Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper (Epinephelus coioides)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Growth Trial
2.3. Sample Collection
2.4. Protein Digestion and Peptide TMT Labeling
2.5. High-PH Reversed-Phase Peptide Fractionation
2.6. LC-MS/MS Analysis
2.7. Database Search and Data Analysis
2.8. Bioinformatics Analysis
2.9. Parallel Reaction Monitoring (PRM) Analysis
2.10. Association Analysis of Transcriptomic and Proteomic Data
2.11. Statistical Analysis
3. Results
3.1. Growth Performance and Liver Fat Contents
3.2. Proteome Profiling
3.3. Bioinformatics Analysis
3.4. Protein Pathways Related to Fat Metabolism after Taurine Intervention
3.5. Validation of TMT Results with PRM
3.6. Association Analysis of DEGs and DEPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, L.; Qin, Y.; Wang, Y.; Li, D.; Chen, W.; Ye, J. Effects of dietary replacement of fish oil with soybean oil on the growth performance, plasma components, fatty acid composition and lipid metabolism of groupers Epinephelus coioides. Aquac. Nutr. 2021, 27, 1494–1511. [Google Scholar] [CrossRef]
- Estefanell, J.; Roo, J.; Guirao, R.; Afonso, J.M.; Fernández-Palacios, H.; Izquierdo, M.; Socorro, J. Efficient utilization of dietary lipids in Octopus vulgaris (Cuvier 1797) fed fresh and agglutinated moist diets based on aquaculture by-products and low price trash species. Aquac. Res. 2012, 44, 93–105. [Google Scholar] [CrossRef]
- Phan, L.T.T.; Kals, J.; Masagounder, K.; Mas-Munoz, J.; Schrama, J.W. Energy utilisation efficiencies of digested protein, fat and carbohydrates in striped catfish (Pangasius hypophthalmus) for whole body and fillet growth. Aquaculture 2012, 544, 737083. [Google Scholar] [CrossRef]
- Vergara, J.M.; Robainà, L.; Izquierdo, M.; De La Higuera, M. Protein sparing effect of lipids in diets for fingerlings of gilthead sea bream. Fish. Sci. 1996, 62, 624–628. [Google Scholar] [CrossRef]
- Skalli, A.; Hidalgo, M.; Abellán, E.; Arizcun, M.; Cardenete, G. Effects of the dietary protein/lipid ratio on growth and nutrient utilization in common dentex (Dentex dentex L.) at different growth stages. Aquaculture 2004, 235, 1–11. [Google Scholar] [CrossRef]
- Welengane, E.; Sado, R.Y.; Bicudo, Á.J. Protein-sparing effect by dietary lipid increase in juveniles of the hybrid fish tambatinga (♀ Colossoma macropomum × ♂ Piaractus brachypomus). Aquac. Nutr. 2019, 25, 1272–1280. [Google Scholar] [CrossRef]
- Boujard, T.; Gélineau, A.; Covès, D.; Corraze, G.; Dutto, G.; Gasset, E.; Kaushik, S. Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture 2004, 231, 529–545. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, J.; Tang, R.; Ma, H.; Chen, Y.; Lin, S. High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides. Fish Physiol. Biochem. 2020, 46, 125–134. [Google Scholar] [CrossRef]
- Wang, J.; Liang, X.; He, S.; Li, J.; Huang, K.; Zhang, Y.; Huang, D. Lipid deposition pattern and adaptive strategy in response to dietary fat in Chinese perch (Siniperca chuatsi). Nutr. Metab. 2018, 15, 77. [Google Scholar] [CrossRef]
- Cao, X.; Dai, Y.; Liu, M.; Yuan, X.; Wang, C.; Huang, Y.; Liu, W.; Jiang, G. High-fat diet induces aberrant hepatic lipid secretion in blunt snout bream by activating endoplasmic reticulum stress-associated IRE1/XBP1 pathway. BBA-Mol. Cell Biol. Lipids 2019, 1864, 213–223. [Google Scholar] [CrossRef]
- Jia, R.; Cao, L.; Du, J.; He, Q.; Gu, Z.; Jeney, G.; Xu, P.; Yin, G. Effects of high-fat diet on antioxidative status, apoptosis and inflammation in liver of tilapia (Oreochromis niloticus) via Nrf2, TLRs and JNK pathways. Fish Shellfish. Immunol. 2020, 104, 391–401. [Google Scholar] [CrossRef]
- Bai, F.; Niu, X.; Wang, X.; Ye, J. Growth performance, biochemical composition and expression of lipid metabolism related genes in groupers (Epinephelus coioides) are altered by dietary taurine. Aquac. Nutr. 2021, 27, 2690–2702. [Google Scholar] [CrossRef]
- Shi, Y.; Zhong, L.; Zhong, H.; Zhang, J.; Che, C.; Fu, G.; Hu, Y.; Mai, K. Taurine supplements in high-fat diets improve survival of juvenile Monopterus albus by reducing lipid deposition and intestinal damage. Aquaculture 2022, 547, 737431. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, K.G.; Kim, K.D.; Kim, K.W.; Son, M.H.; Rust, M.; Johnson, R. Effect of dietary taurine levels on the conjugated bile acid composition and growth of juvenile Korean rockfish Sebastes schlegeli (Hilgendorf). Aquac. Res. 2015, 46, 2768–2775. [Google Scholar] [CrossRef]
- Murakami, S.; Ono, A.; Kawasaki, A.; Takenaga, T.; Ito, T. Taurine attenuates the development of hepatic steatosis through the inhibition of oxidative stress in a model of nonalcoholic fatty liver disease in vivo and in vitro. Amino Acids 2018, 50, 1279–1288. [Google Scholar] [CrossRef]
- Hernandez, C.; Sanchez-Gutierrez, E.Y.; Ibarra-Castro, L.; Pena, E.; Gaxiola, G.; De La Barca, A.M. Effect of dietary taurine supplementation on growth performance and body composition of snapper, Lutjanus colorado juvenile. Turk. J. Fish. Aquat. Sci. 2018, 18, 1227–1233. [Google Scholar] [CrossRef]
- Hoseini, S.; Hosseini, S.; Eskandari, S.; Amirahmadi, M. Effect of dietary taurine and methionine supplementation on growth performance, body composition, taurine retention and lipid status of Persian sturgeon, Acipenser persicus (Borodin, 1897), fed with plant-based diet. Aquac. Nutr. 2018, 24, 324–331. [Google Scholar] [CrossRef]
- Garcia-Organista, A.A.; Mata-Sotres, J.A.; Viana, M.T.; Rombenso, A.N. The effects of high dietary methionine and taurine are not equal in terms of growth and lipid metabolism of juvenile California yellowtail (Seriola dorsalis). Aquaculture 2019, 512, 734304. [Google Scholar] [CrossRef]
- Aragão, C.; Teodósio, R.; Colen, R.; Richard, N.; Rønnestad, I.; Dias, J.; Conceição, L.E.; Ribeiro, L. Taurine supplementation to plant-based diets improves lipid metabolism in Senegalese sole. Animals 2023, 13, 1501. [Google Scholar] [CrossRef]
- Bai, F.; Wang, X.; Niu, X.; Shen, G.; Ye, J. Lipidomic profiling reveals the reducing lipid accumulation effect of dietary taurine in groupers (Epinephelus coioides). Front. Mol. Biosci. 2021, 8, 814318. [Google Scholar] [CrossRef]
- Xiao, R.; Feng, H.; Niu, X.; Bai, F.; Ye, J. Effect of taurine intervention on oleic acid-induced primary hepatocyte steatosis in orange-spotted grouper (Epinephelus coioides). Arch. Biol. Sci. 2021, 73, 491–501. [Google Scholar] [CrossRef]
- Chen, M.; Bai, F.; Song, T.; Niu, X.; Wang, X.; Wang, K.; Ye, J. Hepatic transcriptome analysis provides new insight into the lipid-reducing effect of dietary taurine in high–fat fed groupers (Epinephelus coioides). Metabolites 2022, 12, 670. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bai, F.; Niu, X.; Sun, Y.; Ye, J. The lipid-lowering effect of dietary taurine in orange-spotted groupers (Epinephelus coioides) involves both bile acids and lipid metabolism. Front. Mar. Sci. 2022, 9, 859428. [Google Scholar] [CrossRef]
- Estruch, G.; Martínez-Llorens, S.; Tomás-Vidal, A.; Monge-Ortiz, R.; Jover-Cerdá, M.; Brown, P.B.; Peñaranda, D.S. Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). J. Proteom. 2020, 216, 103672. [Google Scholar] [CrossRef] [PubMed]
- Boonanuntanasarn, S.; Nakharuthai, C.; Schrama, D.; Duangkaew, R.; Rodrigues, P.M. Effects of dietary lipid sources on hepatic nutritive contents, fatty acid composition and proteome of Nile tilapia (Oreochromis niloticus). J. Proteom. 2019, 192, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liu, Y.; Mai, K.; Tian, L.; Liu, D.; Tan, X.; Lin, H. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating net cages. Aquac. Int. 2005, 13, 257–269. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, H.; Ye, J. Responses of growth performance, body composition and tissue free amino acid contents of grouper (Epinephelus coioides) to dietary taurine content. Chin. J. Anim. Nutr. 2015, 27, 785–794. [Google Scholar]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Deng, L.; Han, Y.; Tang, C.; Liao, Q.; Li, Z. Label-free mass spectrometry-based quantitative proteomics analysis of serum proteins during early pregnancy in Jennies (Equus asinus). Front. Vet. Sci. 2020, 7, 569587. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, X.; Zhang, X.; Lin, L.; Zhao, H.; Liu, X. Proteome analysis and thermal-tolerant protein marker screening in the skin mucus of large yellow croaker Larimichthys crocea. Aquac. Rep. 2021, 21, 100870. [Google Scholar] [CrossRef]
- Lin, Y.; Lan, X.; Liu, Z.; Yan, Y.; Zhou, J.; Li, N.; Sun, X.; Li, Q. Activation of ATM-c-IAP1 pathway mediates the protective effects of estradiol in human vascular endothelial cells exposed to intermittent hypoxia. Nat. Sci. Sleep 2019, 11, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cai, X.; Liu, X.; Zhao, H.; Song, P.; Zhang, J. Proteomics of liver tissue of large yellow croaker (Larimichthys crocea) under high temperature stress. J. Fish. China 2021, 45, 862–870. [Google Scholar]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40, D109–D114. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Leng, L.; Ding, R.; Gong, P.; Liu, C.; Wang, N.; Li, H.; Du, Z.; Cheng, B. Integrated transcriptome and proteome analysis reveals potential mechanisms for differential abdominal fat deposition between divergently selected chicken lines. J. Proteom. 2021, 241, 104242. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, H.-Y.; Xie, S.-Q.; Zhang, P.R.; Yang, Z.-C. Effects of taurine supplementation on growth performance and feed utilization in aquatic animals: A meta-analysis. Aquaculture 2022, 551, 737896. [Google Scholar] [CrossRef]
- Jin, M.; Zhu, T.; Tocher, D.R.; Luo, J.; Shen, Y.; Li, X.; Pan, T.; Yuan, Y.; Betancor, M.B.; Jiao, L.; et al. Dietary fenofibrate attenuated high-fat-diet-induced lipid accumulation and inflammation response partly through regulation of pparα and sirt1 in juvenile black seabream (Acanthopagrus schlegelii). Dev. Comp. Immunol. 2020, 109, 103691. [Google Scholar] [CrossRef]
- Ding, T.; Xu, N.; Liu, Y.; Du, J.; Xiang, X.; Xu, D.; Liu, Q.; Yin, Z.; Li, J.; Mai, K.; et al. Effect of dietary bile acid (BA) on the growth performance, body composition, antioxidant responses and expression of lipid metabolism-related genes of juvenile large yellow croaker (Larimichthys crocea) fed high-lipid diets. Aquaculture 2020, 518, 734768. [Google Scholar] [CrossRef]
- Fei, S.; Xia, Y.; Chen, Z.; Liu, C.; Liu, H.; Han, D.; Jin, J.; Yang, Y.; Zhu, X.; Xie, S. A high-fat diet alters lipid accumulation and oxidative stress and reduces the disease resistance of overwintering hybrid yellow catfish (Pelteobagrus fulvidraco♀ × P. vachelli♂). Aquac. Rep. 2022, 23, 101043. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, Y.; Zhao, H.; Chen, W.; Chen, Y.; Lin, S. Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides. Aquaculture 2019, 506, 394–400. [Google Scholar] [CrossRef]
- Yin, P.; Xie, S.; Zhuang, Z.; He, X.; Tang, X.; Tian, L.; Liu, Y.; Niu, J. Dietary supplementation of bile acid attenuate adverse effects of high-fat diet on growth performance, antioxidant ability, lipid accumulation and intestinal health in juvenile largemouth bass (Micropterus salmoides). Aquaculture 2021, 531, 735864. [Google Scholar] [CrossRef]
- Wang, J.-T.; Liu, Y.-J.; Tian, L.-X.; Mai, K.-S.; Du, Z.-Y.; Wang, Y.; Yang, H. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture 2005, 249, 439–447. [Google Scholar] [CrossRef]
- Han, T.; Li, X.; Wang, J.; Hu, S.; Jiang, Y.; Zhong, X. Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker Nibea japonica. Aquaculture 2014, 434, 145–150. [Google Scholar] [CrossRef]
- Dehghani, R.; Oujifard, A.; Mozanzadeh, M.T.; Morshedi, V.; Bagheri, D. Effects of dietary taurine on growth performance, antioxidant status, digestive enzymes activities and skin mucosal immune responses in yellowfin seabream, Acanthopagrus latus. Aquaculture 2020, 517, 734795. [Google Scholar] [CrossRef]
- Koven, W.; Peduel, A.; Gada, M.; Nixon, O.; Ucko, M. Taurine improves the performance of white grouper juveniles (Epinephelus aeneus) fed a reduced fish meal diet. Aquaculture 2016, 460, 8–14. [Google Scholar] [CrossRef]
- Yun, B.; Ai, Q.; Mai, K.; Xu, W.; Qi, G.; Luo, Y. Synergistic effects of dietary cholesterol and taurine on growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture 2012, 324, 85–91. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, G.; Li, Z.; Hu, Y.; Zhong, L.; Zhou, Q.; Peng, M. Effect of dietary taurine supplementation on growth, digestive enzyme, immunity and resistant to dry stress of rice field eel (Monopterus albus) fed low fish meal diets. Aquac. Res. 2018, 49, 2108–2118. [Google Scholar] [CrossRef]
- Yang, H.; Pan, R.; Wang, J.; Zheng, L.; Li, Z.; Guo, Q.; Wang, C. Modulation of the gut microbiota and liver transcriptome by red yeast rice and monascus pigment fermented by purple monascus SHM1105 in rats fed with a high-fat diet. Front. Pharmacol. 2021, 11, 599760. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Du, L.; Wu, J.; Gan, S.; Li, Q.; Babu, V.S.; Wu, Y.; Lin, L. Saikosaponin d alleviates high-fat-diet induced hepatic steatosis in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) by targeting AMPK/PPARα pathway. Aquaculture 2022, 553, 738088. [Google Scholar] [CrossRef]
- Russell, D.W. Fifty years of advances in bile acid synthesis and metabolism. J. Lipid Res. 2009, 50, S120–S125. [Google Scholar] [CrossRef]
- Jiang, T.; Xu, C.; Liu, H.; Liu, M.; Wang, M.; Jiang, J.; Zhang, G.; Yang, C.; Huang, J.; Lou, Z. Linderae radix ethanol extract alleviates diet-induced hyperlipidemia by regulating bile acid metabolism through gut microbiota. Front. Pharmacol. 2021, 12, 627920. [Google Scholar] [CrossRef]
- Kim, S.-K.; Matsunari, H.; Nomura, K.; Tanaka, H.; Yokoyama, M.; Murata, Y.; Ishihara, K.; Takeuchi, T. Effect of dietary taurine and lipid contents on conjugated bile acid composition and growth performance of juvenile Japanese flounder Paralichthys olivaceus. Fish. Sci. 2008, 74, 875–881. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Q.; Kim, S.-K.; Liao, Z.; Wei, Y.; Sun, B.; Jia, L.; Chi, S.; Liang, M. Dietary taurine stimulates the hepatic biosynthesis of both bile acids and cholesterol in the marine teleost, tiger puffer (Takifugu rubripes). Br. J. Nutr. 2020, 123, 1345–1356. [Google Scholar] [CrossRef]
- Chiang, J.Y.; Ferrell, J.M. Bile acid metabolism in liver pathobiology. Gene Expr. 2018, 18, 71–87. [Google Scholar] [CrossRef]
- Chiang, J.Y.; Ferrell, J.M. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 2020, 4, 47–63. [Google Scholar] [CrossRef]
- Gusdon, A.M.; Song, K.-x.; Qu, S. Nonalcoholic fatty liver disease: Pathogenesis and therapeutics from a mitochondria-centric perspective. Oxid. Med. Cell. Longev. 2014, 2014, 637027. [Google Scholar] [CrossRef]
- Huang, S.; Wu, Q.; Liu, H.; Ling, H.; He, Y.; Wang, C.; Wang, Z.; Lu, Y.; Lu, Y. Alkaloids of dendrobium nobile lindl. Altered hepatic lipid homeostasis via regulation of bile acids. J. Ethnopharmacol. 2019, 241, 111976. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Z.; Ou, K.; Wang, T.; Li, Z.; Tian, Y.; Wang, Y.; Kang, X.; Li, H.; Liu, X. Evolution, dynamic expression changes and regulatory characteristics of gene families involved in the glycerophosphate pathway of triglyceride synthesis in chicken (Gallus gallus). Sci. Rep. 2019, 9, 12735. [Google Scholar] [CrossRef]
- Phan, J.; Péterfy, M.; Reue, K. Lipin expression preceding peroxisome proliferator-activated receptor-γ is critical for adipogenesis in vivo and in vitro. J. Biol. Chem. 2004, 279, 29558–29564. [Google Scholar] [CrossRef] [PubMed]
- Reue, K.; Xu, P.; Wang, X.-P.; Slavin, B.G. Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene. J. Lipid Res. 2000, 41, 1067–1076. [Google Scholar] [CrossRef]
- Shang, F.-F.; Luo, L.; Yan, J.; Yu, Q.; Guo, Y.; Wen, Y.; Min, X.-L.; Jiang, L.; He, X.; Liu, W. CircRNA_0001449 disturbs phosphatidylinositol homeostasis and AKT activity by enhancing Osbpl5 translation in transient cerebral ischemia. Redox Biol. 2020, 34, 101459. [Google Scholar] [CrossRef]
- Iynedjian, P. Molecular physiology of mammalian glucokinase. Cell. Mol. Life Sci. 2009, 66, 27–42. [Google Scholar] [CrossRef]
- Smith, T.A.; Zanda, M.; Fleming, I.N. Hypoxia stimulates 18F-fluorodeoxyglucose uptake in breast cancer cells via hypoxia inducible factor-1 and AMP-activated protein kinase. Nucl. Med. Biol. 2013, 40, 858–864. [Google Scholar] [CrossRef]
- Ronnett, G.V.; Ramamurthy, S.; Kleman, A.M.; Landree, L.E.; Aja, S. AMPK in the brain: Its roles in energy balance and neuroprotection. J. Neurochem. 2009, 109, 17–23. [Google Scholar] [CrossRef]
- Wei, C.-C.; Wu, K.; Gao, Y.; Zhang, L.-H.; Li, D.-D.; Luo, Z. Magnesium reduces hepatic lipid accumulation in yellow catfish (Pelteobagrus fulvidraco) and modulates lipogenesis and lipolysis via PPARA, JAK-STAT, and AMPK pathways in hepatocytes. J. Nutr. 2017, 147, 1070–1078. [Google Scholar] [CrossRef]
Ingredients | Diets (Fat Level/Taurine Level) | ||
---|---|---|---|
10F (10/0) | 15F (15/0) | 15FT (15/1) | |
Casein:gelatin = 4:1 | 50 | 50 | 50 |
Shrimp meal | 4 | 4 | 4 |
Corn starch | 25 | 25 | 25 |
Oil blend (fish oil:soy oil = 1:1) | 6 | 10 | 10 |
Soy lecithin | 4 | 4 | 4 |
Premix | 0.8 | 0.8 | 0.8 |
Ca(H2PO4)2 | 2 | 2 | 2 |
Microcrystalline cellulose | 7.2 | 3.2 | 2.2 |
Sodium alginate | 1 | 1 | 1 |
Taurine | 0 | 0 | 1 |
Nutrient level (analyzed values) | |||
Dry matter | 91.18 | 90.24 | 90.38 |
Crude protein | 46.55 | 46.87 | 46.56 |
Crude lipid | 10.44 | 14.79 | 14.89 |
Taurine | 0.04 | 0.04 | 0.98 |
Protein ID | Protein Abbreviation | Protein Description | FC | TMT Pattern | PRM Pattern |
---|---|---|---|---|---|
TR5402_c1_g1_ORF | CYP27α1 | Cholesterol 27-hydroxylase | 1.564 | up | up |
TR511_c4_g1_ORF | PFKFB1 | 6-phosphofructo-2-kinase | 1.269 | up | up |
TR314_c8_g1_ORF | PLCD | Phosphatidylinositol phospholipase C | 0.792 | down | down |
TR944_c0_g1_ORF_1 | ABAT | 4-aminobutyrate aminotransferase | 1.393 | up | up |
TR1786_c0_g1_ORF | GNAL | Guanine nucleotide-binding protein G subunit alpha | 0.803 | down | down |
TR1499_c4_g2_ORF | GANC | Neutral alpha-glucosidase C | 0.804 | down | nd |
TR2721_c0_g1_ORF | ENPP1_3 | Ectonucleotide pyrophosphatase | 0.785 | down | down |
TR244239_c0_g1_ORF | PCBD | 4a-hydroxytetrahydrobiopterin dehydratase | 1.319 | up | up |
Protein ID | Map Name | Protein Description | FC | p-Value | Expression Pattern |
---|---|---|---|---|---|
TR5402_c1_g1_ORF | Primary bile acid biosynthesis | Cholesterol 27-hydroxylase | 1.564 | 0.0181 | Up |
TR854_c2_g1_ORF_1 | Glycerolipid metabolism/Glycerophospholipid metabolism/mTOR signaling pathway | Phosphatidate phosphatase LPIN | 0.812 | 0.0114 | Down |
TR147_c2_g1_ORF | Glycerophospholipid metabolism/MAPK signaling pathway-yeast | Glycerol-3-phosphate dehydrogenase | 0.726 | 0.0307 | Down |
TR2191_c0_g1_ORF | Glycerophospholipid metabolism | Phosphatidylserine sn-1 acylhydrolase | 0.816 | 0.0393 | Down |
TR969_c0_g1_ORF_1 | Sphingolipid metabolism | Ceramide synthetase | 0.81 | 0.0217 | Down |
TR3417_c0_g1_ORF | Sphingolipid signaling pathway | transcription factor | 0.822 | 0.00281 | Down |
TR1786_c0_g1_ORF | Calcium signaling pathway | Guanine nucleotide-binding protein G(olf) subunit alpha | 0.803 | 0.0297 | Down |
TR1499_c4_g2_ORF | Galactose metabolism | Neutral alpha-glucosidase C | 0.804 | 0.0303 | Down |
TR61997_c0_g2_ORF | Sphingolipid signaling pathway/FoxO signaling pathway | Mitogen-activated protein kinase | 0.796 | 0.0119 | Down |
TR43919_c0_g1_ORF | Phospholipase D signaling pathway/Calcium signaling pathway | Focal adhesion kinase 2 | 0.797 | 0.0053 | Down |
TR52940_c0_g1_ORF | mTOR signaling pathway | Calcium binding protein | 0.767 | 0.0443 | Down |
TR511_c4_g1_ORF | AMPK signaling pathway | 6-phosphofructo-2-kinase | 1.269 | 0.0153 | Up |
TR2721_c0_g1_ORF | Starch and sucrose metabolism | Ectonucleotide pyrophosphatase | 0.785 | 0.0359 | Down |
TR244239_c0_g1_ORF | Folate biosynthesis | 4a-hydroxytetrahydrobiopterin dehydratase | 1.319 | 0.0351 | Up |
TR944_c0_g1_ORF_1 | beta-Alanine metabolism | 4-aminobutyrate aminotransferase | 1.393 | 0.0101 | Up |
TR76930_c0_g1_ORF | Citrate cycle | Malate dehydrogenase | 0.801 | 0.0486 | Down |
TR65955_c0_g1_ORF | Endocytosis | Arf-GAP with SH3 domain | 0.825 | 0.0437 | Down |
TR314_c8_g1_ORF | Phosphatidylinositol signaling system/Calcium signaling pathway | Phosphatidylinositol phospholipase C | 0.792 | 0.0403 | Down |
Map ID | Map Name | DEGs/DEPs |
---|---|---|
ko00120 | Primary bile acid biosynthesis | CYP27α1 |
ko04976 | Bile secretion | ATP1α |
ko00561 | Glycerolipid metabolism | LPIN |
ko04072 | Phospholipase D signaling pathway | arf1_2/PTK2B |
ko04070 | Phosphatidylinositol signaling system | plcd/PLCD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Bai, F.; Xiao, R.; Chen, M.; Sun, Y.; Ye, J. Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper (Epinephelus coioides). Animals 2024, 14, 2039. https://doi.org/10.3390/ani14142039
Zhou Y, Bai F, Xiao R, Chen M, Sun Y, Ye J. Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper (Epinephelus coioides). Animals. 2024; 14(14):2039. https://doi.org/10.3390/ani14142039
Chicago/Turabian StyleZhou, Yu, Fakai Bai, Ruyi Xiao, Mingfan Chen, Yunzhang Sun, and Jidan Ye. 2024. "Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper (Epinephelus coioides)" Animals 14, no. 14: 2039. https://doi.org/10.3390/ani14142039
APA StyleZhou, Y., Bai, F., Xiao, R., Chen, M., Sun, Y., & Ye, J. (2024). Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper (Epinephelus coioides). Animals, 14(14), 2039. https://doi.org/10.3390/ani14142039