Two Doses of Zn Induced Different Microbiota Profiles and Dietary Zinc Supplementation Affects the Intestinal Microbial Profile, Intestinal Microarchitecture and Immune Response in Pigeons
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Dietary Treatments
2.2. Sample Collection
2.3. Growth Performance
2.4. Intestinal Morphology Analyses
2.5. Ileal Gene Expression Analyses
2.6. Analyses of Serum Immune Indices
2.7. 16S rRNA Sequencing
2.8. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Intestinal Morphology
3.3. Ileal Gene Expression Analyses
3.4. Serum Immune Index Analyses
3.5. Composition of the Intestinal Microbiome
3.6. The Relationship between Serum Immune Indices, Ileal Gene Expression, and Microbiota Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kokoszynski, D.; Steczny, K.; Zochowska-Kujawska, J.; Sobczak, M.; Kotowicz, M.; Saleh, M.; Fik, M.; Arpasova, H.; Hrncar, C.; Wodarczyk, K. Carcass characteristics, physicochemical properties, and texture and microstructure of the meatandinter-nalorgans of carrier and king pigeons. Animals 2020, 10, 1315. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.G.; Pan, N.X.; Chen, M.J.; Wang, X.Q.; Yan, H.C.; Gao, C.Q. Effects of dietary supplementation with DL-methionine and DL-methionyl-dl-methionine in breeding pigeons on the carcass characteristics, meat quality and antioxidantactivity of squabs. Antioxidants 2019, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Huang, W.; Zhang, W.; Zhang, Y.; Yang, M.; Zheng, S.; Lv, Y.; Gao, H.; Wang, W.; Peng, J.; et al. Effect of different dietary energy/protein ratios on growth performance, reproductive performance of breeding pigeons and slaughter performance, meat quality of squabs in summer. Poult. Sci. 2023, 102, 102577. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Y. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, S.; Timmons, J.; Ao, T.; Paul, M.; Macalintal, L.; Pescatore, A.; Cantor, A.; Ford, M.; Dawson, K.A. Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks. Poult. Sci. 2017, 96, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S.; Bao, B.; Beck, F.W.; Sarkar, F.H. Zincsuppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-kappaB. Nutrition 2011, 27, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Guo, S.; Gao, J.; Guo, Y.; Du, E.; Lv, Z.; Zhang, B. Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. J. Nutr. Biochem. 2015, 26, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, P.; Benedetti, G.; Albarede, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, L.; Yang, X.; Wen, C.; Zhou, Y. Bioavailability evaluation of zinc-bearing palygorskite as a zinc source for broiler chickens. Appl. Clay Sci. 2016, 119, 155–160. [Google Scholar] [CrossRef]
- Bibbo, S.; Lopetuso, L.R.; Ianiro, G.; Di Rienzo, T.; Gasbarrini, A.; Cammarota, G. Role of microbiota and innate immunity in recurrent Clostridium difficile infection. J. Immun. Res. 2014, 2014, 462740. [Google Scholar] [CrossRef]
- D’Aversa, F.; Tortora, A.; Ianiro, G.; Ponziani, F.R.; Annicchiarico, B.E.; Gasbarrini, A. Gut microbiota and metabolic syndrome. Intern. Emerg. Med. 2013, 8, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Counago, R.M.; Ween, M.P.; Begg, S.L.; Bajaj, M.; Zuegg, J.; O’Mara, M.L.; Cooper, M.A.; McEwan, A.G.; Paton, J.C.; Kobe, B.; et al. Imperfect coordination chemistry facilitates metal ion release in the Psa permease. Nat. Chem. Biol. 2014, 10, 35.e41. [Google Scholar] [CrossRef] [PubMed]
- Velasco, E.; Wang, S.; Sanet, M.; Fernandez-Vazquez, J.; Jove, D.; Glaria, E.; Valledor, A.F.; O’Halloran, T.V.; Balsalobre, C. A new role for Zinc limitation in bacterial pathogenicity: Modulation of alpha-hemolysin from uropathogenic Escherichia coli. Sci. Rep. 2018, 8, 6535. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.X.; Li, X.; Du, S.H.; Sun, X.S.; Wang, Y.Y.; Zhao, D.D.; Wang, Z. Effect of dietary supplemental zinc on laying performance, egg quality, and plasma hormone levels of breeding pigeons. Biol. Trace. Elem. Res. 2022, 201, 2991–2999. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Cobb Broiler Performance and Nutrition Supplement; Cobb-Vantress Inc.: Tanay, Philippines, 2015; Available online: https://www.cobb-vantress.com/assets/Cobb-Files/product-guides/bdc20a5443/70dec630-0abf-11e9-9c88-c51e407c53ab.pdf (accessed on 18 January 2021).
- Aviagen. 308 Broiler: Nutrition Specifications 2019; Aviagen Ltd.: Scotland, UK; Newbridge: Scotland, UK, 2019. [Google Scholar]
- Additives and Feed. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). European Food Safety Authority (EFSA), Parma, Italy. EFSA J. 2014, 12, 3668. [Google Scholar]
- Brugger, D.; Windisch, W.M. Strategies and challenges to increase the precision in feeding zinc to monogastric livestock. Anim. Nutri. 2017, 3, 103–108. [Google Scholar] [CrossRef]
- Tang, Z.G.; Wen, C.; Wang, L.C.; Wang, T.; Zhou, Y.M. Effects of zinc-bearing clinoptilolite on growth performance, cecal microflora and intestinal mucosal function of broiler chickens. Anim. Feed Sci. Technol. 2014, 189, 98–106. [Google Scholar] [CrossRef]
- Huang, Y.L.; Lu, L.; Luo, X.G.; Liu, B. An optimal dietary zinc level of broiler chicks fed a corn-soybean meal diet. Poult. Sci. 2007, 86, 2582–2589. [Google Scholar] [CrossRef]
- Humer, E.; Schwarz, C.; Schedle, K. Phytate in pig and poultry nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 605–625. [Google Scholar] [CrossRef]
- Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy. Clini. Immun. 2009, 124, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Waston, A.; Wells, J.M. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef]
- Zhang, K.; Hornef, M.W.; Dupont, A. The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiol. 2015, 17, 1561–1569. [Google Scholar] [CrossRef]
- Hu, C.H.; Qian, Z.C.; Song, J.; Luan, Z.S.; Zhuo, A.Y. Effects of zinc oxide-montmorillonite hybrid on growth performance, intestinal structure, and function of broiler chicken. Poult. Sci. 2013, 92, 143–150. [Google Scholar] [CrossRef]
- Krause, G.; Winkler, L.; Mueller, S.L.; Haseloff, R.F.; Piontek, J.; Blasig, I.E. Structure and function of claudins. Biochim. Biophys. Acta (BBA)-Biomembr. 2008, 1778, 631–645. [Google Scholar] [CrossRef]
- Shao, Y.; Wolf, P.G.; Guo, S.; Guo, Y.; Gaskins, H.R.; Zhang, B. Zn enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. J. Nutr. Biochem. 2017, 43, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Guo, Y. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. Br. J. Nutr. 2009, 102, 687–693. [Google Scholar] [CrossRef]
- Rosenthal, R.; Milatz, S.; Krug, S.M.; Oelrich, B.; Schulzke, J.-D.; Amasheh, S.; Günzel, D.; Fromm, M. Claudin-2, a component of the tight junction, forms a paracellular water channel. J. Cell Sci. 2010, 123, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Brisbin, J.T.; Gong, J.; Sharif, S. Interactions between commensal bacteria and the gut-associated immune system of the chicken. Anim. Health Res. Rev. 2008, 901, 101–110. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Lumpkins, B.; Mathis, G.F.; Franca, M.; King, W.D.; Graugnard, D.E.; Dawson, K.A.; Applegate, T.J. Zinc source modulates intestinal inflammation and intestinal integrity of broiler chickens challenged with coccidia and Clostridium perfringens. Poult. Sci. 2019, 98, 2211–2219. [Google Scholar] [CrossRef]
- Shao, Y.; Lei, Z.; Yuan, J.; Yang, Y.; Guo, Y.; Zhang, B. Effect of zinc on growth performance, gut morphometry, and cecal microbial community in broilers challenged with Salmonella enterica serovar typhimurium. J. Microbiol. 2014, 52, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Yazdankhah, S.; Rudi, K.; Bernhoft, A. Zn and copper in animal feed−development of resistance and co-resistance to anti-microbial agents in bacteria of animal origin. Microb. Ecol. Health. Dis. 2014, 25, 25862. [Google Scholar]
- Fang, H. Inhibitory effects of Lactobacillus casei subsp. rhamnosus on Salmonella lipopolysaccharideinduced inflammation and epithelial barrier. J. Med. Microbiol. 2010, 59, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.T.; Morgan, N.; Roberts, J.R.; Wu, S.B.; Swick, R.A.; Toghyani, M. Zn hydroxychloride supplementation improves tibia bone development and intestinal health of broiler chickens. Poult. Sci. 2021, 100, 101254. [Google Scholar] [CrossRef] [PubMed]
- Mores, N.; Christani, J.; Piffer, I.A.; Barioni, W.; Lima, G.M.M. Effects of zinc oxide on postweaning diarrhea control in pigs experimentally infected with E. coli. Arq. Bras. Med.Vet. Zootec. 1998, 50, 513–523. [Google Scholar]
- Hojberg, O.; Canibe, N.; Poulsen, H.D.; Hedemann, M.S.; Jensen, B.B. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl. Environ. Microbiol. 2005, 71, 2267–2277. [Google Scholar] [CrossRef] [PubMed]
- Broom, L.J.; Miller, H.M.; Kerr, K.G.; Knapp, J.S. Effects of zinc oxide and Enterococcus faecium SF68 dietary supplementation on the performance, intestinal microbiota and immune status of weaned piglets. Res. Vet. Sci. 2006, 80, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Lan, R.; Tran, H.; Kim, I. Effects of probiotic supplementation in different nutrient density diets on growth performance, nutrient digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pig. J. Sci. Food. Agric. 2017, 97, 1335–1341. [Google Scholar] [CrossRef]
- Kelly, C.; Salinas, I. Under pressure: Interactions between commensal microbiota and the teleost immune system. Front. Immunol. 2017, 8, 00559. [Google Scholar] [CrossRef]
Ingredients | Content (%) | Nutrient Composition | |
---|---|---|---|
Corn | 41.00 | Metabolizable energy, MJ/kg | 11.94 |
Soybean | 13.13 | Crude protein 4, % | 15.91 |
Pea | 17.42 | Calcium, % | 1.10 |
Wheat | 12.80 | Total phosphorus 4, % | 0.72 |
Sorghum | 10.40 | Lys, % | 0.88 |
Soybean oil | 0.70 | Met, % | 0.36 |
CaHPO4·2H2O | 2.07 | Zinc 4, mg/kg | 23.86 |
Limestone | 1.36 | ||
NaCl | 0.40 | ||
Cornstarch + zinc 1 | 0.26 | ||
Vitamin premix 2 | 0.03 | ||
Choline chloride | 0.04 | ||
Mineral premix 3 | 0.10 | ||
L-Lysine (98.5%) | 0.16 | ||
DL-Methionine | 0.13 | ||
Total | 100 |
Primer Name | Primer Sequence (5′-3′) |
---|---|
IL-8 | F:TTCAGTGGCTGTGTCTCAAGG R:CTTCAACGTTCTTGCAGTGGG |
OCLN | F:GTCGCAGTACGAGACCGATT160 R:ACAGAGCTGCTTGTAGCGTT |
CD798 | F:CTGCCGTTTGCGATGAACAA R:ATTCGCCACCTGTGCTGTTA |
TASL | F:GTTCAGAGCGAACATTGCCAG R:GATGAAACAAGTCCCTTTGGGC |
TJP | F:TACCACAAGGAGCCATTCCC187 R:GGGTCACAGTGTGGCAGG |
ZNF384 | F:GAGAGTGAGAGGGGATGGAAGAA R:CAGCCCTTCTCTGTAGGCAATA |
NKTR | F:AGAGGATCCAAGCCTTTCCGA R:TTGACAACGGGCACATCTCT |
Item | T0 | T60 | T90 | p-Value | SEM |
---|---|---|---|---|---|
1~14 d | |||||
ADG (g/d) | 26.01 | 26.72 | 27.89 | 0.138 | 1.730 |
ADFI (g/d) | 114.56 | 115.07 | 120.56 | 0.658 | 8.242 |
15~28 d | |||||
ADG (g/d) | 9.36 | 8.47 | 9.89 | 0.536 | 0.584 |
ADFI (g/d) | 175.31 | 167.79 | 172.96 | 0.434 | 6.342 |
1~28 d | |||||
ADG (g/d) | 17.68 b | 17.60 b | 18.8 a | 0.021 | 0.851 |
ADFI (g/d) | 144.93 | 141.43 | 146.75 | 0.621 | 5.212 |
Item | T0 | T60 | T90 | p-Value | SEM |
---|---|---|---|---|---|
Duodenum | |||||
Villus height, μm | 769.38 b | 682.50 c | 802.50 a | 0.048 | 11.049 |
Crypt depth, μm | 28.84 b | 41.00 a | 34.84 b | 0.044 | 1.460 |
Villus:Crypt | 20.65 b | 19.74 b | 24.59 a | 0.022 | 1.197 |
Jejunum | |||||
Villus height, μm | 332.69 a | 312.99 b | 313.57 b | 0.029 | 8.175 |
Crypt depth, μm | 39.20 b | 49.00 a | 36.78 b | 0.008 | 1.765 |
Villus:Crypt | 1.43 a | 1.38 a | 1.19 b | 0.036 | 0.044 |
Ileum | |||||
Villus height, μm | 257.59 b | 316.94 a | 241.48 b | 0.078 | 14.582 |
Crypt depth, μm | 35.30 b | 42.24 a | 30.38 b | 0.047 | 2.202 |
Villus:Crypt | 7.57 b | 7.32 b | 8.54 a | 0.033 | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Li, J.; Zhang, B.; Shao, Y.; Wang, Z. Two Doses of Zn Induced Different Microbiota Profiles and Dietary Zinc Supplementation Affects the Intestinal Microbial Profile, Intestinal Microarchitecture and Immune Response in Pigeons. Animals 2024, 14, 2087. https://doi.org/10.3390/ani14142087
Zhang D, Li J, Zhang B, Shao Y, Wang Z. Two Doses of Zn Induced Different Microbiota Profiles and Dietary Zinc Supplementation Affects the Intestinal Microbial Profile, Intestinal Microarchitecture and Immune Response in Pigeons. Animals. 2024; 14(14):2087. https://doi.org/10.3390/ani14142087
Chicago/Turabian StyleZhang, Dongyan, Jing Li, Bo Zhang, Yuxin Shao, and Zheng Wang. 2024. "Two Doses of Zn Induced Different Microbiota Profiles and Dietary Zinc Supplementation Affects the Intestinal Microbial Profile, Intestinal Microarchitecture and Immune Response in Pigeons" Animals 14, no. 14: 2087. https://doi.org/10.3390/ani14142087
APA StyleZhang, D., Li, J., Zhang, B., Shao, Y., & Wang, Z. (2024). Two Doses of Zn Induced Different Microbiota Profiles and Dietary Zinc Supplementation Affects the Intestinal Microbial Profile, Intestinal Microarchitecture and Immune Response in Pigeons. Animals, 14(14), 2087. https://doi.org/10.3390/ani14142087