Sargassum mcclurei Mitigating Methane Emissions and Affecting Rumen Microbial Community in In Vitro Rumen Fermentation
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Seaweed and TMR Substrate
2.2. In Vitro Treatment
2.3. Experimental Sample Collection and Analysis
2.3.1. Gas Production Collection
2.3.2. Fermentation Parameter Determination
2.3.3. DNA Extraction and Bacterial and Archaeal 16S rRNA Gene Sequencing and Analysis
2.4. Statistical Analysis
3. Results
3.1. Effects of S. mcclurei on the CH4 Production and Nutrient Degradation of In Vitro Rumen Fermentation
3.2. Effects of S. mcclurei on the Fermentation Characteristics of In Vitro Rumen Fermentation
3.3. Changes in the Microbial Composition
3.3.1. Effects of Different Treatments on Bacterial Community at the 2% Supplementation Level
3.3.2. Effects of Different Treatments on the Archaeal Community at the 2% Supplementation Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock a Global Assessment of Emissions and Mitigation Opportunities; CABI: New York, NY, USA, 2013. [Google Scholar]
- Dillon, J.A.; Stackhouse-Lawson, K.R.; Thoma, G.J.; Gunter, S.A.; Rotz, C.A.; Kebreab, E.; Riley, D.G.; Tedeschi, L.O.; Villalba, J.; Mitloehner, F.; et al. Current state of enteric methane and the carbon footprint of beef and dairy cattle in the United States. Anim. Front. 2021, 11, 57–68. [Google Scholar] [CrossRef]
- Hristov, A.N.; Melgar, A.; Wasson, D.; Arndt, C. Symposium review: Effective nutritional strategies to mitigate enteric methane in dairy cattle. J. Dairy Sci. 2022, 105, 8543–8557. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.; Magnusson, M.; Paul, N.A.; de Nys, R.; Tomkins, N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 2014, 9, e85289. [Google Scholar] [CrossRef] [PubMed]
- Blikra, M.J.; Altintzoglou, T.; Lvdal, T.; Rogns, G.; Skipnes, D.; Skra, T.; Sivertsvik, M.; Fernández, E.N. Seaweed products for the future: Using current tools to develop a sustainable food industry. Trends Food Sci. Technol. 2021, 118, 765–776. [Google Scholar] [CrossRef]
- Chopin, T.; Tacon, A.G.J. Importance of Seaweeds and Extractive Species in Global Aquaculture Production. Rev. Fish. Sci. Aquac. 2020, 29, 139–148. [Google Scholar] [CrossRef]
- Roque, B.M.; Brooke, C.G.; Ladau, J.; Polley, T.; Marsh, L.J.; Najafi, N.; Pandey, P.; Singh, L.; Kinley, R.; Salwen, J.K.; et al. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Anim. Microbiome 2019, 1, 3. [Google Scholar] [CrossRef]
- Kunzel, S.; Yergaliyev, T.; Wild, K.J.; Philippi, H.; Petursdottir, A.H.; Gunnlaugsdottir, H.; Reynolds, C.K.; Humphries, D.J.; Camarinha-Silva, A.; Rodehutscord, M. Methane Reduction Potential of Brown Seaweeds and Their Influence on Nutrient Degradation and Microbiota Composition in a Rumen Simulation Technique. Front. Microbiol. 2022, 13, 889618. [Google Scholar] [CrossRef] [PubMed]
- Britton, D.; Schmid, M.; Revill, A.T.; Virtue, P.; Nichols, P.D.; Hurd, C.L.; Mundy, C.N. Seasonal and site-specific variation in the nutritional quality of temperate seaweed assemblages: Implications for grazing invertebrates and the commercial exploitation of seaweeds. J. Appl. Phycol. 2021, 33, 603–616. [Google Scholar] [CrossRef]
- Belanche, A.; Jones, E.; Parveen, I.; Newbold, C.J. A Metagenomics Approach to Evaluate the Impact of Dietary Supplementation with Ascophyllum nodosum or Laminaria digitata on Rumen Function in Rusitec Fermenters. Front. Microbiol. 2016, 7, 299. [Google Scholar] [CrossRef]
- Wang, Y.; Alexander, T.W.; Mcallister, T.A. In vitro effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on rumen bacterial populations and fermentation. J. Sci. Food Agric. 2010, 89, 2252–2260. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Jo, S.U.; Guan, L.L.; Seo, J.; Kim, H.; Lee, S.S.; Lee, S.S. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Sci. Rep. 2021, 11, 24092. [Google Scholar] [CrossRef] [PubMed]
- Kinley, R.D.; De Nys, R.; Vucko, M.J.; Machado, L.; Tomkins, N.W. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim. Prod. Sci. 2016, 56, 282. [Google Scholar] [CrossRef]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage fiber analysis. USDA agricultural research service. In Handbook Number 379; US Department of Agriculture Superintendent of Documents, US Government Printing Office: Washington, DC, USA, 1970. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Thiex, N. Evaluation of analytical methods for the determination of moisture, crude protein, crude fat, and crude fiber in distillers dried grains with solubles. J. AOAC Int. 2009, 92, 61–73. [Google Scholar] [CrossRef]
- Menke. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Wischer, G.; Boguhn, J.; Steingaß, H.; Schollenberger, M.; Hartung, K.; Rodehutscord, M. Effect of monensin on in vitro fermentation of silages and microbial protein synthesis. Arch. Anim. Nutr. 2013, 67, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Vissers, A.M.; Pellikaan, W.F.; Bouwhuis, A.; Vincken, J.P.; Gruppen, H.; Hendriks, W.H. Laminaria digitata phlorotannins decrease protein degradation and methanogenesis during in vitro ruminal fermentation. J. Sci. Food Agric. 2018, 98, 3644–3650. [Google Scholar] [CrossRef] [PubMed]
- Belanche, A.; Ramos-Morales, E.; Newbold, C.J. In vitro screening of natural feed additives from crustaceans, diatoms, seaweeds and plant extracts to manipulate rumen fermentation. J. Sci. Food Agric. 2016, 96, 3069–3078. [Google Scholar] [CrossRef]
- Maia, M.R.; Fonseca, A.J.; Oliveira, H.M.; Mendonça, C.; Cabrita, A.R. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production. Sci. Rep. 2016, 6, 32321. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Wang, H.; Nan, X.; Guo, Y.; Xiong, B. Calcium propionate supplementation has Minor effects on major ruminal bacterial community composition of early lactation dairy cows. Front. Microbiol. 2022, 13, 847488. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M. Methane emissions from feedlot cattle fed barley or corn diets1. J. Anim. Sci. 2005, 83, 653–661. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 2015, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Wettstein, H.R.; Machmüller, A.; Kreuzer, M. Effects of raw and modified canola lecithins compared to canola oil, canola seed and soy lecithin on ruminal fermentation measured with rumen simulation technique. Anim. Feed Sci. Technol. 2000, 85, 153–169. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J. Appl. Phycol. 2016, 28, 3117–3126. [Google Scholar] [CrossRef]
- Thorsteinsson, M.; Weisbjerg, M.R.; Lund, P.; Bruhn, A.; Hellwing, A.L.F.; Nielsen, M.O. Effects of dietary inclusion of 3 Nordic brown macroalgae on enteric methane emission and productivity of dairy cows. J. Dairy Sci. 2023, 106, 6921–6937. [Google Scholar] [CrossRef]
- Lopes, G.; Sousa, C.; Silva, L.R.; Pinto, E.; Andrade, P.B.; Bernardo, J.; Mouga, T.; Valentão, P. Can Phlorotannins Purified Extracts Constitute a Novel Pharmacological Alternative for Microbial Infections with Associated Inflammatory Conditions. PLoS ONE 2012, 7, e31145. [Google Scholar] [CrossRef] [PubMed]
- Vucko, M.J.; Magnusson, M.; Kinley, R.D.; Villart, C.; de Nys, R. The effects of processing on the in vitro antimethanogenic capacity and concentration of secondary metabolites of Asparagopsis taxiformis. J. Appl. Phycol. 2017, 29, 1577–1586. [Google Scholar] [CrossRef]
- Magnusson, M.; Mata, L.; De Nys, R.; Paul, N.A. Biomass, lipid and fatty acid production in large-scale cultures of the marine macroalga Derbesia tenuissima (Chlorophyta). Mar. Biotechnol. 2014, 16, 456–464. [Google Scholar] [CrossRef]
- Xue, M.-Y.; Sun, H.-Z.; Wu, X.-H.; Liu, J.-X.; Guan, L.L. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome 2020, 8, 64. [Google Scholar] [CrossRef]
- Thauer, R.K.; Kaster, A.-K.; Seedorf, H.; Buckel, W.; Hedderich, R. Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 2008, 6, 579–591. [Google Scholar] [CrossRef]
- Won, M.-Y.; Oyama, L.B.; Courtney, S.J.; Creevey, C.J.; Huws, S.A. Can rumen bacteria communicate to each other? Microbiome 2020, 8, 23. [Google Scholar] [CrossRef]
- Liang, J.; Fang, W.; Chang, J.; Zhang, G.; Ma, W.; Nabi, M.; Zubair, M.; Zhang, R.; Chen, L.; Huang, J.; et al. Long-term rumen microorganism fermentation of corn stover in vitro for volatile fatty acid production. Bioresour. Technol. 2022, 358, 127447. [Google Scholar] [CrossRef]
- Plaizier, J.C.; Danscher, A.-M.; Azevedo, P.A.; Derakhshani, H.; Andersen, P.H.; Khafipour, E. A Grain-Based SARA Challenge Affects the Composition of Epimural and Mucosa-Associated Bacterial Communities throughout the Digestive Tract of Dairy Cows. Animals 2021, 11, 1658. [Google Scholar] [CrossRef]
- Li, J.; Zhao, S.; Meng, Z.; Gao, Y.; Miao, J.; Mao, S.; Jin, W. Effects of Fumarate and Nitroglycerin on In Vitro Rumen Fermentation, Methane and Hydrogen Production, and on Microbiota. Biology 2023, 12, 1011. [Google Scholar] [CrossRef]
- Gharechahi, J.; Vahidi, M.F.; Bahram, M.; Han, J.-L.; Ding, X.-Z.; Salekdeh, G.H. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. ISME J. 2021, 15, 1108–1120. [Google Scholar] [CrossRef]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef]
- Waters, J.L.; Ley, R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019, 17, 83. [Google Scholar] [CrossRef]
- Cheng, Z.; Meng, Z.; Tan, D.; Datsomor, O.; Zhan, K.; Lin, M.; Zhao, G. Effects of supplementation of sodium acetate on rumen fermentation and microbiota in postpartum dairy cows. Front. Microbiol. 2022, 13, 1053503. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, K.; Nan, X.; Cai, M.; Yang, L.; Xiong, B.; Zhao, Y. Synergistic Effects of 3-Nitrooxypropanol with Fumarate in the Regulation of Propionate Formation and Methanogenesis in Dairy Cows In Vitro. Appl. Environ. Microbiol. 2022, 88, e01908-21. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.J.; De Anda, V.; Seitz, K.W.; Dombrowski, N.; Santoro, A.E.; Lloyd, K.G. Author Correction: Diversity, ecology and evolution of Archaea. Nat. Microbiol. 2020, 5, 976. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Dong, L.-F.; Tu, Y.; Diao, Q.-Y. Bacillus subtilis and Macleaya cordata extract regulate the rumen microbiota associated with enteric methane emission in dairy cows. Microbiome 2023, 11, 229. [Google Scholar] [CrossRef]
- Fricke, W.F.; Seedorf, H.; Henne, A.; Krüer, M.; Liesegang, H.; Hedderich, R.; Gottschalk, G.; Thauer, R.K. The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H2 for Methane Formation and ATP Synthesis. J. Bacteriol. 2006, 188, 642–658. [Google Scholar] [CrossRef]
Parameter | CON | 2% | 5% | 10% | p |
---|---|---|---|---|---|
D | |||||
TGP mL | 142.48 ± 15.22 | 138.43 ± 2.13 | 124.77 ± 14.7 9 | 134.86 ± 4.19 | 0.06 |
CH4 mL | 12.08 ± 2.27 | 10.63 ± 0.78 | 10.11 ± 1.16 | 10.07 ± 0.77 | 0.07 |
CO2 mL | 89.79 ± 21.28 | 90.80 ± 5.76 | 82.28 ± 9.10 | 93.27 ± 3.66 | 0.44 |
TGP mL/g DM | 284.62 ± 30.35 A | 271.02 ± 4.17 A | 237.34 ± 28.18 B | 244.86 ± 7.59 B | <0.01 |
CH4 mL/g DM | 24.13 ± 4.45 A | 20.82 ± 1.52 B | 19.23 ± 2.22 B | 18.29 ± 1.41 B | <0.01 |
CO2 mL/g DM | 179.38 ± 42.49 | 177.77 ± 11.30 | 156.52 ± 17.32 | 169.34 ± 6.65 | 0.35 |
F | |||||
TGP mL | 142.48 ± 15.22 | 136.86 ± 2.88 | 143.55 ± 4.30 | 138.51 ± 7.16 | 0.51 |
CH4 mL | 12.08 ± 2.27 a | 10.00 ± 0.92 b | 12.27 ± 0.88 a | 11.86 ± 0.98 a | 0.03 |
CO2 mL | 89.79 ± 21.28 | 90.75 ± 4.41 | 96.53 ± 3.71 | 91.18 ± 5.66 | 0.73 |
TGP mL/g DM | 284.62 ± 30.35 a | 267.97 ± 5.69 ab | 273.08 ± 8.11 ab | 251.57 ± 12.95 b | 0.02 |
CH4 mL/g DM | 24.13 ± 4.54 a | 19.58 ± 1.81 b | 23.34 ± 1.67 ab | 21.55 ± 1.79 ab | 0.04 |
CO2 mL/g DM | 179.38 ± 42.49 | 177.70 ± 8.73 | 183.64 ± 7.03 | 165.61 ± 10.26 | 0.56 |
Parameter (% of DM). | Corn Straw | Concentrate 1 | S. mcclurei |
---|---|---|---|
DM | 26.26 | 93.53 | NA |
OM | 92.85 | 92.81 | 79.17 |
CP | 7.12 | 20.46 | 12.71 |
NDF | 38.48 | 16.61 | 20.85 |
ADF | 21.69 | 6.22 | 16.89 |
Ash | 7.14 | 7.18 | 20.82 |
Parameter | CON | 2% | 5% | 10% | p |
---|---|---|---|---|---|
D | |||||
DMD % | 84.78 ± 2.84 | 84.78 ± 4.13 | 84.89 ± 2.21 | 82.61 ± 2.40 | 0.49 |
NDFD % | 80.45 ± 3.66 | 80.85 ± 5.20 | 79.08 ± 3.06 | 78.90 ± 2.92 | 0.76 |
ADFD % | 79.22 ± 3.89 | 78.53 ± 5.83 | 74.14 ± 3.78 | 75.44 ± 3.40 | 0.16 |
CPD % | 90.83 ± 2.21 | 91.66 ± 2.26 | 91.30 ± 1.27 | 89.84 ± 3.27 | 0.38 |
F | |||||
DMD % | 84.78 ± 2.84 | 79.22 ± 2.01 | 83.66 ± 2.59 | 82.33 ± 2.56 | 0.33 |
NDFD % | 80.45 ± 3.66 | 80.30 ± 2.57 | 82.16 ± 2.82 | 77.49 ± 3.27 | 0.10 |
ADFD % | 79.22 ± 3.89 | 77.28 ± 2.97 | 75.84 ± 3.82 | 74.31 ± 3.73 | 0.14 |
CPD % | 90.83 ± 2.21 AB | 93.85 ± 2.09 A | 90.85 ± 1.06 AB | 87.85 ± 1.51 B | <0.01 |
Parameter | CON | 2% | 5% | 10% | p |
---|---|---|---|---|---|
D | |||||
pH | 6.95 ± 0.11 | 6.95 ± 0.11 | 6.94 ± 0.05 | 6.95 ± 0.10 | 0.99 |
NH3-N mmol/L | 14.52 ± 0.84 | 13.29 ± 2.10 | 13.92 ± 0.61 | 14.86 ± 0.84 | 0.17 |
MCP μg/mL | 44.24 ± 8.88 b | 59.16 ± 7.61 a | 61.21 ± 9.43 a | 62.75 ± 12.84 a | 0.01 |
Total VFA mmol/L | 79.39 ± 5.31 A | 65.55 ± 5.52 B | 65.72 ± 6.42 B | 64.34 ± 8.34 B | <0.01 |
Acetate mmol/L | 45.78 ± 2.43 A | 37.18 ± 3.30 B | 37.24 ± 3.72 B | 36.35 ± 4.95 B | <0.01 |
Propionate mmol/L | 19.36 ± 1.93 | 17.36 ± 1.40 | 17.48 ± 1.64 | 17.47 ± 1.96 | 0.17 |
Butyrate mmol/L | 10.15 ± 0.71 A | 7.85 ± 0.68 B | 7.87 ± 0.74 B | 7.58 ± 1.03 B | <0.01 |
A:P | 2.37 ± 0.10 A | 2.14 ± 0.09 B | 2.13 ± 0.08 B | 2.07 ± 0.06 B | <0.01 |
F | |||||
pH | 6.95 ± 0.11 | 6.93 ± 0.12 | 6.93 ± 0.09 | 6.98 ± 0.11 | 0.83 |
NH3-N mmol/L | 14.52 ± 0.84 | 14.91 ± 0.28 | 14.35 ± 1.02 | 14.33 ± 1.38 | 0.7 |
MCP μg/mL | 44.24 ± 8.88 | 51.08 ± 15.82 | 57.53 ± 5.71 | 52.19 ± 15.02 | 0.32 |
Total VFA mmol/L | 79.39 ± 5.31 a | 66.43 ± 10.71 b | 72.03 ± 7.56 ab | 77.20 ± 2.37 a | 0.02 |
Acetate mmol/L | 45.78 ± 2.43 A | 37.55 ± 6.14 B | 41.48 ± 4.57 AB | 44.97 ± 1.49 A | <0.01 |
Propionate mmol/L | 19.36 ± 1.93 | 17.76 ± 2.78 | 18.04 ± 1.48 | 18.77 ± 0.65 | 0.46 |
Butyrate mmol/L | 10.15 ± 0.71 A | 7.92 ± 1.26 B | 8.90 ± 1.06 AB | 9.58 ± 0.36 A | <0.01 |
A:P | 2.37 ± 0.10 A | 2.11 ± 0.07 B | 2.29 ± 0.10 A | 2.39 ± 0.06 A | <0.01 |
Parameter | CON | F | D | p |
---|---|---|---|---|
Bacteria | ||||
ACE | 1508.08 ± 138.74 | 1507.12 ± 40.80 | 1431.51 ± 111.04 | 0.37 |
Chao 1 | 1496.73 ± 130.89 | 1482.26 ± 53.17 | 1415.56 ± 91.87 | 0.33 |
Shannon | 5.01 ± 0.24 | 5.08 ± 0.19 | 4.91 ± 0.21 | 0.41 |
Simpson | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.22 |
Archaea | ||||
ACE | 379.55 ± 139.69 | 267.21 ± 162.74 | 318.11 ± 139.8 | 0.43 |
Chao 1 | 378.33 ± 140.38 | 259.38 ± 166.58 | 310.96 ± 141.32 | 0.40 |
Shannon | 1.21 ± 0.17 | 0.99 ± 0.30 | 1.07 ± 0.18 | 0.26 |
Simpson | 0.58 ± 0.04 | 0.61 ± 0.05 | 0.63 ± 0.06 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Sun, Y.; Guo, T.; Liu, W.; Tong, X.; Zhang, Z.; Sun, J.; Yang, Y.; Yang, S.; Li, D.; et al. Sargassum mcclurei Mitigating Methane Emissions and Affecting Rumen Microbial Community in In Vitro Rumen Fermentation. Animals 2024, 14, 2057. https://doi.org/10.3390/ani14142057
Li S, Sun Y, Guo T, Liu W, Tong X, Zhang Z, Sun J, Yang Y, Yang S, Li D, et al. Sargassum mcclurei Mitigating Methane Emissions and Affecting Rumen Microbial Community in In Vitro Rumen Fermentation. Animals. 2024; 14(14):2057. https://doi.org/10.3390/ani14142057
Chicago/Turabian StyleLi, Shuai, Yi Sun, Tongjun Guo, Wenyou Liu, Xiong Tong, Zhifei Zhang, Jiajie Sun, Yufeng Yang, Shuli Yang, Dagang Li, and et al. 2024. "Sargassum mcclurei Mitigating Methane Emissions and Affecting Rumen Microbial Community in In Vitro Rumen Fermentation" Animals 14, no. 14: 2057. https://doi.org/10.3390/ani14142057
APA StyleLi, S., Sun, Y., Guo, T., Liu, W., Tong, X., Zhang, Z., Sun, J., Yang, Y., Yang, S., Li, D., & Min, L. (2024). Sargassum mcclurei Mitigating Methane Emissions and Affecting Rumen Microbial Community in In Vitro Rumen Fermentation. Animals, 14(14), 2057. https://doi.org/10.3390/ani14142057