Insect Larvae as an Alternate Protein Source in Poultry Feed Improve the Performance and Meat Quality of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Institutional Review Board Statement
2.2. Insects
2.3. Feeding Trial
2.4. Diet Formulation
2.5. Growth Performances
2.6. Haematological and Serum Parameters
2.7. Gut Histology
2.8. Meat Quality
2.9. Statistical Analysis
3. Results
3.1. Growth Performances
3.2. Haematology
3.2.1. Complete Blood Count of Broiler
3.2.2. Serum Bio-Chemistry
3.3. Gut Morphometry
3.4. Meat Quality Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [PubMed]
- Avendaño, C.; Sánchez, M.; Valenzuela, C. Insectos: Son realmente una alternativa para la alimentación de animales y humanos. Rev. Chil. Nutr. 2020, 47, 1029–1037. [Google Scholar] [CrossRef]
- Bongaarts, J. Human population growth and the demographic transition. Philos. Trans. R. Soc. Biol. Sci. 2009, 364, 2985–2990. [Google Scholar] [CrossRef] [PubMed]
- Bahar, N.H.; Lo, M.; Sanjaya, M.; Van Vianen, J.; Alexander, P.; Ickowitz, A.; Sunderland, T. Meeting the food security challenge for nine billion people in 2050: What impact on forests? Glob. Environ. Chang. 2020, 62, 102056. [Google Scholar] [CrossRef]
- Asun Pinar, A. Chemical Composition and Standardized Ileal Amino Acid Digestibility of Manitoba Soybean Meal in Broiler Chickens. 2023. Available online: http://hdl.handle.net/1993/37508 (accessed on 1 January 2020).
- Ravindran, V.; Abdollahi, M.; Bootwalla, S. Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. Poult. Sci. 2014, 93, 2567–2577. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.Y.; Aderibigbe, A.S.; Adeola, O. Amino acid digestibility and net energy concentration in soybean meal for broiler chickens. Anim. Feed Sci. Technol. 2023, 297, 115572. [Google Scholar] [CrossRef]
- Thrane, M.; Paulsen, P.V.; Orcutt, M.W.; Krieger, T.M. Soy protein: Impacts, production, and applications. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–45. [Google Scholar]
- Van Huis, A.; Oonincx, D.G. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef]
- Biasato, I.; Ferrocino, I.; Grego, E.; Dabbou, S.; Gai, F.; Gasco, L.; Cocolin, L.; Capucchio, M.T.; Schiavone, A. Gut microbiota and mucin composition in female broiler chickens fed diets including yellow mealworm (Tenebrio molitor, L.). Animals 2019, 9, 213–230. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, M.; Sajjad, A.; Chishti, G.A.; Binyameen, M.; Abbasi, A.; Haq, I.U.; Gaafar, A.Z.; Hodhod, M.S. Evaluation of blow fly, Chrysomya megacephala (Calliphoridae: Diptera) as an alternate source of protein in broiler feed. J. Insects Food Feed 2024, 1, 1–19. [Google Scholar] [CrossRef]
- Adli, D.N. Use of insects in poultry feed as replacement soya bean meal and fish meal in development countries: A systematic review. Livest. Res. Rur. Dev. 2021, 33, 128–131. [Google Scholar]
- Sajid, Q.U.A.; Asghar, M.U.; Tariq, H.; Wilk, M.; Płatek, A. Insect Meal as an Alternative to Protein Concentrates in Poultry Nutrition with Future Perspectives (An Updated Review). Agriculture 2023, 13, 1239–1264. [Google Scholar] [CrossRef]
- Hawkey, K.J.; Lopez-Viso, C.; Brameld, J.M.; Parr, T.; Salter, A.M. Insects: A potential source of protein and other nutrients for feed and food. Annu. Rev. Anim. Biosci. 2021, 9, 333–354. [Google Scholar] [CrossRef] [PubMed]
- Spranghers, T.; Michiels, J.; Vrancx, J.; Ovyn, A.; Eeckhout, M.; De Clercq, P.; De Smet, S. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Technol. 2018, 235, 33–42. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Van Broekhoven, S.; Van Huis, A.; van Loon, J.J. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A. Insects as food and feed, a new emerging agricultural sector: A review. J. Insects Food and Feed 2020, 6, 27–44. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food and Agric. 2017, 97, 594–2600. [Google Scholar] [CrossRef] [PubMed]
- Al-Qazzaz, M.F.; Ismail, D.B. Insect meal as a source of protein in animal diet. Anim. Nutr. Feed Technol. 2016, 16, 527–547. [Google Scholar] [CrossRef]
- Suyatma, N.E.; Copinet, A.; Tighzert, L.; Coma, V. Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J. Polym. Environ. 2004, 12, 1–6. [Google Scholar] [CrossRef]
- Slimen, I.B.; Yerou, H.; Larbi, M.B.; M’Hamdi, N.; Najar, T. Insects as an alternative protein source for poultry nutrition: A review. Front. Vet. Sci. 2023, 10, 1–15. [Google Scholar]
- Elieh Ali Komi, D.; Sharma, L.; Dela Cruz, C.S. Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy Immunol. 2018, 54, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; Shafi, M.E.; Alghamdi, W.Y.; Abdelnour, S.A.; Shehata, A.M.; Noreldin, A.E.; Ashour, E.A.; Swelum, A.A.; Al-Sagan, A.A.; Alkhateeb, M. Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Smets, R.; Verbinnen, B.; Van De Voorde, I.; Aerts, G.; Claes, J.; Van Der Borght, M. Sequential extraction and characterisation of lipids, proteins, and chitin from black soldier fly (Hermetia illucens) larvae, prepupae, and pupae. Waste Biomass Valori. 2020, 11, 6455–6466. [Google Scholar] [CrossRef]
- Cutrignelli, M.I.; Messina, M.; Tulli, F.; Randazzo, B.; Olivotto, I.; Gasco, L.; Loponte, R.; Bovera, F. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Res. Vet. Sci. 2018, 117, 209–215. [Google Scholar] [CrossRef]
- Malematja, E.; Manyelo, T.; Sebola, N.; Mabelebele, M. The role of insects in promoting the health and gut status of poultry. Comp. Clin. Path. 2023, 32, 501–513. [Google Scholar] [CrossRef]
- Benzertiha, A.; Kierończyk, B.; Rawski, M.; Józefiak, A.; Kozłowski, K.; Jankowski, J.; Józefiak, D. Tenebrio molitor and Zophobas morio full-fat meals in broiler chicken diets: Effects on nutrients digestibility, digestive enzyme activities, and cecal microbiome. Animals 2019, 9, 1128–1150. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, Z.S.; Kheiri, F.; Faghani, M. Use of yellow mealworm (Tenebrio molitor) as a protein source on growth performance, carcass traits, meat quality and intestinal morphology of Japanese quails (Coturnix japonica). Vet. Anim. Sci. 2019, 8, 100066. [Google Scholar] [CrossRef] [PubMed]
- Loponte, R.; Nizza, S.; Bovera, F.; De Riu, N.; Fliegerova, K.; Lombardi, P.; Vassalotti, G.; Mastellone, V.; Nizza, A.; Moniello, G. Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larvae meals (Tenebrio molitor and Hermetia illucens). Res. Vet. Sci. 2017, 115, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Benzertiha, A.; Kierończyk, B.; Kołodziejski, P.; Pruszyńska–Oszmałek, E.; Rawski, M.; Józefiak, D.; Józefiak, A. Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poult. Sci. 2020, 99, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Khan, R.; Alam, W.; Sultan, A. Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. J. Anim. Physiol. Anim. Nutr. 2018, 102, e662–e668. [Google Scholar] [CrossRef]
- Hwangbo, J.; Hong, E.; Jang, A.; Kang, H.; Oh, J.; Kim, B.; Park, B. Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J. Environ. Biol. 2009, 30, 609–614. [Google Scholar] [PubMed]
- Okah, U.; Onwujiariri, E. Performance of finisher broiler chickens fed maggot meal as a replacement for fish meal. J. Agric. Technol. 2012, 8, 471–477. [Google Scholar]
- Altmann, B.A.; Neumann, C.; Velten, S.; Liebert, F.; Mörlein, D. Meat quality derived from high inclusion of a micro-alga or insect meal as an alternative protein source in poultry diets: A pilot study. Foods 2018, 7, 34–54. [Google Scholar] [CrossRef] [PubMed]
- Allegretti, G.; Talamini, E.; Schmidt, V.; Bogorni, P.C.; Ortega, E. Insect as feed: An emergy assessment of insect meal as a sustainable protein source for the Brazilian poultry industry. J. Clean. Prod. 2018, 171, 403–412. [Google Scholar] [CrossRef]
- Lourenço, F.; Calado, R.; Medina, I.; Ameixa, O.M. The potential impacts by the invasion of insects reared to feed livestock and pet animals in europe and other regions: A critical review. Sustainability 2022, 14, 6361–6390. [Google Scholar] [CrossRef]
- Liceaga, A.M. Edible insects, a valuable protein source from ancient to modern times. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2022; Volume 101, pp. 129–152. [Google Scholar]
- Sayed, W.A.; Ibrahim, N.S.; Hatab, M.H.; Zhu, F.; Rumpold, B.A. Comparative study of the use of insect meal from Spodoptera littoralis and Bactrocera zonata for feeding Japanese quail chicks. Animals 2019, 9, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Ross. Ross 308 Nutrition Specifications; Aviagen: Scotland, UK, 2022. [Google Scholar]
- Bovera, F.; Piccolo, G.; Gasco, L.; Marono, S.; Loponte, R.; Vassalotti, G.; Mastellone, V.; Lombardi, P.; Attia, Y.; Nizza, A. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br. Poult. Sci. 2015, 56, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Janssen, R.H.; Vincken, J.-P.; van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Campbell, T.W. Avian Haematology and Cytology; Iowa State University Press: Ames, IA, USA, 1995. [Google Scholar]
- Ferreira, T.; Rasband, W. ImageJ User Guide—IJ 1.46. 2012. Available online: https://imagej.net/ij/docs/guide/ (accessed on 26 September 2023).
- Kaić, A.; Janječić, Z.; Žanetić, A.; Kelava Ugarković, N.; Potočnik, K. EZ-DripLoss assessment in chicken breast meat using different sample areas, fiber orientation, and measurement intervals. Animals 2021, 11, 1095. [Google Scholar] [CrossRef] [PubMed]
- Zaid, M.; Hussain, J.; Mahmud, A.; Javed, K.; Shaheen, M.S.; Usman, M.; Ghayas, A.; Ahmad, S. Carcass traits, meat quality, and sensory attributes of fast-growing broilers givenoutdoor access at different ages. Turk. J. Vet. Anim. Sci. 2020, 44, 1039–1046. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J.; Prache, S.; Dransfield, E. Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Sci. 2002, 62, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; De Smet, S.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Okello, E.A.; Watako, A.; Ochia, C.O.; Muok, B. A comparative evaluation of nutrient content of fall armyworm (Spodoptera frugiperda) larvae to other chicken feeds. Afr. J. Agric. Res. 2021, 18, 27–34. [Google Scholar]
- Woods, M.; Cullere, M.; Van Emmenes, L.; Vincenzi, S.; Pieterse, E.; Hoffman, L.; Zotte, A.D. Hermetia illucens larvae reared on different substrates in broiler quail diets: Effect on apparent digestibility, feed-choice and growth performance. J. Insects Food Feed 2019, 5, 89–98. [Google Scholar] [CrossRef]
- Cullere, M.; Woods, M.J.; Van Emmenes, L.; Pieterse, E.; Hoffman, L.C.; Dalle Zotte, A. Hermetia illucens larvae reared on different substrates in broiler quail diets: Effect on physicochemical and sensory quality of the quail meat. Animals 2019, 9, 525–543. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, N.F.N.M.; Seok-Kian, A.Y.; Seng, L.L.; Mustafa, S.; Kim, Y.-S.; Shapawi, R. Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLoS ONE 2022, 17, e0263924. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, E.; Erasmus, S.W.; Uushona, T.; Hoffman, L.C. Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. J. Sci. Food Agric. 2019, 99, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Danieli, P.P.; Lussiana, C.; Gasco, L.; Amici, A.; Ronchi, B. The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals 2019, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Poorghasemi, M.; Seidavi, A.; Qotbi, A.A.A.; Laudadio, V.; Tufarelli, V. Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian-Australas. J. Anim. Sci. 2013, 26, 705. [Google Scholar] [CrossRef] [PubMed]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Mat, K.; Kari, Z.A.; Rusli, N.D.; Rahman, M.M.; Harun, H.C.; Al-Amsyar, S.M.; Nor, M.F.M.; Dawood, M.A.; Hassan, A.M. Effects of the inclusion of black soldier fly larvae (Hermetia illucens) meal on growth performance and blood plasma constituents in broiler chicken (Gallus gallus domesticus) production. Saudi J. Biol. Sci. 2022, 29, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Khan, R.; Sultan, A.; Khan, M.; Hayat, S.; Shahid, M. Evaluating the suitability of maggot meal as a partial substitute of soya bean on the productive traits, digestibility indices and organoleptic properties of broiler meat. J. Anim. Physiol. Anim. Nutr. 2016, 100, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Aniebo, A.; Owen, O. Effects of age and method of drying on the proximate composition of housefly larvae (Musca domestica Linnaeus) meal (HFLM). Pak. J. Nut. 2010, 9, 485–487. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Sterpone, L. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poult. Sci. 2018, 97, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Elahi, U.; Wang, J.; Ma, Y.-B.; Wu, S.-G.; Wu, J.; Qi, G.-H.; Zhang, H.J. Evaluation of yellow mealworm meal as a protein feedstuff in the diet of broiler chicks. Animals 2020, 10, 224–240. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, T.-K.; Cha, J.Y.; Jang, H.W.; Yong, H.I.; Choi, Y.-S. How to develop strategies to use insects as animal feed: Digestibility, functionality, safety, and regulation. J. Anim. Sci. Technol. 2022, 64, 409. [Google Scholar] [CrossRef] [PubMed]
- Téguia, A.; Mpoame, M.; Mba, J.O. The production performance of broiler birds as affected by the replacement of fish meal by maggot meal in the starter and finisher diets. Tropicultura 2002, 20, 187–192. [Google Scholar]
- Moreki, J.; Tiroesele, B.; Chiripasi, S. Prospects of utilizing insects as alternative sources of protein in poultry diets in Botswana: A review. J. Anim. Sci. Adv. 2012, 2, 649–658. [Google Scholar]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef]
- Ognik, K.; Kozłowski, K.; Stępniowska, A.; Listos, P.; Józefiak, D.; Zduńczyk, Z.; Jankowski, J. Antioxidant status and liver function of young Turkeys receiving a diet with full-fat insect meal from Hermetia illucens. Animals 2020, 10, 1339. [Google Scholar] [CrossRef] [PubMed]
- Murawska, D.; Daszkiewicz, T.; Sobotka, W.; Gesek, M.; Witkowska, D.; Matusevičius, P.; Bakuła, T. Partial and total replacement of soybean meal with full-fat black soldier fly (Hermetia illucens L.) larvae meal in broiler chicken diets: Impact on growth performance, carcass quality and meat quality. Animals 2021, 11, 2715. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Jin, P.; Zheng, L.; Cai, M.; Yu, Z.; Yu, J.; Zhang, J. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquac. Res. 2018, 49, 1569–1577. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.; Biasibetti, E.; Tarantola, M.; Bianchi, C. Effects of yellow mealworm larvae (Tenebrio molitor) inclusion in diets for female broiler chickens: Implications for animal health and gut histology. Anim. Feed Sci. Technol. 2017, 234, 253–263. [Google Scholar] [CrossRef]
- Elliott, S. Erythropoiesis-stimulating agents and other methods to enhance oxygen transport. Br. J. Pharmacol. 2008, 154, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Gariglio, M.; Dabbou, S.; Biasato, I.; Capucchio, M.T.; Colombino, E.; Hernández, F.; Madrid, J.; Martínez, S.; Gai, F.; Caimi, C. Nutritional effects of the dietary inclusion of partially defatted Hermetia illucens larva meal in Muscovy duck. J. Anim. Sci. Biotechnol. 2019, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.B.; Kim, D.-H.; Jeong, S.-B.; Lee, J.-W.; Kim, T.-H.; Lee, H.-G.; Lee, K.-W. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult. Sci. 2020, 99, 3133–3143. [Google Scholar] [CrossRef] [PubMed]
- Brede, A.; Wecke, C.; Liebert, F. Does the optimal dietary methionine to cysteine ratio in diets for growing chickens respond to high inclusion rates of insect meal from Hermetia illucens? Animals 2018, 8, 187. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; pp. 1–187. [Google Scholar]
- Sypniewski, J.; Kierończyk, B.; Benzertiha, A.; Mikołajczak, Z.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.; Sassek, M.; Rawski, M.; Czekała, W.; Józefiak, D. Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: Effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Br. Poult. Sci. 2020, 61, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; Dabbou, S.; De Marco, M.; Cullere, M.; Biasato, I.; Biasibetti, E.; Capucchio, M.; Bergagna, S.; Dezzutto, D.; Meneguz, M. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 2018, 12, 2032–2039. [Google Scholar] [CrossRef] [PubMed]
- Mwaniki, Z.; Neijat, M.; Kiarie, E. Egg production and quality responses of adding up to 7.5% defatted black soldier fly larvae meal in a corn–soybean meal diet fed to Shaver White Leghorns from wk 19 to 27 of age. Poult. Sci. 2018, 97, 2829–2835. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, X.; Yao, Y.; Qu, X.; Chen, J.; Xie, K.; Wang, X.; Qi, Y.; Xiao, B.; He, C. Effects of different levels of Hermetia illucens larvae meal on performance, egg quality, yolk fatty acid composition and oxidative status of laying hens. Ital. J. Anim. Sci. 2021, 20, 256–266. [Google Scholar] [CrossRef]
- Jintasataporn, O. Production performance of broiler chickens fed with silkworm pupa (Bombyx mori). J. Agric. Sci. Technol. 2012, 2, 505. [Google Scholar]
- Wang, J.; Peng, K. Developmental morphology of the small intestine of African ostrich chicks. Poult. Sci. 2008, 87, 2629–2635. [Google Scholar] [CrossRef] [PubMed]
- Cano-Cebrián, M.J.; Dahlgren, D.; Kullenberg, F.; Peters, K.; Olander, T.; Sjöblom, M.; Lennernäs, H. Chemotherapeutics combined with luminal irritants: Effects on small-intestinal mannitol permeability and villus length in rats. Int. J. Mol. Sci. 2022, 23, 1021. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Mallet, S.; Leconte, M.; Lessire, M.; Gabriel, I. The effects of fructo-oligosaccharides or whole wheat on the performance and digestive tract of broiler chickens. Br. Poult. Sci. 2008, 49, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Qaisrani, S.; Moquet, P.; Van Krimpen, M.; Kwakkel, R.; Verstegen, M.; Hendriks, W. Protein source and dietary structure influence growth performance, gut morphology, and hindgut fermentation characteristics in broilers. Poult. Sci. 2014, 93, 3053–3064. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Li, M.; Wang, G.; Wang, K.; Shang, R.; Wang, Z.; Li, L. Evaluation of the low inclusion of full-fatted Hermetia illucens larvae meal for layer chickens: Growth performance, nutrient digestibility, and gut health. Front. Vet. Sci. 2020, 7, 585843. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; De Marco, M.; Rotolo, L.; Renna, M.; Lussiana, C.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Costa, P.; Gai, F. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Lauwaerts, A.; Ferrocino, I.; Biasato, I.; Sirri, F.; Zampiga, M.; Bergagna, S.; Pagliasso, G.; Gariglio, M.; Colombino, E.; et al. Modified black soldier fly larva fat in broiler diet: Effects on performance, carcass traits, blood parameters, histomorphological features and gut microbiota. Animals 2021, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Anim. Sci. Biotechnol. 2021, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, E.; Nikouli, E.; Piccolo, G.; Gasco, L.; Gai, F.; Chatzifotis, S.; Mente, E.; Kormas, K.A. Reshaping gut bacterial communities after dietary Tenebrio molitor larvae meal supplementation in three fish species. Aquaculture 2019, 503, 628–635. [Google Scholar] [CrossRef]
- Elahi, U.; Xu, C.-C.; Wang, J.; Lin, J.; Wu, S.-G.; Zhang, H.-J.; Qi, G.-H. Insect meal as a feed ingredient for poultry. Anim. Biosci. 2022, 35, 332–348. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, K.D.; Sazili, A.Q. Efficacy of carcass electrical stimulation in meat quality enhancement: A review. Asian-Australas. J. Anim. Sci. 2014, 27, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Wideman, N.; O’bryan, C.; Crandall, P. Factors affecting poultry meat colour and consumer preferences-A review. J. World’s Poult. Sci. 2016, 72, 353–366. [Google Scholar] [CrossRef]
- Benahmed, S.; Askri, A.; de Rauglaudre, T.; Létourneau-Montminy, M.P.; Alnahhas, N. Effect of reduced crude protein diets supplemented with free limiting amino acids on body weight, carcass yield, and breast meat quality in broiler chickens. Poult. Sci. 2023, 102, 103041. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, H.R.; Lee, S.; Baek, Y.-C.; Jeong, J.Y.; Bang, H.T.; Ji, S.Y.; Park, S.H. Effects of dietary inclusion level of microwave-dried and press-defatted black soldier fly (Hermetia illucens) larvae meal on carcass traits and meat quality in broilers. Animals 2021, 11, 665. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, E.; Pretorius, Q.; Hoffman, L.; Drew, D. The carcass quality, meat quality and sensory characteristics of broilers raised on diets containing either Musca domestica larvae meal, fish meal or soya bean meal as the main protein source. Anim. Prod. Sci. 2013, 54, 622–628. [Google Scholar] [CrossRef]
- Leiber, F.; Gelencsér, T.; Stamer, A.; Amsler, Z.; Wohlfahrt, J.; Früh, B.; Maurer, V. Insect and legume-based protein sources to replace soybean cake in an organic broiler diet: Effects on growth performance and physical meat quality. Renew. Agric. Food Syst. 2017, 32, 21–27. [Google Scholar] [CrossRef]
- Bianchi, M.; Ferioli, F.; Petracci, M.; Caboni, M.F.; Cavani, C. The influence of dietary lipid source on quality characteristics of raw and processed chicken meat. Eur. Food Res. Technol. 2009, 229, 339–348. [Google Scholar] [CrossRef]
- Kierończyk, B.; Rawski, M.; Mikołajczak, Z.; Szymkowiak, P.; Stuper-Szablewska, K.; Józefiak, D. Black soldier fly larva fat in broiler chicken diets affects breast meat quality. Animals 2023, 13, 1137. [Google Scholar] [CrossRef] [PubMed]
Nutrient Composition a (%) | H. illucens | S. frugiperda |
---|---|---|
Dry matter (as such basis) | 91.00 | 90.00 |
Crude protein | 42.00 | 47.23 |
Crude fat | 32.60 | 12.89 |
Ash | 10.70 | 8.84 |
Crude fibre | 9.40 | 9.48 |
Nitrogen-free extract | 5.30 | 21.56 |
Calcium | 2.10 | 0.37 |
Available phosphorus | 0.94 | 0.36 |
Energy Content (kcal/kg) | H. illucens | S. frugiperda |
Gross energy | 5010 | 4410 |
Metabolisable energy b | 1464 | 1284 |
Essential Amino Acid (%) | H. illucens | S. frugiperda |
Arginine | 2.26 | 5.52 |
Lysine | 3.13 | 6.13 |
Methionine | 1.22 | 2.03 |
Threonine | 1.88 | 2.17 |
Leucine | 3.11 | 6.13 |
Isoleucine | 2.54 | 3.14 |
Valine | 3.08 | 3.30 |
Dispensable Amino Acid (%) | H. illucens | S. frugiperda |
Cysteine | 0.40 | 0.72 |
Tryptophan | 0.27 | 2.20 |
Glycine | 3.06 | 4.21 |
Glutamic acid | 11.32 | 14.02 |
Proline | 2.89 | 2.60 |
Tyrosine | 3.31 | 3.14 |
Phenylalanine | 4.32 | 4.20 |
Ingredient (%) | Starter Meal | ||||||
---|---|---|---|---|---|---|---|
Control | HI4 | HI8 | HI12 | SF4 | SF8 | SF12 | |
Corn grain | 51.17 | 51.93 | 54.35 | 55.57 | 52.26 | 53.92 | 54.35 |
Wheat bran | 4.00 | 4.00 | 3.00 | 3.00 | 4.00 | 3.00 | 3.00 |
Rice polishing | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Soybean oil | 4.00 | 3.00 | 1.80 | 0.80 | 3.00 | 2.70 | 2.50 |
Soybean meal a | 28.50 | 25.00 | 21.00 | 17.00 | 24.50 | 20.20 | 16.00 |
Fish meal a | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
HI meal and SF meals | - | 4.00 | 8.00 | 12.00 | 4.00 | 8.00 | 12.00 |
L-Lysine HCl | 0.03 | - | - | - | - | - | - |
DL-Methionine | 0.15 | 0.12 | 0.10 | 0.07 | 0.09 | 0.03 | - |
Common salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Limestone | 1.75 | 1.55 | 1.35 | 1.16 | 1.75 | 1.75 | 1.75 |
Vitamin premix b | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Micro min premix c | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Nutrient Composition a, (%) | Control | HI4 | HI8 | HI12 | SF4 | SF8 | SF12 |
Dry matter | 89.40 | 89.40 | 89.50 | 89.40 | 89.30 | 89.50 | 89.40 |
Crude protein d | 23.00 | 23.03 | 23.00 | 22.98 | 23.03 | 23.00 | 22.98 |
Ether extract | 6.65 | 6.72 | 6.80 | 6.86 | 6.63 | 6.58 | 6.59 |
Crude fibre | 4.06 | 4.22 | 4.27 | 4.36 | 4.22 | 4.27 | 4.36 |
Ash | 3.62 | 3.85 | 3.96 | 3.80 | 3.51 | 3.63 | 3.66 |
NFE e | 61.00 | 60.98 | 60.84 | 60.94 | 61.18 | 60.91 | 60.94 |
Calcium | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
Phosphorus (Avail.) f | 0.51 | 0.51 | 0.52 | 0.52 | 0.51 | 0.52 | 0.52 |
Lysine | 1.32 | 1.32 | 1.33 | 1.33 | 1.32 | 1.33 | 1.33 |
Methionine | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Threonine | 0.88 | 0.89 | 0.90 | 0.90 | 0.89 | 0.90 | 0.90 |
Valine | 1.03 | 1.04 | 1.03 | 1.04 | 1.04 | 1.03 | 1.04 |
Arginine | 1.41 | 1.41 | 1.42 | 1.40 | 1.41 | 1.42 | 1.40 |
Leucine | 1.46 | 1.46 | 1.44 | 1.45 | 1.46 | 1.44 | 1.45 |
Isoleucine | 0.88 | 0.89 | 0.88 | 0.89 | 0.89 | 0.88 | 0.89 |
Energy Content (kcal/kg) | Control | HI4 | HI8 | HI12 | SF4 | SF8 | SF12 |
Gross energy | 4606 | 4593 | 4598 | 4604 | 4593 | 4598 | 4604 |
Metabolisable energy g | 2980 | 2978 | 2973 | 2974 | 2978 | 2973 | 2973 |
Ingredient (%) | Grower Meal | ||||||
---|---|---|---|---|---|---|---|
Control | HI4 | HI8 | HI12 | SF4 | SF8 | SF12 | |
Corn grain | 53.61 | 55.04 | 56.97 | 58.54 | 55.00 | 56.56 | 58.28 |
Wheat bran | 5.00 | 5.00 | 4.00 | 3.00 | 5.00 | 4.00 | 3.00 |
Rice polishing | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Soybean oil | 4.50 | 3.30 | 2.30 | 1.80 | 3.60 | 3.20 | 2.80 |
Soybean meal | 26.00 | 22.00 | 18.30 | 14.50 | 21.6 | 17.5 | 13.2 |
Fish meal | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
HI and SF meals | - | 4.00 | 8.00 | 12.00 | 4.00 | 8.00 | 12.0 |
DL-Methionine | 0.14 | 0.11 | 0.08 | 0.06 | 0.08 | 0.02 | - |
Common salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Limestone | 1.35 | 1.15 | 0.95 | 0.70 | 1.32 | 1.32 | 1.32 |
Vitamin premix a | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Micro min premix b | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Nutrient Composition (%) | Control | HI4 | HI8 | HI12 | SF4 | SF8 | SF12 |
Dry matter | 89.40 | 89.30 | 89.50 | 89.40 | 89.30 | 89.50 | 89.40 |
Crude protein | 21.51 | 21.50 | 21.52 | 21.50 | 21.50 | 21.52 | 21.50 |
Ether extract | 7.06 | 7.08 | 7.10 | 7.14 | 7.03 | 7.02 | 6.99 |
Crude fibre | 4.06 | 4.18 | 4.27 | 4.31 | 4.18 | 4.18 | 4.21 |
Ash | 3.37 | 3.55 | 3.68 | 3.81 | 3.39 | 3.51 | 3.62 |
NFE c | 62.16 | 62.20 | 61.89 | 61.13 | 62.20 | 62.47 | 62.27 |
Calcium | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
Phosphorus (Avail) d | 0.43 | 0.42 | 0.42 | 0.43 | 0.42 | 0.42 | 0.43 |
Lysine | 1.18 | 1.19 | 1.19 | 1.19 | 1.19 | 1.19 | 1.19 |
Methionine | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 |
Threonine | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 |
Valine | 0.91 | 0.92 | 0.91 | 0.92 | 0.92 | 0.91 | 0.92 |
Arginine | 1.27 | 1.27 | 1.28 | 1.27 | 1.27 | 1.28 | 1.27 |
Leucine | 1.30 | 1.30 | 1.31 | 1.30 | 1.30 | 1.31 | 1.30 |
Isoleucine | 0.80 | 0.81 | 0.80 | 0.80 | 0.81 | 0.80 | 0.80 |
Energy Content (kcal/kg) | Control | HI4 | HI8 | HI12 | SF4 | SF8 | SF12 |
Gross energy | 4663 | 4659 | 4664 | 4671 | 4659 | 4635 | 4636 |
Metabolisable energy e | 3055 | 3049 | 3048 | 3051 | 3049 | 3048 | 3051 |
Ingredient (%) | Finisher Meal | ||||||
---|---|---|---|---|---|---|---|
Control | HI4 | HI8 | HI12 | SF4 | SF8 | SF12 | |
Corn grain | 57.27 | 58.65 | 61.00 | 63.24 | 58.77 | 60.83 | 62.35 |
Wheat bran | 5.00 | 5.00 | 4.00 | 3.00 | 5.00 | 4.00 | 3.00 |
Rice polishing | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Soybean oil | 5.50 | 4.30 | 3.20 | 2.00 | 4.80 | 4.00 | 3.60 |
Soybean meal | 22.50 | 18.50 | 14.50 | 10.70 | 17.80 | 13.60 | 9.50 |
Fish meal | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
HI and SF meals | - | 4.00 | 8.00 | 12.00 | 4.00 | 8.00 | 12.00 |
L-Lysine HCl | 0.04 | 0.03 | 0.03 | - | - | - | - |
DL-Methionine | 0.14 | 0.12 | 0.09 | 0.06 | 0.08 | 0.02 | - |
Common salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Limestone | 1.15 | 1.00 | 0.78 | 0.60 | 1.15 | 1.15 | 1.15 |
Vitamin premix a | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Micro min premix b | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Nutrient Composition (%) | Control | HI4 | HI8 | HI12 | SF4 | SF8 | SF12 |
Dry matter | 89.40 | 89.30 | 89.60 | 89.50 | 89.30 | 89.60 | 89.50 |
Crude protein | 19.52 | 19.53 | 19.51 | 19.52 | 19.53 | 29.51 | 19.52 |
Ether extract | 8.06 | 8.08 | 8.11 | 8.13 | 8.01 | 8.02 | 7.99 |
Crude fibre | 3.99 | 4.04 | 4.08 | 4.10 | 3.96 | 4.08 | 4.01 |
Ash | 3.44 | 3.54 | 3.53 | 3.57 | 3.47 | 3.43 | 3.51 |
NFE c | 63.82 | 63.69 | 63.50 | 63.40 | 64.12 | 64.24 | 63.96 |
Calcium | 0.65 | 0.66 | 0.65 | 0.66 | 0.66 | 0.65 | 0.66 |
Phosphorus d (Avail) | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 |
Lysine | 1.08 | 1.08 | 1.09 | 1.08 | 1.08 | 1.09 | 1.08 |
Methionine | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 |
Threonine | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 |
Valine | 0.84 | 0.84 | 0.84 | 0.85 | 0.84 | 0.84 | 0.85 |
Arginine | 1.17 | 1.18 | 1.17 | 1.18 | 1.18 | 1.17 | 1.18 |
Leucine | 1.19 | 1.19 | 1.19 | 1.20 | 1.19 | 1.19 | 1.20 |
Isoleucine | 0.75 | 0.75 | 0.76 | 0.75 | 0.75 | 0.76 | 0.75 |
Energy Content (kcal/kg) | Control | HI4 | HI8 | HI12 | SF4 | SF8 | SF12 |
Gross energy | 4733 | 4728 | 4719 | 4713 | 4722 | 4721 | 4718 |
Metabolisable energy e | 3124 | 3112 | 3105 | 3102 | 3112 | 3105 | 3102 |
Items | Control | Hermetia illucens | Spodoptera frugiperda | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HI4 | HI8 | HI12 | SF4 | SF8 | SF12 | ANOVA | HI Lin 1 | HI Quad 1 | SF Lin 1 | SF Quad 1 | |||
Live weight, g | |||||||||||||
DOC | 40.05 | 40.21 | 40.07 | 40.09 | 40.00 | 40.07 | 40.12 | 0.06 | 0.92 | 0.99 | 0.70 | 0.85 | 0.60 |
10 d | 230.26 e | 247.34 d | 263.38 c | 292.66 ab | 269.70 c | 287.17 b | 301.00 a | 4.23 | <0.001 | <0.001 | 0.172 | <0.001 | <0.001 |
24 d | 1016.97 e | 1084.16 d | 1147.76 c | 1267.82 a | 1141.05 c | 1166.36 c | 1230.56 b | 13.72 | <0.001 | <0.001 | 0.007 | <0.001 | <0.001 |
35 d | 1876.62 d | 1977.05 c | 2050.34 b | 2152.38 a | 1994.78 c | 2052.44 b | 2147.45 a | 15.16 | <0.001 | <0.001 | 0.933 | <0.001 | <0.001 |
Average daily gain, g | |||||||||||||
1–10 d | 23.03 e | 24.73 de | 26.34 cd | 29.27 a | 26.97 bc | 28.72 ab | 30.10 a | 0.46 | 0.01 | 0.001 | 0.419 | 0.112 | 0.275 |
11–24 d | 56.19 e | 59.77 d | 63.17 c | 69.65 a | 62.24 c | 62.80 c | 66.40 b | 0.70 | <0.001 | <0.001 | 0.004 | <0.001 | 0.001 |
25–35 d | 78.15 c | 81.17 ab | 82.05 ab | 80.41 b | 77.61 c | 80.55 b | 83.55 a | 0.35 | <0.001 | <0.001 | 0.073 | 0.001 | <0.001 |
1–35 d | 53.62 d | 56.49 c | 58.58 b | 61.50 a | 56.99 c | 58.64 b | 61.36 a | 0.42 | <0.001 | <0.001 | <0.001 | <0.001 | 0.02 |
Daily feed intake, g | |||||||||||||
1–10 d | 24.08 | 24.78 | 24.17 | 24.15 | 24.30 | 23.94 | 23.38 | 0.13 | 0.168 | 0.793 | 0.289 | 0.377 | 0.055 |
11–24 d | 92.69 | 92.94 | 91.00 | 92.87 | 91.53 | 91.51 | 91.25 | 0.32 | 0.475 | 0.715 | 0.353 | 0.226 | 0.969 |
25–35 d | 174.75 | 173.86 | 173.79 | 177.24 | 176.97 | 176.57 | 175.73 | 0.54 | 0.43 | 0.319 | 0.196 | 0.294 | 0.38 |
1–35 d | 97.17 | 97.19 | 96.32 | 97.89 | 97.60 | 97.34 | 96.79 | 0.20 | 0.49 | 0.836 | 0.378 | 0.134 | 0.28 |
Feed conversion ratio, g/g | |||||||||||||
1–10 d | 1.05 a | 1.0 a | 0.92 b | 0.83 d | 0.90 bc | 0.84 cd | 0.78 d | 0.01 | 0.005 | 0.002 | 0.84 | 0.05 | 0.84 |
11–24 d | 1.65 a | 1.55 b | 1.44 c | 1.33 d | 1.47 c | 1.46 c | 1.37 d | 0.02 | <0.001 | <0.001 | 0.66 | <0.001 | 0.03 |
25–35 d | 2.28 a | 2.14 cd | 2.20 bc | 2.11 d | 2.24 ab | 2.19 bc | 2.13 d | 0.02 | <0.001 | <0.001 | 0.686 | 0.024 | <0.001 |
1–35 d | 1.85 a | 1.76 b | 1.68 c | 1.63 d | 1.75 b | 1.69 c | 1.62 d | 0.01 | 0.003 | 0.003 | 0.04 | 0.045 | 0.02 |
Trait | Control | Hermetia illucens | Spodoptera frugiperda | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HI4 | HI8 | HI12 | SF4 | SF8 | SF12 | ANOVA | HI Lin. | HI Quad. | SF Lin. | SF Quad. | |||
Haematology | |||||||||||||
Hb | 9.80 ab | 8.80 c | 9.74 ab | 9.80 ab | 8.83 c | 9.40 b | 10.26 a | 0.11 | <0.001 | 0.131 | <0.001 | 0.598 | <0.001 |
RBCs | 2.92 d | 3.49 b | 3.21 c | 3.60 b | 2.91 d | 3.12 c | 3.92 a | 0.06 | <0.001 | 0.228 | <0.001 | <0.001 | <0.001 |
HCT | 31.91 b | 28.82 f | 30.82 d | 31.48 c | 28.70 f | 29.88 e | 33.21 a | 0.26 | <0.001 | 0.031 | <0.001 | <0.001 | <0.001 |
MCV | 104.81 bc | 88.38 d | 89.27 d | 108.06 b | 83.48 e | 103.15 c | 116.07 a | 1.97 | <0.001 | 0.168 | <0.001 | 0.981 | <0.001 |
MCH | 35.76 a | 27.75 d | 27.91 d | 33.96 b | 26.85 e | 23.95 f | 32.09 c | 0.68 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
MCHC | 34.08 c | 33.62 d | 34.20 bc | 35.14 a | 34.06 c | 33.41 e | 34.34 b | 0.09 | <0.001 | <0.001 | <0.001 | 0.221 | 0.004 |
Platelets | 15055 e | 13086 f | 15123 e | 34961 b | 18036 d | 19826 c | 37937 a | 1611.6 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
TLC | 12120 d | 6575 g | 11104 e | 16218 c | 8771 f | 18472 b | 19125 a | 771.07 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Heter. | 35.32 e | 37.77 d | 41.40 c | 47.29 b | 34.95 e | 35.19 e | 60.65 a | 1.51 | <0.001 | <0.001 | <0.001 | 0.366 | <0.001 |
Lym. | 36.03 e | 48.03 d | 58.45 b | 60.93 a | 57.28 c | 58.55 b | 61.05 a | 1.46 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Mono. | 1.97 | 1.95 | 2.00 | 2.00 | 1.97 | 2.01 | 1.99 | 0.03 | 0.998 | 0.755 | 0.905 | 0.734 | 0.855 |
EO. | 1.97 | 1.98 | 1.97 | 1.80 | 1.95 | 2.00 | 1.99 | 0.03 | 0.637 | 0.252 | 0.361 | 0.576 | 0.182 |
Serum biochemistry | |||||||||||||
Creatinine | 0.46 a | 0.42 a | 0.38 abc | 0.27 bc | 0.39 ab | 0.36 abc | 0.24 c | 0.02 | <0.001 | <0.001 | 0.073 | 0.004 | 0.041 |
Glucose | 212.80 a | 201.40 ab | 195.80 cd | 137 f | 198 bc | 191.80 d | 181.60 e | 3.93 | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 |
Cholesterol | 154.20 a | 154.40 a | 152.20 a | 120.40 c | 153 a | 143.40 b | 120.20 c | 0.09 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 |
T. Protein | 3.20 ab | 2.78 c | 3.23 ab | 3.30 a | 2.73 c | 3.03 b | 3.30 a | 0.05 | <0.001 | 0.002 | 0.001 | 0.15 | <0.001 |
Alb. | 1.39 c | 1.30 c | 1.40 bc | 1.48 ab | 1.38 c | 1.40 bc | 1.58 a | 0.02 | 0.027 | 0.017 | 0.963 | 0.019 | 0.544 |
Glob. | 1.30 e | 1.40 d | 1.63 c | 1.83 ab | 1.60 c | 1.80 b | 1.91 a | 0.04 | <0.001 | <0.001 | <0.001 | 0.814 | <0.001 |
Uric acid | 4.30 a | 3.41 d | 4.08 b | 3.61 c | 4.17 b | 3.50 cd | 2.28 e | 0.03 | <0.001 | <0.001 | 0.001 | 0.013 | <0.001 |
Diet | Site | Vh | Cd | Vw | Vh/Cd |
---|---|---|---|---|---|
Control | Jejunum | 1018.0 g | 179.21 ab | 41.34 f | 5.74 f |
Ileum | 1113.9 f | 166.50 bcd | 49.71 ef | 6.10 f | |
HI4 | Jejunum | 1028.9 g | 188.07 a | 44.34 f | 9.37 bc |
Ileum | 1079.2 fg | 160.62 cde | 48.70 ef | 7.57 e | |
HI8 | Jejunum | 1407.3 de | 168.70 bc | 51.474 def | 9.86 ab |
Ileum | 1387.8 e | 149.06 ef | 55.76 cde | 8.42 cde | |
HI12 | Jejunum | 1557.9 b | 155.15 cdef | 72.06 ab | 10.16 ab |
Ileum | 1477.0 cd | 145.88 f | 63.47 bc | 9.46 abc | |
SF4 | Jejunum | 1432.1 de | 153.82 def | 59.118 cde | 9.08 bcd |
Ileum | 1123.6 f | 148.56 ef | 59.86 cde | 7.63 e | |
SF8 | Jejunum | 1482.1 cd | 153.77 def | 61.42 bcd | 9.32 bc |
Ileum | 1435.0 de | 148.29 ef | 63.89 bc | 7.79 de | |
SF12 | Jejunum | 1759.9 a | 145.08 f | 80.17 a | 10.76 a |
Ileum | 1511.8 bc | 142.81 f | 76.88 a | 9.93 ab | |
PSEM | 15.89 | 2.95 | 2.39 | 0.34 | |
Probability | |||||
Diet | <0.001 | <0.001 | <0.001 | <0.001 | |
Site | <0.001 | <0.001 | 0.35 | 0.33 | |
Diet * Site | <0.001 | <0.001 | 0.01 | <0.001 |
Trait | Control | Hermetia illucens | Spodoptera frugiperda | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HI4 | HI8 | HI12 | SF4 | SF8 | SF12 | ANOVA | HI Lin. | HI Quad. | SF Lin. | SF Quad. | |||
Cooking loss | 33.81 a | 28.55 b | 26.67 bc | 22.79 de | 28.61 b | 24.88 cd | 20.10 e | 0.80 | <0.001 | <0.001 | 0.45 | <0.001 | 0.024 |
Drip loss | 2.69 a | 2.24 ab | 2.18 abc | 1.98 bc | 1.54 cd | 2.59 ab | 1.19 d | 0.12 | 0.003 | 883 | 0.072 | 0.021 | 0.315 |
Meat pH | 6.13 | 6.13 | 6.16 | 6.17 | 6.13 | 6.18 | 6.14 | 0.01 | 0.896 | 0.304 | 0.957 | 0.578 | 0.894 |
Shear Force | 61.40 | 62.61 | 61.64 | 60.76 | 61.42 | 60.59 | 60.57 | 0.22 | 0.133 | 0.27 | 0.082 | 0.26 | 0.297 |
L* | 50.15 c | 48.98 c | 54.83 b | 57.68 ab | 55.88 b | 56.93 ab | 59.10 a | 0.70 | <0.001 | 0.251 | <0.001 | <0.001 | 0.795 |
a* | 15.68 a | 15.57 a | 15.62 ab | 14.17 bc | 14.70 ab | 14.09 bc | 12.94 c | 0.22 | <0.001 | 0.12 | 0.005 | 0.026 | 0.676 |
b* | 13.40 d | 15.39 c | 15.56 c | 17.72 b | 15.32 c | 16.50 bc | 20.38 a | 0.41 | <0.001 | 0.06 | <0.001 | <0.001 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajjad, M.; Sajjad, A.; Chishti, G.A.; Khan, E.U.; Mozūraitis, R.; Binyameen, M. Insect Larvae as an Alternate Protein Source in Poultry Feed Improve the Performance and Meat Quality of Broilers. Animals 2024, 14, 2053. https://doi.org/10.3390/ani14142053
Sajjad M, Sajjad A, Chishti GA, Khan EU, Mozūraitis R, Binyameen M. Insect Larvae as an Alternate Protein Source in Poultry Feed Improve the Performance and Meat Quality of Broilers. Animals. 2024; 14(14):2053. https://doi.org/10.3390/ani14142053
Chicago/Turabian StyleSajjad, Muhammad, Asif Sajjad, Ghazanfar Ali Chishti, Ehsaan Ullah Khan, Raimondas Mozūraitis, and Muhammad Binyameen. 2024. "Insect Larvae as an Alternate Protein Source in Poultry Feed Improve the Performance and Meat Quality of Broilers" Animals 14, no. 14: 2053. https://doi.org/10.3390/ani14142053
APA StyleSajjad, M., Sajjad, A., Chishti, G. A., Khan, E. U., Mozūraitis, R., & Binyameen, M. (2024). Insect Larvae as an Alternate Protein Source in Poultry Feed Improve the Performance and Meat Quality of Broilers. Animals, 14(14), 2053. https://doi.org/10.3390/ani14142053