Effects of Centella asiatica Extracts on Rumen In Vitro Fermentation Characteristics and Digestibility
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ruminal Inoculum and Substrate
2.2. C. asiatica Extraction
2.3. Incubation Procedure
2.4. Post-Fermentation Parameter Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Experiment 1
3.2. Experiment 2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laisse, S.; Baumont, R.; Veysset, P.; Benoit, M.; Madrange, P.; Rouillé, B.; Peyraud, J.-L. The net contribution of ruminant production to the protein supply for humans. In Proceedings of the 27 General meeting of the European Grassland Federation (EGF), Cork, Ireland, 17–21 June 2018; pp. 718–720. [Google Scholar]
- Church, D.C. The Ruminant Animal: Digestive Physiology and Nutrition; Waveland Press: Long Grove, IL, USA, 1993. [Google Scholar]
- Ha, J.; Lee, S.; Moon, Y.; Kim, C. Ruminant Nutrition and Physiology; Seoul National University Press: Seoul, Republic of Korea, 2005. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Hart, K.; Yanez-Ruiz, D.; Duval, S.; McEwan, N.; Newbold, C. Plant extracts to manipulate rumen fermentation. Anim. Feed. Sci. Technol. 2008, 147, 8–35. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef]
- Jouany, J.-P.; Morgavi, D. Use of ‘natural’products as alternatives to antibiotic feed additives in ruminant production. Animal 2007, 1, 1443–1466. [Google Scholar] [CrossRef]
- Wina, E.; Muetzel, S.; Becker, K. The impact of saponins or saponin-containing plant materials on ruminant production A Review. J. Agric. Food Chem. 2005, 53, 8093–8105. [Google Scholar] [CrossRef]
- McSweeney, C.; Palmer, B.; McNeill, D.; Krause, D. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed. Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Lee, M.R.; Winters, A.L.; Scollan, N.D.; Dewhurst, R.J.; Theodorou, M.K.; Minchin, F.R. Plant-mediated lipolysis and proteolysis in red clover with different polyphenol oxidase activities. J. Sci. Food Agric. 2004, 84, 1639–1645. [Google Scholar] [CrossRef]
- Kim, E.T.; Lee, S.J.; Lee, S.M.; Lee, S.S.; Lee, I.D.; Lee, S.K.; Lee, S.S. Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australas. J. Anim. Sci. 2015, 28, 530. [Google Scholar] [CrossRef]
- Dhar, M.; Dhar, M.; Dhawan, B.; Mehrotra, B.; Ray, C. Screening of Indian plants for biological activity: Part I. Indian J. Exp. Biol. 1968, 6, 232–247. [Google Scholar]
- Taemchuay, D.; Rukkwamsuk, T.; Sakpuaram, T.; Ruangwises, N. Antibacterial activity of crude extracts of Centella asiatica against Staphylococcus aureus in bovine mastitis. Kasetsart Vet 2009, 19, 119–128. [Google Scholar]
- Zainol, M.; Abd-Hamid, A.; Yusof, S.; Muse, R. Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem. 2003, 81, 575–581. [Google Scholar] [CrossRef]
- Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J. Pharm. Sci. 2010, 72, 546. [Google Scholar] [CrossRef]
- Norrapoke, T.; Wanapat, M.; Wanapat, S.; Foiklang, S. Effect of Centella asiatica powder (CAP) and mangosteen peel powder (MPP) on rumen fermentation and microbial population in swamp buffaloes. J. Anim. Plant Sci. 2014, 24, 435–444. [Google Scholar]
- Guo, Y.; Liu, J.X.; Lu, Y.; Zhu, W.; Denman, S.; McSweeney, C. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol. 2008, 47, 421–426. [Google Scholar] [CrossRef]
- Bhatta, R.; Uyeno, Y.; Tajima, K.; Takenaka, A.; Yabumoto, Y.; Nonaka, I.; Enishi, O.; Kurihara, M. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 2009, 92, 5512–5522. [Google Scholar] [CrossRef]
- Li, Z.; Deng, Q.; Liu, Y.; Yan, T.; Li, F.; Cao, Y.; Yao, J. Dynamics of methanogenesis, ruminal fermentation and fiber digestibility in ruminants following elimination of protozoa: A meta-analysis. J. Anim. Sci. Biotechnol. 2018, 9, 89. [Google Scholar] [CrossRef]
- Hristov, A.N.; Bannink, A.; Crompton, L.A.; Huhtanen, P.; Kreuzer, M.; McGee, M.; Nozière, P.; Reynolds, C.K.; Bayat, A.R.; Yáñez-Ruiz, D.R. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J. Dairy Sci. 2019, 102, 5811–5852. [Google Scholar] [CrossRef]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis: Changes in Official Methods of Analysis Made at the Annual Meeting. Supplement; Association of Official Analytical Chemists: Colombia, MD, USA, 1990; Volume 15. [Google Scholar]
- Van Soest, P.v.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- McDougall, E.I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef]
- Park, K.; Lee, H. Effects of nitrogen gas flushing in comparison with argon on rumen fermentation characteristics in in vitro studies. J. Anim. Sci. Technol. 2020, 62, 52–57. [Google Scholar] [CrossRef]
- Park, K.Y.; Lee, H.G. Can flushing gas distort the rumen in vitro experiment results? Anim. Feed. Sci. Technol. 2022, 285, 115203. [Google Scholar] [CrossRef]
- Menke, K.H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed. Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Hall, M. Challenges with nonfiber carbohydrate methods. J. Anim. Sci. 2003, 81, 3226–3232. [Google Scholar] [CrossRef]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed. Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Liu, J.; Pu, Y.-Y.; Xie, Q.; Wang, J.-K.; Liu, J.-X. Pectin induces an in vitro rumen microbial population shift attributed to the pectinolytic Treponema group. Curr. Microbiol. 2015, 70, 67–74. [Google Scholar] [CrossRef]
- Allison, M.J.; Bryant, M.P. Biosynthesis of branched-chain amino acids from branched-chain fatty acids by rumen bacteria. Arch. Biochem. Biophys. 1963, 101, 269–277. [Google Scholar] [CrossRef]
- Kand, D.; Raharjo, I.B.; Castro-Montoya, J.; Dickhoefer, U. The effects of rumen nitrogen balance on in vitro rumen fermentation and microbial protein synthesis vary with dietary carbohydrate and nitrogen sources. Anim. Feed. Sci. Technol. 2018, 241, 184–197. [Google Scholar] [CrossRef]
- Khattab, I.; Salem, A.; Abdel-Wahed, A.; Kewan, K. Effects of urea supplementation on nutrient digestibility, nitrogen utilisation and rumen fermentation in sheep fed diets containing dates. Livest. Sci. 2013, 155, 223–229. [Google Scholar] [CrossRef]
- Roman-Garcia, Y.; Mitchell, K.; Denton, B.; Lee, C.; Socha, M.; Wenner, B.; Firkins, J. Conditions stimulating neutral detergent fiber degradation by dosing branched-chain volatile fatty acids. II: Relation with solid passage rate and pH on neutral detergent fiber degradation and microbial function in continuous culture. J. Dairy Sci. 2021, 104, 9853–9867. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Guo, G.; Huo, W.; Zhang, S.; Pei, C.; Zhang, Y.; Wang, H. Effects of branched-chain volatile fatty acids on lactation performance and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows. Animal 2018, 12, 2071–2079. [Google Scholar] [CrossRef]
Ingredient | CP | EE | Crude Ash | NDF | ADF | NFC |
---|---|---|---|---|---|---|
Tall fescue | 5.53 ± 0.52 | 0.97 ± 0.52 | 6.43 ± 1.45 | 75.05 ± 3.56 | 46.32 ± 0.57 | 12.03 ± 2.11 |
Concentrate | 14.04 ± 1.35 | 3.62 ± 0.35 | 7.98 ± 0.42 | 28.72 ± 6.94 | 13.81 ± 2.34 | 45.66 ± 8.22 |
CAE | 3.04 ± 0.01 | 0.65 ± 0.00 | 16.54 ± 0.03 | 0.35 ± 0.00 | 0.23 ± 0.00 | 79.42 ± 0.05 |
Items 1 | Centella asiatica Extract Dosage 2 | RMSE | p Value | Contrast 3 | |||||
---|---|---|---|---|---|---|---|---|---|
C | T1 | T2 | T3 | T4 | L | Q | |||
6 h | |||||||||
pH | 6.94 a | 6.80 b | 6.77 b | 6.77 b | 6.76 b | 0.043 | <0.001 | <0.001 | <0.001 |
Gas production (mL) | 24.24 c | 30.72 ab | 32.59 ab | 30.37 b | 33.66 a | 1.476 | <0.001 | 0.001 | <0.001 |
CH4 (mL) | 2.20 b | 4.45 a | 4.41 a | 4.29 a | 4.55 a | 0.191 | <0.001 | <0.001 | <0.001 |
CH4 (%) | 9.03 b | 14.4 a | 13.55 a | 14.16 a | 13.53 a | 0.569 | <0.001 | <0.001 | <0.001 |
NH3-N (mg/dL) | 0.32 b | 1.10 ab | 1.55 a | 0.97 ab | 1.28 ab | 0.471 | 0.025 | 0.257 | 0.057 |
Total VFA (mM) | 64.12 c | 67.95 b | 74.48 a | 74.12 a | 73.93 a | 1.522 | <0.001 | 0.719 | <0.001 |
(mM/100 mM) | |||||||||
Acetate | 56.33 b | 59.11 a | 59.99 a | 59.72 a | 59.7 a | 0.692 | <0.001 | 0.009 | <0.001 |
Propionate | 32.51 a | 27.56 b | 27.51 bc | 27.29 bc | 26.87 c | 0.305 | <0.001 | <0.001 | <0.001 |
Iso-butyrate | 0.58 b | 0.72 a | 0.71 a | 0.69 a | 0.71 a | 0.021 | <0.001 | <0.001 | <0.001 |
Butyrate | 7.89 b | 9.77 a | 9.71 a | 9.56 a | 9.89 a | 0.476 | <0.001 | 0.001 | <0.001 |
Iso-valerate | 0.62 b | 0.96 a | 0.93 a | 0.92 a | 0.97 a | 0.033 | <0.001 | <0.001 | <0.001 |
Valerate | 2.06 | 1.87 | 1.80 | 1.82 | 1.85 | 0.134 | 0.089 | 0.387 | 0.063 |
A:P ratio | 2.27 b | 3.04 a | 3.09 a | 3.10 a | 3.15 a | 0.142 | <0.001 | <0.001 | <0.001 |
BCVFA | 1.20 b | 1.69 a | 1.64 a | 1.62 a | 1.69 a | 0.051 | <0.001 | <0.001 | <0.001 |
24 h | |||||||||
pH | 6.71 | 6.67 | 6.63 | 6.60 | 6.57 | 0.096 | 0.293 | 0.808 | 0.037 |
Gas production (mL) | 42.92 c | 49.09 b | 53.13 a | 52.17 ab | 54.82 a | 1.781 | <0.001 | 0.035 | <0.001 |
CH4 (mL) | 5.65 b | 8.47 a | 8.73 a | 8.63 a | 9.13 a | 0.337 | <0.001 | <0.001 | <0.001 |
CH4 (%) | 13.15 b | 17.28 a | 16.44 a | 16.55 a | 16.66 a | 0.521 | <0.001 | <0.001 | <0.001 |
NH3-N (mg/dL) | 6.35 c | 28.47 b | 32.41 ab | 33.45 ab | 36.74 a | 3.475 | <0.001 | <0.001 | <0.001 |
Total VFA (mM) | 90.22 ab | 98.63 ab | 108.74 a | 108.72 a | 84.92 b | 10.225 | 0.015 | 0.569 | 0.800 |
(mM/100 mM) | |||||||||
Acetate | 56.68 b | 59.81 a | 60.34 a | 59.87 a | 60.25 a | 0.626 | <0.001 | <0.001 | <0.001 |
Propionate | 30.69 a | 25.14 b | 24.95 b | 25.2 b | 24.32 b | 0.522 | <0.001 | <0.001 | <0.001 |
Iso-butyrate | 0.86 b | 1.26 a | 1.24 a | 1.25 a | 1.30 a | 0.052 | <0.001 | <0.001 | <0.001 |
Butyrate | 8.84 c | 10.11 ab | 9.88 b | 10.08 ab | 10.30 a | 0.180 | <0.001 | <0.001 | <0.001 |
Iso-valerate | 1.08 b | 1.90 a | 1.84 a | 1.85 a | 2.00 a | 0.098 | <0.001 | <0.001 | <0.001 |
Valerate | 1.85 | 1.80 | 1.75 | 1.75 | 1.83 | 0.087 | 0.377 | 0.994 | 0.626 |
A:P ratio | 2.62 b | 3.37 a | 3.43 a | 3.37 a | 3.51 a | 0.079 | <0.001 | <0.001 | <0.001 |
BCVFA | 1.93 b | 3.15 a | 3.08 a | 3.10 a | 3.30 a | 0.147 | <0.001 | <0.001 | <0.001 |
48 h | |||||||||
pH | 6.54 a | 6.49 ab | 6.48 ab | 6.50 ab | 6.46 b | 0.027 | 0.012 | 0.044 | 0.006 |
Gas production (mL) | 50.47 c | 58.17 b | 59.59 ab | 58.43 b | 61.26 a | 1.087 | <0.001 | <0.001 | <0.001 |
CH4 (mL) | 7.38 b | 10.32 a | 10.34 a | 10.19 a | 10.68 a | 0.254 | <0.001 | <0.001 | <0.001 |
CH4 (%) | 14.61 b | 17.74 a | 17.35 a | 17.44 a | 17.43 a | 0.309 | <0.001 | <0.001 | <0.001 |
NH3-N (mg/dL) | 21.13 c | 46.31 bz | 48.75 ab | 47.98 ab | 52.48 a | 2.260 | <0.001 | <0.001 | <0.001 |
Total VFA (mM) | 103.73 b | 123.55 a | 122.20 a | 116.19 a | 115.36 ab | 5.663 | 0.001 | 0.004 | 0.296 |
(mM/100 mM) | |||||||||
Acetate | 57.06 b | 59.73 a | 59.96 a | 59.77 a | 59.64 a | 0.559 | <0.001 | <0.001 | <0.001 |
Propionate | 29.40 a | 24.76 b | 24.76 b | 25.06 b | 24.63 b | 0.448 | <0.001 | <0.001 | <0.001 |
Iso-butyrate | 1.13 bc | 1.45 a | 1.23 b | 1.08 cd | 0.98 d | 0.059 | <0.001 | <0.001 | 0.007 |
Butyrate | 8.96 c | 9.98 b | 9.97 b | 10.00 b | 10.43 a | 0.117 | <0.001 | <0.001 | <0.001 |
Iso-valerate | 1.59 c | 2.26 b | 2.27 b | 2.26 b | 2.42 a | 0.050 | <0.001 | <0.001 | <0.001 |
Valerate | 1.87 | 1.82 | 1.82 | 1.82 | 1.91 | 0.074 | 0.394 | 0.852 | 0.391 |
A:P ratio | 2.76 b | 3.42 a | 3.44 a | 3.38 a | 3.43 a | 0.070 | <0.001 | <0.001 | <0.001 |
BCVFA | 2.72 c | 3.71 a | 3.50 b | 3.35 b | 3.40 b | 0.088 | <0.001 | <0.001 | <0.001 |
Items 1 | Centella asiatica Dosage (%, DM) | SEM 2 | p Value | |
---|---|---|---|---|
0 | 3.05 | |||
pH | 7.03 | 6.71 | 0.035 | 0.002 |
NH3-N (mg/dL) | 53.80 | 40.87 | 3.168 | 0.007 |
Total VFA (mM) | 33.62 | 51.18 | 0.568 | <0.001 |
(mM/100 mM) | ||||
Acetate | 22.18 | 30.84 | 3.926 | 0.067 |
Propionate | 11.19 | 15.18 | 2.352 | 0.087 |
Iso-butyrate | 0.48 | 0.31 | 1.142 | 0.010 |
Butyrate | 3.13 | 3.80 | 0.041 | 0.215 |
Iso-valerate | 0.79 | 0.69 | 0.255 | 0.450 |
Valerate | 1.36 | 2.16 | 0.059 | 0.005 |
BCVFA | 1.27 | 1.00 | 0.187 | 0.122 |
A:P ratio | 2.12 | 1.99 | 0.085 | 0.196 |
IVDMD | 43.49 | 44.41 | 2.243 | 0.572 |
IVNDFD | 10.76 | 12.03 | 1.727 | 0.515 |
IVCPD | 49.57 | 52.81 | 2.387 | 0.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Park, K.; Lee, H. Effects of Centella asiatica Extracts on Rumen In Vitro Fermentation Characteristics and Digestibility. Animals 2024, 14, 1956. https://doi.org/10.3390/ani14131956
Yang Y, Park K, Lee H. Effects of Centella asiatica Extracts on Rumen In Vitro Fermentation Characteristics and Digestibility. Animals. 2024; 14(13):1956. https://doi.org/10.3390/ani14131956
Chicago/Turabian StyleYang, Yukyoung, Kiyeon Park, and Honggu Lee. 2024. "Effects of Centella asiatica Extracts on Rumen In Vitro Fermentation Characteristics and Digestibility" Animals 14, no. 13: 1956. https://doi.org/10.3390/ani14131956
APA StyleYang, Y., Park, K., & Lee, H. (2024). Effects of Centella asiatica Extracts on Rumen In Vitro Fermentation Characteristics and Digestibility. Animals, 14(13), 1956. https://doi.org/10.3390/ani14131956