sci. 2011, 77, 829–837. [Google Scholar] [CrossRef]
- Ramezani-Fard, E.; Kamarudin, M.S.; Harmin, S.A.; Saad, C.R. Dietary Saturated and Omega-3 Fatty Acids Affect Growth and Fatty Acid Profiles of Malaysian Mahseer. Eur. J. Lipid Sci. Technol. 2012, 114, 185–193. [Google Scholar] [CrossRef]
- Sam, K.-K.; Merosha, P.; Janaranjani, M.; Athirah, I.; Shu-Chien, A.C. The Malaysian Mahseer, Tor tambroides Possess All Required Biosynthesis Enzymes for the Conversion of C18 Polyunsaturated Fatty Acids to Long-Chain Polyunsaturated Fatty Acids. Aquaculture 2021, 543, 736942. [Google Scholar] [CrossRef]
- Mata-Sotres, J.A.; Tinajero-Chavez, A.; Barreto-Curiel, F.; Pares-Sierra, G.; Del Rio-Zaragoza, O.B.; Viana, M.T.; Rombenso, A.N. DHA (22:6n-3) Supplementation Is Valuable in Totoaba macdonaldi Fish Oil-Free Feeds Containing Poultry by-Product Meal and Beef Tallow. Aquaculture 2018, 497, 440–451. [Google Scholar] [CrossRef]
- Xie, D.; Wang, M.; Wang, S.; You, C.; Li, M.; Ma, Y.; Sun, L.; Wang, Y.; Li, Y. Fat Powder Can Be a Feasible Lipid Source in Aquafeed for the Carnivorous Marine Teleost Golden Pompano, Trachinotus ovatus. Aquac. Int. 2020, 28, 1153–1168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Rashidpour, A.; Metón, I. Bayesian Meta-Analysis: Impacts of Eating Habits and Habitats on Omega-3 Long-Chain Polyunsaturated Fatty Acid Composition and Growth in Cultured Fish. Animals 2024, 14, 2118. https://doi.org/10.3390/ani14142118
Wu Y, Rashidpour A, Metón I. Bayesian Meta-Analysis: Impacts of Eating Habits and Habitats on Omega-3 Long-Chain Polyunsaturated Fatty Acid Composition and Growth in Cultured Fish. Animals. 2024; 14(14):2118. https://doi.org/10.3390/ani14142118
Chicago/Turabian StyleWu, Yuanbing, Ania Rashidpour, and Isidoro Metón. 2024. "Bayesian Meta-Analysis: Impacts of Eating Habits and Habitats on Omega-3 Long-Chain Polyunsaturated Fatty Acid Composition and Growth in Cultured Fish" Animals 14, no. 14: 2118. https://doi.org/10.3390/ani14142118
APA StyleWu, Y., Rashidpour, A., & Metón, I. (2024). Bayesian Meta-Analysis: Impacts of Eating Habits and Habitats on Omega-3 Long-Chain Polyunsaturated Fatty Acid Composition and Growth in Cultured Fish. Animals, 14(14), 2118. https://doi.org/10.3390/ani14142118