Establishing a Reference Interval for Fibroblast Growth Factor (FGF)-23 in Cats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. Analytic Methods
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. FGF-23 Concentrations
3.3. FGF-23 Reference Interval
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lund, E.M.; Armstrong, P.J.; Kirk, C.A.; Kolar, L.M.; Klausner, J.S. Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. J. Am. Vet. Med. Assoc. 1999, 214, 1336–1341. [Google Scholar] [CrossRef]
- O’Neill, D.G.; Church, D.B.; McGreevy, P.D.; Thomson, P.C.; Brodbelt, D.C. Prevalence of disorders recorded in cats attending primary-care veterinary practices in England. Vet. J. 2014, 202, 286–291. [Google Scholar] [CrossRef]
- Jepson, R.E.; Brodbelt, D.; Vallance, C.; Syme, H.M.; Elliott, J. Evaluation of predictors of the development of azotemia in cats. J. Vet. Intern. Med. 2009, 23, 806–813. [Google Scholar] [CrossRef]
- Marino, C.L.; Lascelles, B.D.; Vaden, S.L.; Gruen, M.E.; Marks, S.L. Prevalence and classification of chronic kidney disease in cats randomly selected from four age groups and in cats recruited for degenerative joint disease studies. J. Feline Med. Surg. 2014, 16, 465–472. [Google Scholar] [CrossRef]
- Sparkes, A.H.; Caney, S.; Chalhoub, S.; Elliott, J.; Finch, N.; Gajanayake, I.; Langston, C.; Lefebvre, H.P.; White, J.; Quimby, J. ISFM consensus guidelines on the diagnosis and management of feline chronic kidney disease. J. Feline Med. Surg. 2016, 18, 219–239. [Google Scholar] [CrossRef]
- International Renal Interest Society (IRIS). IRIS Staging of CKD (Modified in 2023). Available online: http://iris-kidney.com/pdf/2_IRIS_Staging_of_CKD_2023.pdf (accessed on 18 March 2023).
- Liu, S.; Guo, R.; Simpson, L.G.; Xiao, Z.S.; Burnham, C.E.; Quarles, L.D. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J. Biol. Chem. 2003, 278, 37419–37426. [Google Scholar] [CrossRef]
- Pereira, R.C.; Juppner, H.; Azucena-Serrano, C.E.; Yadin, O.; Salusky, I.B.; Wesseling-Perry, K. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone 2009, 45, 1161–1168. [Google Scholar] [CrossRef]
- Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 2004, 19, 429–435. [Google Scholar] [CrossRef]
- Saito, H.; Maeda, A.; Ohtomo, S.; Hirata, M.; Kusano, K.; Kato, S.; Ogata, E.; Segawa, H.; Miyamoto, K.; Fukushima, N. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem. 2005, 280, 2543–2549. [Google Scholar] [CrossRef]
- Liu, S.; Quarles, L.D. How fibroblast growth factor 23 works. J. Am. Soc. Nephrol. 2007, 18, 1637–1647. [Google Scholar] [CrossRef]
- Nitta, K.; Nagano, N.; Tsuchiya, K. Fibroblast growth factor 23/klotho axis in chronic kidney disease. Nephron Clin. Pract. 2014, 128, 1–10. [Google Scholar] [CrossRef]
- Isakova, T.; Wahl, P.; Vargas, G.S.; Gutierrez, O.M.; Scialla, J.; Xie, H.; Appleby, D.; Nessel, L.; Bellovich, K.; Chen, J.; et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011, 79, 1370–1378. [Google Scholar] [CrossRef]
- Ix, J.H.; Shlipak, M.G.; Wassel, C.L.; Whooley, M.A. Fibroblast growth factor-23 and early decrements in kidney function: The Heart and Soul Study. Nephrol. Dial. Transplant. 2010, 25, 993–997. [Google Scholar] [CrossRef]
- Geddes, R.F.; Finch, N.C.; Elliott, J.; Syme, H.M. Fibroblast growth factor 23 in feline chronic kidney disease. J. Vet. Intern. Med. 2013, 27, 234–241. [Google Scholar] [CrossRef]
- Liao, Y.L.; Chou, C.C.; Lee, Y.J. The association of indoxyl sulfate with fibroblast growth factor-23 in cats with chronic kidney disease. J. Vet. Intern. Med. 2019, 33, 686–693. [Google Scholar] [CrossRef]
- Finch, N.C.; Geddes, R.F.; Syme, H.M.; Elliott, J. Fibroblast growth factor 23 (FGF-23) concentrations in cats with early nonazotemic chronic kidney disease (CKD) and in healthy geriatric cats. J. Vet. Intern. Med. 2013, 27, 227–233. [Google Scholar] [CrossRef]
- Sargent, H.J.; Jepson, R.E.; Chang, Y.M.; Biourge, V.C.; Bijsmans, E.S.; Elliott, J. Fibroblast growth factor 23 and symmetric dimethylarginine concentrations in geriatric cats. J. Vet. Intern. Med. 2019, 33, 2657–2664. [Google Scholar] [CrossRef]
- Geddes, R.F.; Elliott, J.; Syme, H.M. Relationship between plasma fibroblast growth Factor-23 concentration and survival time in cats with chronic kidney disease. J. Vet. Intern. Med. 2015, 29, 1494–1501. [Google Scholar] [CrossRef]
- Lin, J.; Lin, L.; Chen, S.; Yu, L.; Chen, S.; Xia, Z. Serum fibroblast growth factor 23 (FGF-23): Associations with hyperphosphatemia and clinical staging of feline chronic kidney disease. J. Vet. Diagn. Investig. 2021, 33, 288–293. [Google Scholar] [CrossRef]
- Grelova, S.; Karasova, M.; Tothova, C.; Kiskova, T.; Baranova, D.; Lukac, B.; Fialkovicova, M.; Michalova, A.; Kunay, L.; Svoboda, M. Relationship between FGF 23, SDMA, urea, creatinine and phosphate in relation to feline chronic kidney disease. Animals 2022, 12, 2247. [Google Scholar] [CrossRef]
- Miyakawa, H.; Hsu, H.H.; Ogawa, M.; Miyagawa, Y.; Takemura, N. Assessment of the measurement of canine and feline serum fibroblast growth factor-23 concentrations by automated chemiluminescence immunoassay. J. Vet. Med. Sci. 2022, 84, 257–260. [Google Scholar] [CrossRef]
- Lapsina, S.; Nagler, N.; Müller, S.F.; Holtdirk, A.; Kottmann, T.; Müller, E.; von Luckner, J.; Schäfer, I. Comparison of three different diagnostic assays for Fibroblast growth factor-23 (FGF-23) measurements in cats: A pilot study. Animals 2023, 13, 1853. [Google Scholar] [CrossRef]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J.; American Society for Veterinary Clinical Pathology. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef]
- Geffre, A.; Concordet, D.; Braun, J.P.; Trumel, C. Reference Value Advisor: A new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet. Clin. Pathol. 2011, 40, 107–112. [Google Scholar] [CrossRef]
- Lapsina, S.; Nagler, N.; Müller, S.F.; Holtdirk, A.; Kottmann, T.; Müller, E.; Schäfer, I. Fibroblast Growth Factor-23 (FGF-23) in dogs-Reference interval and correlation with hematological and biochemical parameters. Animals 2023, 13, 3202. [Google Scholar] [CrossRef]
- Brescia, V.; Fontana, A.; Lovero, R.; Capobianco, C.; Marsico, S.V.; De Chirico, T.; Pinto, C.; Varraso, L.; Cazzolla, A.P.; Di Serio, F. Determination of iFGF23 upper reference limits (URL) in healthy pediatric population, for its better correct use. Front. Endocrinol. 2022, 13, 1018523. [Google Scholar] [CrossRef]
- El-Maouche, D.; Dumitrescu, C.E.; Andreopoulou, P.; Gafni, R.I.; Brillante, B.A.; Bhattacharyya, N.; Fedarko, N.S.; Collins, M.T. Stability and degradation of fibroblast growth factor 23 (FGF23): The effect of time and temperature and assay type. Osteoporos. Int. 2016, 27, 2345–2353. [Google Scholar] [CrossRef]
- Tang, R.; Lu, Y.; Yin, R.; Zhu, P.; Zhu, L.; Zheng, C. The effects of storage time and repeated freeze-thaw cycles on Intact Fibroblast Growth Factor 23 levels. Biopreserv. Biobank. 2021, 19, 48–52. [Google Scholar] [CrossRef]
- Summers, S.; Michael, H.T.; Szlosek, D.; Mack, R. Blood fibroblast growth factor 23 concentration in cats with and without chronic kidney disease: A scoping review. J. Feline Med. Surg. 2024, 26, 1098612X241234984. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lapsina, S.; von Luckner, J.; Nagler, N.; Müller, S.F.; Müller, E.; Schäfer, I. Establishing a Reference Interval for Fibroblast Growth Factor (FGF)-23 in Cats. Animals 2024, 14, 1670. https://doi.org/10.3390/ani14111670
Lapsina S, von Luckner J, Nagler N, Müller SF, Müller E, Schäfer I. Establishing a Reference Interval for Fibroblast Growth Factor (FGF)-23 in Cats. Animals. 2024; 14(11):1670. https://doi.org/10.3390/ani14111670
Chicago/Turabian StyleLapsina, Sandra, Jennifer von Luckner, Nicole Nagler, Simon Franz Müller, Elisabeth Müller, and Ingo Schäfer. 2024. "Establishing a Reference Interval for Fibroblast Growth Factor (FGF)-23 in Cats" Animals 14, no. 11: 1670. https://doi.org/10.3390/ani14111670
APA StyleLapsina, S., von Luckner, J., Nagler, N., Müller, S. F., Müller, E., & Schäfer, I. (2024). Establishing a Reference Interval for Fibroblast Growth Factor (FGF)-23 in Cats. Animals, 14(11), 1670. https://doi.org/10.3390/ani14111670