Factors Affecting Survival of Common Sandpiper (Actitis hypoleucos) Nests along the Semi-Natural Vistula River in Poland
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Studies
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, J.V.; Tockner, K.; Schiemer, F. Biodiversity of Floodplain River Ecosystems: Ecotones and Connectivity1. Regul. Rivers Res. Manag. 1999, 15, 125–139. [Google Scholar] [CrossRef]
- Robinson, C.T.; Tockner, K.; Ward, J.V. The Fauna of Dynamic Riverine Landscapes. Freshw. Biol. 2002, 47, 661–677. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.H.; Pavelsky, T.M. Global Extent of Rivers and Streams. Science 2018, 361, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the World’s Free-Flowing Rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. Bioscience 2020, 70, 330–342. [Google Scholar] [CrossRef] [PubMed]
- IUCN. The IUCN Red List of Threatened Species. Version 2023-1. Available online: https://www.iucnredlist.org (accessed on 1 March 2024).
- Cramp, S.; Simons, K.E.L. The Birds of the Western Palearctic; Oxford University Press: Oxford, UK, 1983. [Google Scholar]
- Yalden, D.W. The Habitat and Activity of Common Sandpipers Actitis hypoleucos Breeding by Upland Rivers. Bird Study 1986, 33, 214–222. [Google Scholar] [CrossRef]
- PECMBS. Trends of Common Birds in Europe, 2023 Update; PECMBS: Prague, Czech Republic, 2023. [Google Scholar]
- BirdLife International. European Red List of Birds; BirdLife International: Cambridge, UK, 2021; ISBN 9789279474507. [Google Scholar]
- Whelan, C.J.; Şekercioğlu, Ç.H.; Wenny, D.G. Why Birds Matter: From Economic Ornithology to Ecosystem Services. J. Ornithol. 2015, 156, 227–238. [Google Scholar] [CrossRef]
- Mee, A. Reproductive Strategies in the Common Sandpiper Actitis hypoleucos. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2001. [Google Scholar]
- von Blotzheim, U.N.G.; Bauer, K.M.; Bezzel, E. Handbuch Der Vögel Mitteleuropas; Aula-Verlag: Wiesbaden, Germany, 1977; Volume 7. [Google Scholar]
- Szekely, T.; Reynolds, J.D. Evolutionary Transitions in Parental Care in Shorebirds. Proc. R. Soc. B Biol. Sci. 1995, 262, 57–64. [Google Scholar] [CrossRef]
- Holland, P. Common & Spotted Sandpipers; Whittles Publishing: Dunbeath, UK, 2018; ISBN 978-1-84995-361-0. [Google Scholar]
- Meissner, W.; Krupa, R. Identifying the Sex of the Common Sandpiper (Actitis hypoleucos) by Linear Measurements. Ann. Zool. Fennici 2016, 53, 175–182. [Google Scholar] [CrossRef]
- Ocampo, D.; Londoño, G.A. Tropical Montane Birds Have Increased Nesting Success on Small River Islands. Auk 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Cuervo, J.J. Nest-Site Selection and Characteristics in a Mixed-Species Colony of Avocets Recurvirostra Avosetta and Black-Winged Stilts Himantopus Himantopus. Bird Study 2004, 51, 20–24. [Google Scholar] [CrossRef]
- Debata, S.; Kar, T. Factors Affecting Nesting Success of Threatened Riverine Birds: A Case from Odisha, Eastern India. Proc. Zool. Soc. 2021, 74, 357–361. [Google Scholar] [CrossRef]
- Houston, W.; Black, R.S. Effect of a Major Flood on Breeding and Habitat of the Crimson Finch (Neochmia Phaeton): A Riparian Specialist. River Res. Appl. 2014, 30, 609–616. [Google Scholar] [CrossRef]
- Elas, M.; Rosendal, E.; Meissner, W. The Effect of Floods on Nest Survival Probability of Common Sandpiper Actitis hypoleucos Breeding in the Riverbed of a Large Lowland European River. Diversity 2023, 15, 90. [Google Scholar] [CrossRef]
- Kajtoch, Ł.; Figarski, T. Short-Term Restoration of Riverine Bird Assemblages after a Severe Flood. Bird Study 2013, 60, 327–334. [Google Scholar] [CrossRef]
- Witkowska, M.; Pinchuk, P.; Meissner, W.; Karlionova, N.; Marynkiewicz, Z. The Level of Water in the River Flowing through the Breeding Site Shapes the Body Condition of a Lekking Bird—The Great Snipe Gallinago Media. J. Ornithol. 2022, 163, 385–394. [Google Scholar] [CrossRef]
- Kozik, R.; Meissner, W.; Listewnik, B.; Nowicki, J.; Lasecki, R. Differences in Foraging Behaviour of a Migrating Shorebird at Stopover Sites on Regulated and Unregulated Sections of a Large European Lowland River. J. Ornithol. 2022, 163, 791–802. [Google Scholar] [CrossRef]
- Meissner, W.; Kozik, R.; Listewnik, B.; Nowicki, J.; Lasecki, R. The Effects of River Regulation on Diet Diversity, Dietary Niche Overlap and Foraging Habitat Preferences of Two Sympatric Plover Species. Acta Oecol. 2023, 119, 103915. [Google Scholar] [CrossRef]
- Božič, L.; Denac, D. Population Dynamics of Five Riverbed Breeding Bird Species on the Lower Drava River, NE Slovenia. Acrocephalus 2017, 38, 85–126. [Google Scholar] [CrossRef]
- O’Keeffe, J.; Bukaciński, D.; Bukacińska, M.; Piniewski, M.; Okruszko, T. Future of Birds Nesting on River Islands in the Conditions of Hydrological Variability Caused by Climate Change. Ecohydrol. Hydrobiol. 2024, 24, 337–353. [Google Scholar] [CrossRef]
- Plaschke, S.; Bulla, M.; Cruz-López, M.; Gómez Del Ángel, S.; Küpper, C. Nest Initiation and Flooding in Response to Season and Semi-Lunar Spring Tides in a Ground-Nesting Shorebird. Front. Zool. 2019, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.L. Predators and the Breeding Bird: Behavioral and Reproductive Flexibility under the Risk of Predation. Biol. Rev. 2009, 84, 485–513. [Google Scholar] [CrossRef] [PubMed]
- Skrade, P.D.B.; Dinsmore, S.J. Egg Crypsis in a Ground-Nesting Shorebird Influences Nest Survival. Ecosphere 2013, 4, 151. [Google Scholar] [CrossRef]
- Eggers, S.; Griesser, M.; Nystrand, M.; Ekman, J. Predation Risk Induces Changes in Nest-Site Selection and Clutch Size in the Siberian Jay. Proc. R. Soc. B Biol. Sci. 2006, 273, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Claassen, A.H.; Forester, J.D.; Arnold, T.W.; Cuthbert, F.J. Consequences of Multi-Scale Habitat Selection on Reproductive Success of Riverine Sandbar-Nesting Birds in Cambodia. Avian Biol. Res. 2018, 11, 108–122. [Google Scholar] [CrossRef]
- Chylarecki, P.; Matyjasiak, P.; Gmitrzuk, K.; Kominek, E.; Ogrodowczyk, P. Breeding Success of Waders in the Bug and Narew Valleys, E Poland. Wader Study Group Bull 2006, 111, 24–25. [Google Scholar]
- Ibáñez-álamo, J.D.; Magrath, R.D.; Oteyza, J.C.; Chalfoun, A.D.; Haff, T.M.; Schmidt, K.A.; Thomson, R.L.; Martin, T.E. Nest Predation Research: Recent Findings and Future Perspectives. J. Ornithol. 2015, 156, S247–S262. [Google Scholar] [CrossRef]
- Fontaine, J.J.; Martin, T.E. Parent Birds Assess Nest Predation Risk and Adjust Their Reproductive Strategies. Ecol. Lett. 2006, 9, 428–434. [Google Scholar] [CrossRef]
- Dougall, T.W.; Holland, P.K.; Mee, A.; Yalden, D.W. Comparative Population Dynamics of Common Sandpipers Actitis hypoleucos: Living at the Edge. Bird Study 2005, 52, 80–87. [Google Scholar] [CrossRef]
- Elas, M.; Meissner, W. High Density of Breeding Common Sandpipers Actitis hypoleucos in the Middle Vistula River, Poland. Wader Study 2019, 126, 67–68. [Google Scholar] [CrossRef]
- Matuszkiewicz, J.; Roo-Zielińska, E. Międzywale Wisły Jako Swoisty Układ Przyrodniczy (Odcinek Pilica-Narew); Dokumentacja Geograficzna: Warszawa, Poland, 2000. [Google Scholar]
- Kajak, Z. The Vistula River and Its Riparian Zones. Hydrobiologia 1993, 251, 149–157. [Google Scholar] [CrossRef]
- Chmielewski, S.; Tabor, J. Charakterystyka Przyrodnicza Środkowej Wisły. In Birds of the Middle Vistula River; Keller, M., Kot, H., Dombrowski, A., Rowiński, P., Chmielewski, S., Bukaciński, D., Eds.; Mazowiecko-Świętokrzyskie Towarzystwo Ornitologiczne: Pionki, Poland, 2017; pp. 17–30. [Google Scholar]
- Wilk, T.; Jujka, M.; Krogulec, J.; Chylarecki, P. Ostoje Ptaków o Znaczeniu Międzynarodowym w Polsce; OTOP: Marki, Poland, 2010; ISBN 978-83089830-02-9. [Google Scholar]
- Kowalska, A. Vegetation Complexes and Landscapes of the Middle Vistula River Valley; IGiPZ PAN: Warsaw, Poland, 2012; ISBN 9788361590231. (In Polish with English Summary). [Google Scholar]
- Kowalska, A. Przekształcenia Roślinności Równiny Zalewowej Doliny Środkowej Wisły, Gmina Łomianki–strefa Podmiejska Warszawy. Acta Bot. Silesiaca 2011, 7, 5–16. [Google Scholar]
- Przepióra, F.; Ciach, M. Tree Microhabitats in Natural Temperate Riparian Forests: An Ultra-Rich Biological Complex in a Globally Vanishing Habitat. Sci. Total Environ. 2022, 803, 149881. [Google Scholar] [CrossRef]
- Geoffrey, C.P. Fluvial Landscape Ecology: Addressing Uniqueness within the River Discontinuum. Freshw. Biol. 2002, 47, 641–660. [Google Scholar]
- Bibby, C.J.; Burgess, N.D.; Hill, D.A.; Mustoe, S.H. Bird Census Techniques, 2nd ed.; Academic Press: London, UK, 2000. [Google Scholar]
- Elas, M. Brodziec Piskliwy Actitis hypoleucos. In Monitoring Ptaków Lęgowych. Poradnik Metodyczny, Wydanie 2; Chylarecki, P., Sikora, A., Cenian, Z., Chodkiewicz, T., Eds.; GIOŚ: Warsaw, Poland, 2015; pp. 256–261. [Google Scholar]
- Colwell, M.A. Egg-Laying Intervals in Shorebirds. Wader Study Gr. Bull. 2006, 111, 50–59. [Google Scholar]
- Liebezeit, J.R.; Smith, P.A.; Lanctot, R.B.; Schekkerman, H.; Tulp, I.; Kendall, S.J.; Tracy, D.M.; Rodrigues, R.J.; Meltofte, H.; Robinson, J.A.; et al. Assessing the Development of Shorebird Eggs Using the Flotation Method: Species-Specific and Generalized Regression Models. Condor 2007, 109, 32–47. [Google Scholar] [CrossRef]
- Hartman, C.A.; Oring, L.W. An Inexpensive Method for Remotely Monitoring Nest Activity. J. Field Ornithol. 2006, 77, 418–424. [Google Scholar] [CrossRef]
- Macdonald, M.A.; Bolton, M. Predation on Wader Nests in Europe. Ibis 2008, 150, 54–73. [Google Scholar] [CrossRef]
- Porteus, T.A.; Short, M.J.; Hoodless, A.N.; Reynolds, J.C. Movement Ecology and Minimum Density Estimates of Red Foxes in Wet Grassland Habitats Used by Breeding Wading Birds. Eur. J. Wildl. Res. 2024, 70, 8. [Google Scholar] [CrossRef]
- Holland, P.K.; Robson, J.E.; Yalden, D.W. The Breeding Biology of the Common Sandpiper Actitis hypoleucos in the Peak District. Bird Study 1982, 29, 99–110. [Google Scholar] [CrossRef]
- Dinsmore, S.J.; Dinsmore, J.J. Modeling Avian Nest Survival in Program MARK. Stud. Avian Biol. 2007, 34, 73–83. [Google Scholar]
- Laake, J. RMark: R Code for MARK Analysis; R Package Version 2.0.7.7. 2011. Available online: https://cran.r-project.org/web/packages/RMark/index.html (accessed on 10 November 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Cuthbertson, E.I.; Foggit, G.T.; Bell, M.A. A Census of Common Sandpipers in the Sedburgh Area. Br. Birds 1952, 45, 171–175. [Google Scholar]
- Sofia, G.; Nikolopoulos, E.I. Floods and Rivers: A Circular Causality Perspective. Sci. Rep. 2020, 10, 5175. [Google Scholar] [CrossRef] [PubMed]
- Siwek, J.; Mostowik, K.; Liova, S.; Rzonca, B.; Wacławczyk, P. Baseflow Trends for Midsize Carpathian Catchments in Poland and Slovakia in 1970–2019. Water 2023, 15, 109. [Google Scholar] [CrossRef]
- Wrzesinski, D.; Sobkowiak, L. Transformation of the Flow Regime of a Large Allochthonous River in Central Europe-an Example of the Vistula River in Poland. Water 2020, 12, 507. [Google Scholar] [CrossRef]
- Kokko, H. Competition for Early Arrival in Migratory Birds. J. Anim. Ecol. 1999, 68, 940–950. [Google Scholar] [CrossRef]
- Morrison, C.A.; Alves, J.A.; Gunnarsson, T.G.; Þórisson, B.; Gill, J.A. Why Do Earlier-Arriving Migratory Birds Have Better Breeding Success? Ecol. Evol. 2019, 9, 8856–8864. [Google Scholar] [CrossRef] [PubMed]
- Hartman, C.A.; Oring, L.W. Reproductive Success of Long-Billed Curlews (Numenius Americanus) in Northeastern Nevada Hay Fields. Auk 2009, 126, 420–430. [Google Scholar] [CrossRef]
- Grand, J.B.; Flint, P.L. Renesting Ecology of Northern Pintails on the Yukon-Kuskokwim Delta, Alaska. Condor 1996, 98, 820–824. [Google Scholar] [CrossRef]
- Greenberg, R.; Elphick, C.; Nordby, J.C.; Gjerdrum, C.; Spautz, H.; Shriver, G.; Schmeling, B.; Olsen, B.; Marra, P.; Nur, N.; et al. Flooding and Predation: Trade-Offs in the Nesting Ecology of Tidal-Marsh Sparrows. Stud. Avian Biol. 2006, 32, 96–109. [Google Scholar]
- Goszczyński, J. Diet of Foxes and Martens in Central Poland. Acta Theriol. 1986, 31, 491–506. [Google Scholar] [CrossRef]
- Newton, I. Predation and Limitation of Bird Numbers. In Current Ornithology; Springer: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Summers, R.W.; Nicoll, M. Geographical Variation in the Breeding Biology of the Purple Sandpiper Calidris Maritima. Ibis 2004, 146, 303–313. [Google Scholar] [CrossRef]
- Oring, L.W.; Colwell, M.A.; Reed, J.M. Lifetime Reproductive Success in the Spotted Sandpiper (Actitis macularia): Sex Differences and Variance Components. Behav. Ecol. Sociobiol. 1991, 28, 425–432. [Google Scholar] [CrossRef]
- Sandercock, B.K. Chronology of Nesting Events in Western and Semipalmated Sandpipers near the Arctic Circle. J. Field Ornithol. 1998, 69, 235–243. [Google Scholar]
- Guan, H.; Wen, Y.; Wang, P.; Lv, L.; Xu, J.; Li, J. Seasonal Increase of Nest Height of the Silver-Throated Tit (Aegithalos glaucogularis): Can It Reduce Predation Risk? Avian Res. 2018, 9, 42. [Google Scholar] [CrossRef]
- Berg, A.; Lindberg, T.; Kallebrink, K.G. Hatching Success of Lapwings on Farmland: Differences between Habitats and Colonies of Different Sizes. J. Anim. Ecol. 1992, 61, 469. [Google Scholar] [CrossRef]
- Fuchs, E. Predation and Anti-Predator Behaviour in a Mixed Colony of Terns Sterna Sp. and Black-Headed Gulls Larus Ridibundus with Special Reference to the Sandwich Tern Sterna Sandvicensis. Ornis Scand. 1977, 8, 17–32. [Google Scholar] [CrossRef]
- Regehr, H.M.; Rodway, M.S.; Montevecchi, W.A. Antipredator Benefits of Nest-Site Selection in Black-Legged Kittiwakes. Can. J. Zool. 1998, 76, 910–915. [Google Scholar] [CrossRef]
- Crego, R.D.; Jiménez, J.E.; Rozzi, R. Potential Niche Expansion of the American Mink Invading a Remote Island Free of Nativepredatory Mammals. PLoS ONE 2018, 13, e0194745. [Google Scholar] [CrossRef]
- Łukaszewicz, M. Budżer Czasowy Oraz Strategia Żerowania Brodźca Piskliwego Actitis hypoleucos Podczas Jesiennej Migracji w Dolinie Środkowej Wisły. Ph.D. Thesis, Uniwesytet Przyrodniczo-Humanistyczny w Siedlcach, Siedlce, Poland, 2009. [Google Scholar]
- Koivula, K.; Rönkä, A. Habitat Deterioration and Efficiency of Antipredator Strategy in a Meadow-Breeding Wader, Temminck’s Stint (Calidris temminckii). Oecologia 1998, 116, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Clode, D.; Macdonald, D.W. Invasive Predators and the Conservation of Island Birds: The Case of American Mink Mustela Vison and Terns Sterna Spp. In the Western Isles, Scotland: Colonies Were Larger and Breeding Success Lower in Mink-Inhabited Areas. Bird Study 2002, 49, 118–123. [Google Scholar] [CrossRef]
- Holopainen, S.; Väänänen, V.M.; Fox, A.D. Landscape and Habitat Affect Frequency of Artificial Duck Nest Predation by Native Species, but Not by an Alien Predator. Basic Appl. Ecol. 2020, 48, 52–60. [Google Scholar] [CrossRef]
Sample Size | ||||
---|---|---|---|---|
Variable | Categories | Flooded | Predated | Successful |
Nest location | River shore | na | 10 | 13 |
Island | na | 8 | 9 | |
Nest concealment | Nest hidden in the grass | na | 15 | 12 |
Nest hidden under shrubs | na | 3 | 10 | |
Topographical location | Flat terrain | 7 | 5 | 6 |
Undulating terrain | 2 | 8 | 7 | |
Slope | 8 | 5 | 9 | |
Density of nests | Nests in semi-colony | na | 3 | 7 |
Solitary nests | na | 15 | 15 |
Sample Size | ||||||
---|---|---|---|---|---|---|
Variable | Description | Min–Max | Mean ± SD | Flooded | Predated | Successful |
Incubation start | Day in the season when incubation started; 1 = 1st April | 30–84 | 51 ± 13 | 17 | 18 | 22 |
Distance to water | The distance in meters between nest and the closest water (river, oxbow lake, side channel) | 3–70 | 24.5 ± 15.9 | na | 18 | 22 |
Model | K | AICC | ΔAICC | wi | Deviance |
---|---|---|---|---|---|
DSR~nest concealment | 2 | 124.05 | 0 | 0.316 | 120.02 |
DSR~incubation start | 2 | 125.03 | 0.98 | 0.193 | 121.01 |
Null | 1 | 125.89 | 1.84 | 0.126 | 123.88 |
DSR~distance to water | 2 | 126.02 | 1.97 | 0.118 | 121.99 |
DSR~topographical location | 3 | 126.36 | 2.31 | 0.100 | 120.30 |
DSR~density of nests | 2 | 126.53 | 2.48 | 0.091 | 122.51 |
DSR~nest location | 2 | 127.86 | 3.81 | 0.047 | 123.83 |
DSR~year | 4 | 131.12 | 7.07 | 0.009 | 123.03 |
Model | K | AICC | ΔAICC | wi | Deviance |
---|---|---|---|---|---|
DSR~incubation start | 2 | 116.22 | 0 | 0.974 | 112.19 |
Null | 1 | 124.30 | 8.09 | 0.017 | 122.30 |
DSR~year | 4 | 126.72 | 10.50 | 0.005 | 118.62 |
DSR~topographical location | 4 | 127.28 | 11.06 | 0.004 | 123.03 |
Model | Parameter | Estimate | SE | LCI | UCI |
---|---|---|---|---|---|
Predated nests | |||||
DSR~nest concealment | Intercept | 2.369 | 0.012 | 2.337 | 2.421 |
Nest in the grass | 0.570 | 0.013 | 0.069 | 1.102 | |
Nest under the shrubs | 1.700 | 0.010 | 1.256 | 2.170 | |
DSR~incubation start | Intercept | 5.137 | 1.203 | 2.780 | 7.494 |
Incubation start | −0.034 | 0.020 | −0.073 | 0.006 | |
DSR~distance to water | Intercept | 3.678 | 0.416 | 2.862 | 4.494 |
Distance to water | −0.018 | 0.012 | −0.042 | 0.006 | |
Flooded nests | |||||
DSR~incubation start | Intercept | −0.236 | 1.172 | −2.533 | 2.060 |
Incubation start | 0.077 | 0.028 | 0.022 | 0.131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elas, M.; Witkowska, M.; Meissner, W. Factors Affecting Survival of Common Sandpiper (Actitis hypoleucos) Nests along the Semi-Natural Vistula River in Poland. Animals 2024, 14, 2055. https://doi.org/10.3390/ani14142055
Elas M, Witkowska M, Meissner W. Factors Affecting Survival of Common Sandpiper (Actitis hypoleucos) Nests along the Semi-Natural Vistula River in Poland. Animals. 2024; 14(14):2055. https://doi.org/10.3390/ani14142055
Chicago/Turabian StyleElas, Marek, Marta Witkowska, and Włodzimierz Meissner. 2024. "Factors Affecting Survival of Common Sandpiper (Actitis hypoleucos) Nests along the Semi-Natural Vistula River in Poland" Animals 14, no. 14: 2055. https://doi.org/10.3390/ani14142055
APA StyleElas, M., Witkowska, M., & Meissner, W. (2024). Factors Affecting Survival of Common Sandpiper (Actitis hypoleucos) Nests along the Semi-Natural Vistula River in Poland. Animals, 14(14), 2055. https://doi.org/10.3390/ani14142055