Up-Regulation of S100A8 and S100A9 in Pulmonary Immune Response Induced by a Mycoplasma capricolum subsp. capricolum HN-B Strain
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Strains, Cells, and Animals
2.2. Preparation of Mcc HN-B
2.3. Mcc HN-B Infection in Mice
2.4. Histopathological Examination
2.5. RNA Extraction, Quantification, and Sequencing
2.6. DEG Identification and Analysis
2.7. RT-qPCR Validation of DEGs
2.8. Immunohistochemistry
2.9. In Vitro Cell Experiments
3. Results
3.1. Histopathological Observation
3.2. DEG Identification
3.3. GO Enrichment Analysis
3.4. KEGG Enrichment Analysis
3.5. GSEA Enrichment Analysis
3.6. PPI Network of DEGs
3.7. RT-qPCR Validation of DEGs
3.8. Verification of the Expression of S100A8 and S100A9
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mederos-Iriarte, L.E.; Poveda, J.B.; Poveda, C.G.; Vega-Orellana, O.M.; Gutiérrez, C.; Corbera, J.A. Mycoplasma detection and isolation from one-humped camels (Camelus dromedarius). Trop. Anim. Health Prod. 2014, 46, 1317–1320. [Google Scholar] [CrossRef] [PubMed]
- Cillara, G.; Manca, M.G.; Longheu, C.; Tola, S. Discrimination between Mycoplasma mycoides subsp. capri and Mycoplasma capricolum subsp. capricolum using PCR-RFLP and PCR. Vet. J. 2015, 205, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Seersholm, F.V.; Fischer, A.; Heller, M.; Jores, J.; Sachse, K.; Mourier, T.; Hansen, A.J. Draft Genome Sequence of the First Human Isolate of the Ruminant Pathogen Mycoplasma capricolum subsp. capricolum. Genome Announc. 2015, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ni, L.; Yang, H.; Xu, L.; Ma, N.; Ding, H. Isolation and identification of Mycoplasma mycoides cluster strains from goats in Chongqing, China. J. Vet. Res. 2014, 58, 11–15. [Google Scholar] [CrossRef][Green Version]
- Littlejohns, I.R.; Cottew, G.S. The isolation and identification of Mycoplasma mycoides subsp. capri from goats in Australia. Aust. Vet. J. 1977, 53, 297–298. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.L.; DaMassa, A.J.; Brooks, D.L. Caprine abortion following exposure to Mycoplasma capricolum subsp. capricolum. J. Vet. Diagn. Investig. 1996, 8, 492–494. [Google Scholar] [CrossRef]
- De la Fe, C.; Gutiérrez, A.; Poveda, J.B.; Assunção, P.; Ramírez, A.S.; Fabelo, F. First isolation of Mycoplasma capricolum subsp. capricolum, one of the causal agents of caprine contagious agalactia, on the island of Lanzarote (Spain). Vet. J. 2007, 173, 440–442. [Google Scholar] [PubMed]
- Giadinis, N.D.; Petridou, E.J.; Sofianidis, G.; Filioussis, G.; Psychas, V.; Hatzopoulou, E.; Karatzias, H. Mortality in adult goats attributed to Mycoplasma capricolum subspecies capricolum. Vet. Rec. 2008, 163, 278–279. [Google Scholar] [CrossRef]
- Ostrowski, S.; Thiaucourt, F.; Amirbekov, M.; Mahmadshoev, A.; Manso-Silván, L.; Dupuy, V.; Vahobov, D.; Ziyoev, O.; Michel, S. Fatal outbreak of Mycoplasma capricolum pneumonia in endangered markhors. Emerg. Infect. Dis. 2011, 17, 2338–2341. [Google Scholar] [CrossRef]
- Tonelli, A.; Sacchini, F.; Krasteva, I.; Zilli, K.; Scacchia, M.; Beaurepaire, C.; Nantel, A.; Pini, A. One test microbial diagnostic microarray for identification of Mycoplasma mycoides subsp. mycoides and other Mycoplasma species. Mol. Biotechnol. 2012, 52, 285–299. [Google Scholar] [CrossRef]
- Pinho, L.; Thompson, G.; Machado, M.; Carvalheira, J. Management practices associated with the bulk tank milk prevalence of Mycoplasma spp. in dairy herds in Northwestern Portugal. Prev. Vet. Med. 2013, 108, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, M.; Jiang, J.; Li, X.; Li, H.; Zhang, W.; Chen, S.; Du, L.; Man, C.; Chen, Q.; et al. First Report and Comparative Genomic Analysis of Mycoplasma capricolum subsp. capricolum HN-B in Hainan Island, China. Microorganisms. 2022, 10, 2298. [Google Scholar] [CrossRef]
- Zhang, J.P.; Liu, Z.C.; Jiang, J.X.; Lin, Y.S.; You, W.; Hu, Q.L. Rapid detection of Mycoplasma mycoides subsp. capri and Mycoplasma capricolum subsp. capripneumoniae using high-resolution melting curve analysis. Sci. Rep. 2021, 11, 15329. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.G.; Hao, Y.Q.; Zhang, L.; Hao, R.X.; Liu, X.L.; Huang, Z.Y. Molecular cloning and immune response analysis of putative variable lipoproteins from Mycoplasma mycoides subsp capri. Genet. Mol. Res. 2014, 13, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.L.; Gutiérrez, C.; Brooks, D.L.; Damassa, A.J.; Orós, J.; Fernández, A. A pathological and immunohistochemical study of goat kids undergoing septicaemic disease caused by Mycoplasma capricolum subsp. capricolum, Mycoplasma mycoides subsp. capri and Mycoplasma mycoides subsp. mycoides (large colony type). Zentralbl Vet. B 1998, 45, 141–149. [Google Scholar] [CrossRef] [PubMed]
- van Lent, P.L.; Grevers, L.C.; Blom, A.B.; Arntz, O.J.; van de Loo, F.A.; van der Kraan, P.; Abdollahi-Roodsaz, S.; Srikrishna, G.; Freeze, H.; Sloetjes, A.; et al. Stimulation of chondrocyte-mediated cartilage destruction by S100A8 in experimental murine arthritis. Arthritis Rheumatol. 2008, 58, 3776–3787. [Google Scholar] [CrossRef] [PubMed]
- Narumi, K.; Miyakawa, R.; Ueda, R.; Hashimoto, H.; Yamamoto, Y.; Yoshida, T.; Aoki, K. Proinflammatory Proteins S100A8/S100A9 Activate NK Cells via Interaction with RAGE. J. Immunol. 2015, 194, 5539–5548. [Google Scholar] [CrossRef]
- Ehrchen, J.M.; Sunderkötter, C.; Foell, D.; Vogl, T.; Roth, J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J. Leukoc. Biol. 2009, 86, 557–566. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Oboki, K.; Ohno, T.; Kajiwara, N.; Saito, H.; Nakae, S. IL-33 and IL-33 receptors in host defense and diseases. Allergol. Int. 2010, 59, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Shani, O.; Vorobyov, T.; Monteran, L.; Lavie, D.; Cohen, N.; Raz, Y.; Tsarfaty, G.; Avivi, C.; Barshack, I.; Erez, N. Fibroblast-Derived IL33 Facilitates Breast Cancer Metastasis by Modifying the Immune Microenvironment and Driving Type 2 Immunity. Cancer Res. 2020, 80, 5317–5329. [Google Scholar] [CrossRef] [PubMed]
- Cayrol, C.; Girard, J.P. IL-33: An alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol. 2014, 31, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.E.; Guabiraba, R.; Russo, R.C.; Teixeira, M.M. Targeting CCL5 in inflammation. Expert Opin. Ther. Targets 2013, 17, 1439–1460. [Google Scholar] [CrossRef]
- Handke, W.; Oelschlegel, R.; Franke, R.; Krüger, D.H.; Rang, A. Hantaan virus triggers TLR3-dependent innate immune responses. J. Immunol. 2009, 182, 2849–2858. [Google Scholar] [CrossRef]
- Tyner, J.W.; Uchida, O.; Kajiwara, N.; Kim, E.Y.; Patel, A.C.; O’Sullivan, M.P.; Walter, M.J.; Schwendener, R.A.; Cook, D.N.; Danoff, T.M.; et al. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat. Med. 2005, 11, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Tedla, N.; Palladinetti, P.; Kelly, M.; Kumar, R.K.; Di Girolamo, N.; Chattophadhay, U.; Cooke, B.; Truskett, P.; Dwyer, J.; Wakefield, D.; et al. Chemokines and T lymphocyte recruitment to lymph nodes in HIV infection. Am. J. Pathol. 1996, 148, 1367–1373. [Google Scholar]
- Jia, Z.; Zhang, Z.; Yang, Q.; Deng, C.; Li, D.; Ren, L. Effect of IL2RA and IL2RB gene polymorphisms on lung cancer risk. Int. Immunopharmacol. 2019, 74, 105716. [Google Scholar] [CrossRef]
- Esensten, J.H.; Helou, Y.A.; Chopra, G.; Weiss, A.; Bluestone, J.A. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016, 44, 973–988. [Google Scholar] [CrossRef] [PubMed]
- Bommhardt, U.; Schraven, B.; Simeoni, L. Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int. J. Mol. Sci. 2019, 20, 3500. [Google Scholar] [CrossRef]
- Conboy, C.B.; Yonkus, J.A.; Buckarma, E.H.; Mun, D.G.; Werneburg, N.W.; Watkins, R.D. LCK inhibition downregulates YAP activity and is therapeutic in patient-derived models of cholangiocarcinoma. J. Hepatol. 2023, 78, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Van Laethem, F.; Sarafova, S.D.; Park, J.H.; Tai, X.; Pobezinsky, L.; Guinter, T.I.; Adoro, S.; Adams, A.; Sharrow, S.O.; Feigenbaum, L.; et al. Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity 2007, 27, 735–750. [Google Scholar] [CrossRef]
- Malissen, B.; Aguado, E.; Malissen, M. Role of the LAT adaptor in T-cell development and Th2 differentiation. Adv. Immunol. 2005, 87, 1–25. [Google Scholar] [PubMed]
- Pan, Y.; Cao, S.; Tang, J.; Arroyo, J.P.; Terker, A.S.; Wang, Y.; Niu, A.; Fan, X.; Wang, S.; Zhang, Y.; et al. Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice. J. Clin. Investig. 2022, 132, 9. [Google Scholar] [CrossRef]
- Harris, R.C.; Zhang, M.Z. Cyclooxygenase metabolites in the kidney. Compr. Physiol. 2011, 1, 1729–1758. [Google Scholar]
- Ryckman, C.; Vandal, K.; Rouleau, P.; Talbot, M.; Tessier, P.A. Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 2003, 170, 3233–3242. [Google Scholar] [CrossRef]
- Wang, S.; Song, R.; Wang, Z.; Jing, Z.; Wang, S.; Ma, J. S100A8/A9 in Inflammation. Front. Immunol. 2018, 9, 1298. [Google Scholar] [CrossRef]
- Coveney, A.P.; Wang, W.; Kelly, J.; Liu, J.H.; Blankson, S.; Wu, Q.D.; Redmond, H.P.; Wang, J.H. Myeloid-related protein 8 induces self-tolerance and cross-tolerance to bacterial infection via TLR4- and TLR2-mediated signal pathways. Sci. Rep. 2015, 5, 13694. [Google Scholar] [CrossRef]
- Ometto, F.; Friso, L.; Astorri, D.; Botsios, C.; Raffeiner, B.; Punzi, L.; Doria, A. Calprotectin in rheumatic diseases. Exp. Biol. Med. 2017, 242, 859–873. [Google Scholar] [CrossRef] [PubMed]
Genes | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|
β-actin | ACT GTC GAG TCG CGT CCA | ATC CAT GGC GAA CTG GTG G |
Slc5a6 | GCC CCT GAC CAG TTA GTC CT | AGA GAC AGG CAA CGA AGA GC |
Fasl | CAC TAC CAC CGC CAT CAC AAC | TCC AAC CAG AGC CAC CAG AAC |
Birc5 | ATG ACA ACC CGA TAG AGG AGC | TTC TTG GCT CTC TGT CTG TCC |
Lck | GCA CGA TCT AGT CCG CCA TTA CAC | CAG CCG CTC CAC CAA CTT CAG |
Cxcr5 | ATG AAC TAC CCA CTA ACC CTG G | GCC AGT TCC TTG TAC AGG TCA T |
Dbp | GAT CTC GCC CTG TCA AGC ATT CC | TTC CTC CTC TGA GAA GCG GTG TC |
Cd28 | TTC TCA GTT CAA GTA ACA GAA AAC A | AGG CTG ACC TCG TTG CTA TC |
Shisa2 | ACA ACG ACC GCC AGC AG | ACG TAG ATG GGG ACT GCC GA |
Lat | ATG GAA GCA GAC GCC TTG AG | GGG GGA CGG TTA TTT GAG GTG |
Cdkn1a | GAT ATC CAG ACA TTC AGA GCC AC | ACG AAG TCA AAG TTC CAC CGT |
Il18rap | GGA AAG CCT TTA ACT CTC CCC TG | AGG ATG TAT ACA AAC ACC ACC TCT |
Nr1d1 | GTG TAA GGT GTG TGG GGA CG | CCC AAA ACG CAC AGC ATC TCT A |
Ccl5 | TCC AAT CTT GCA GTC GTG TTT G | AGG GAA GCT ATA CAG GGT CAG |
Per3 | ACA ACT GGA CCA TCC ACA GAC | GGC AAC ACT TTC TGC TGA CTG |
Cd4 | AGC ATG TCA GGG GCA AAT GA | TGG CTT GGA TGT GTG TTG GT |
S100a9 | AAG AAA GAG AAG AGA AAT GAA GCC | TTG CCA TCA GCA TCA TAC ACT C |
S100a8 | ATG CCC TCT ACA AGA ATG ACT | TCA CCA TCG CAA GGA ACT |
Ighv1-18 | GAA CTG CAG GTG TCC TCT CTG | AGC CTT GCA GGG TAT CTT CAC |
Ptgs2 | TGC CCG ACA CCT TCA ACA TT | CAG CCA TTT CCT TCT CTC CTG T |
Il-33 | CAG CTA TTT CCT GTC TGT ATT GAG | TGG TCT TCT GTT GGG ATC TTC T |
Il2rb | CAA CTC CAT GTT GCA GCC AG | GGT TTT GTT CCA GTG TCG CA |
Cyp1a1 | GTG GAG CCT CAT GTA CCT GGT AAC | TGC CGA TCT CTG CCA ATC ACT G |
Sample Name | Clean Reads | Total Bases | GC Bases Ratio | Q20 Bases Ratio | Q30 Bases Ratio | N Bases Ratio |
---|---|---|---|---|---|---|
HN-B-1 | 20,645,123 | 6,176,754,998 | 50.02% | 97.83% | 93.77% | 0.00% |
HN-B-2 | 22,738,027 | 6,803,640,286 | 50.07% | 97.89% | 93.91% | 0.00% |
HN-B-3 | 20,780,502 | 6,218,888,444 | 49.89% | 97.90% | 93.96% | 0.00% |
NC-1 | 21,540,223 | 6,446,375,978 | 49.86% | 97.75% | 93.62% | 0.00% |
NC-2 | 23,047,209 | 6,895,583,090 | 50.35% | 97.89% | 93.95% | 0.00% |
NC-3 | 21,445,963 | 6,416,083,748 | 50.11% | 97.97% | 94.19% | 0.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Chen, X.; Meng, Y.; Jiang, J.; Wu, L.; Chen, T.; Pan, H.; Jiao, Z.; Du, L.; Man, C.; et al. Up-Regulation of S100A8 and S100A9 in Pulmonary Immune Response Induced by a Mycoplasma capricolum subsp. capricolum HN-B Strain. Animals 2024, 14, 2064. https://doi.org/10.3390/ani14142064
Zhang Z, Chen X, Meng Y, Jiang J, Wu L, Chen T, Pan H, Jiao Z, Du L, Man C, et al. Up-Regulation of S100A8 and S100A9 in Pulmonary Immune Response Induced by a Mycoplasma capricolum subsp. capricolum HN-B Strain. Animals. 2024; 14(14):2064. https://doi.org/10.3390/ani14142064
Chicago/Turabian StyleZhang, Zhenxing, Xiangying Chen, Yong Meng, Junming Jiang, Lili Wu, Taoyu Chen, Haoju Pan, Zizhuo Jiao, Li Du, Churiga Man, and et al. 2024. "Up-Regulation of S100A8 and S100A9 in Pulmonary Immune Response Induced by a Mycoplasma capricolum subsp. capricolum HN-B Strain" Animals 14, no. 14: 2064. https://doi.org/10.3390/ani14142064
APA StyleZhang, Z., Chen, X., Meng, Y., Jiang, J., Wu, L., Chen, T., Pan, H., Jiao, Z., Du, L., Man, C., Chen, S., Wang, F., Gao, H., & Chen, Q. (2024). Up-Regulation of S100A8 and S100A9 in Pulmonary Immune Response Induced by a Mycoplasma capricolum subsp. capricolum HN-B Strain. Animals, 14(14), 2064. https://doi.org/10.3390/ani14142064