Dynamic Nonlinear Spatial Integrations on Encoding Contrasting Stimuli of Tectal Neurons
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Control Model: The Generalized Linear Model Combined with the Difference of Gaussian Model
2.2. Contrasting Encoding Model: Generalized Linear-Dynamic Modulation
2.3. Electrophysiological Data
2.4. Evaluation of Model Performance
3. Results
3.1. Nonlinear Integration on Encoding Contrasting Stimuli
3.2. The Role of Inhibitory Synaptic Input in Encoding Contrasting Stimuli
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tadin, D. Strong evidence against a common center-surround mechanism in visual processing. J. Vis. 2022, 22, 58. [Google Scholar] [CrossRef]
- Turner, M.H.; Schwartz, G.W.; Rieke, F. Receptive field center-surround interactions mediate context-dependent spatial contrast encoding in the retina. eLife 2018, 7, e38841. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, Y.V.; Park, S.J.; Demb, J.B.; Butts, D.A. Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells. eLife 2016, 5, e19460. [Google Scholar] [CrossRef]
- Barchini, J.; Shi, X.; Chen, H.; Cang, J. Bidirectional encoding of motion contrast in the mouse superior colliculus. eLife 2018, 7, e35261. [Google Scholar] [CrossRef] [PubMed]
- Fisher, T.G.; Alitto, H.J.; Usrey, W.M. Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus. J. Neurosci. Off. J. Soc. Neurosci. 2017, 37, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.A.; Jazayeri, M.; Shapley, R.M.; Hawken, M.J. Distinct spatiotemporal mechanisms underlie extra-classical receptive field modulation in macaque V1 microcircuits. eLife 2020, 9, e54264. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Yang, G.; Dai, W.; Yang, Y.; Han, C.; Wang, X.; Zhang, Y.; Xing, D. Laminar Subnetworks of Response Suppression in Macaque Primary Visual Cortex. J. Neurosci. 2020, 40, 7436–7450. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wang, Y.; Wang, S. Regional variation in receptive field properties of tectal neurons in pigeons. Brain Behav. Evol. 2000, 55, 221–228. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, J.; Wang, S.R. Excitatory and inhibitory receptive fields of tectal cells are differentially modified by magnocellular and parvocellular divisions of the pigeon nucleus isthmi. J. Comp. Physiol. A 2000, 186, 505–511. [Google Scholar] [CrossRef]
- Niu, X.; Huang, S.; Zhu, M.; Wang, Z.; Shi, L. Surround Modulation Properties of Tectal Neurons in Pigeons Characterized by Moving and Flashed Stimuli. Animals 2022, 12, 475. [Google Scholar] [CrossRef]
- Harmening, W.M.; Wagner, H. From optics to attention: Visual perception in barn owls. J. Comp. Physiol. A 2011, 197, 1031. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Huang, S.; Yang, S.; Wang, Z.; Li, Z.; Shi, L. Comparison of pop-out responses to luminance and motion contrasting stimuli of tectal neurons in pigeons. Brain Res. 2020, 1747, 147068. [Google Scholar] [CrossRef] [PubMed]
- Ben-Tov, M.; Donchin, O.; Ben-Shahar, O.; Segev, R. Pop-out in visual search of moving targets in the archer fish. Nat. Commun. 2015, 6, 6476. [Google Scholar] [CrossRef] [PubMed]
- Coen-Cagli, R.; Kohn, A.; Schwartz, O. Flexible gating of contextual influences in natural vision. Nat. Neurosci. 2015, 18, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Cafaro, J.; Rieke, F. Regulation of Spatial Selectivity by Crossover Inhibition. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 6310–6320. [Google Scholar] [CrossRef] [PubMed]
- Trong, P.K.; Rieke, F. Origin of correlated activity between parasol retinal ganglion cells. Nat. Neurosci. 2008, 11, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.I.; Pillow, J.W. Capturing the Dynamical Repertoire of Single Neurons with Generalized Linear Models. Neural Comput. 2017, 29, 3260–3289. [Google Scholar] [CrossRef]
- Pillow, J.W.; Paninski, L.; Uzzell, V.J.; Simoncelli, E.P.; Chichilnisky, E.J. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 11003–11013. [Google Scholar] [CrossRef] [PubMed]
- Rodieck, R.W. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis. Res. 1965, 5, 583–601. [Google Scholar] [CrossRef]
- Matzner, A.; Gorodetski, L.; Korngreen, A.; Bar-Gad, I. Dynamic input-dependent encoding of individual basal ganglia neurons. Sci. Rep. 2020, 10, 5833. [Google Scholar] [CrossRef]
- Latimer, K.W.; Fairhall, A.L. Capturing Multiple Timescales of Adaptation to Second-Order Statistics With Generalized Linear Models: Gain Scaling and Fractional Differentiation. Front. Syst. Neurosci. 2020, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Chen, C.C.; Greenlee, M.W. The role of lateral modulation in orientation-specific adaptation effect. J. Vis. 2022, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Faunes, M.; Fernandez, S.; Gutierrez-Ibanez, C.; Iwaniuk, A.N.; Wylie, D.R.; Mpodozis, J.; Karten, H.J.; Marin, G. Laminar segregation of GABAergic neurons in the avian nucleus isthmi pars magnocellularis: A retrograde tracer and comparative study. J. Comp. Neurol. 2013, 521, 1727–1742. [Google Scholar] [CrossRef] [PubMed]
- Latimer, K.W.; Rieke, F.; Pillow, J.W. Inferring synaptic inputs from spikes with a conductance-based neural encoding model. eLife 2019, 8, e47012. [Google Scholar] [CrossRef] [PubMed]
- Luksch, H.; Karten, H.J.; Kleinfeld, D.; Wessel, R. Chattering and differential signal processing in identified motion-sensitive neurons of parallel visual pathways in the chick tectum. J. Neurosci. Off. J. Soc. Neurosci. 2001, 21, 6440–6446. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Brandt, S.; Luksch, H.; Wessel, R. Recurrent antitopographic inhibition mediates competitive stimulus selection in an attention network. J. Neurophysiol. 2011, 105, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Si, Y.; Litke, A.M.; Feldheim, D.A. Nonlinear visuoauditory integration in the mouse superior colliculus. PLoS Comput. Biol. 2021, 17, e1009181. [Google Scholar] [CrossRef] [PubMed]
- Rust, N.C.; Schwartz, O.; Movshon, J.A.; Simoncelli, E.P. Spatiotemporal Elements of Macaque V1 Receptive Fields. Neuron 2005, 46, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Field, G.D.; Li, P.H.; Greschner, M.; Gunning, D.E.; Mathieson, K.; Sher, A.; Litke, A.M.; Paninski, L.; Simoncelli, E.P.; et al. Mapping nonlinear receptive field structure in primate retina at single cone resolution. eLife 2015, 4, e05241. [Google Scholar] [CrossRef]
- Karamanlis, D.; Gollisch, T. Nonlinear Spatial Integration Underlies the Diversity of Retinal Ganglion Cell Responses to Natural Images. J. Neurosci. Off. J. Soc. Neurosci. 2021, 41, 3479–3498. [Google Scholar] [CrossRef]
- Li, Y.; Young, L.S. Unraveling the mechanisms of surround suppression in early visual processing. PLoS Comput. Biol. 2021, 17, e1008916. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; DeForge, A.; Schwartz, O. Generalizing biological surround suppression based on center surround similarity via deep neural network models. PLoS Comput. Biol. 2023, 19, e1011486. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dai, W.F.; Wang, T.; Wu, Y.J.; Dou, F.; Xing, D.J. Visual surround suppression at the neural and perceptual levels. Cogn. Neurodynamics 2023, 18, 741–756. [Google Scholar] [CrossRef] [PubMed]
- Luksch, H. Cytoarchitecture of the avian optic tectum: Neuronal substrate for cellular computation. Rev. Neurosci. 2003, 14, 85–106. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luksch, H.; Brecha, N.C.; Karten, H.J. Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): A possible substrate for synchronizing tectal channels. J. Comp. Neurol. 2006, 494, 7–35. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, F.A.; Whitteridge, D. The representation of the retina on the optic tectum of the pigeon. Q. J. Exp. Physiol. Cogn. Med. Sci. 1954, 39, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Weigel, S.; Kuenzel, T.; Lischka, K.; Huang, G.; Luksch, H. Morphology and dendrite-specific synaptic properties of midbrain neurons shape multimodal integration. J. Neurosci. Off. J. Soc. Neurosci. 2022, 42, 2614–2630. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ma, Q.; Qian, L.; Zhao, M.; Wang, Z.; Shi, L. Encoding Model for Continuous Motion-sensitive Neurons in the Intermediate and Deep Layers of the Pigeon Optic Tectum. Neuroscience 2022, 484, 1–15. [Google Scholar] [CrossRef]
- Gonzalez-Cabrera, C.; Garrido-Charad, F.; Mpodozis, J.; Bolam, J.P.; Marin, G.J. Axon terminals from the nucleus isthmi pars parvocellularis control the ascending retinotectofugal output through direct synaptic contact with tectal ganglion cell dendrites. J. Comp. Neurol. 2016, 524, 362–379. [Google Scholar] [CrossRef] [PubMed]
- Marin, G.; Mpodozis, J.; Sentis, E.; Ossandon, T.; Letelier, J.C. Oscillatory bursts in the optic tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 7081–7089. [Google Scholar] [CrossRef]
- Mysore, S.; Asadollahi, A.; Knudsen, E. Global Inhibition and Stimulus Competition in the Owl Optic Tectum. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Luksch, H.; Khanbabaie, R.; Wessel, R. Synaptic dynamics mediate sensitivity to motion independent of stimulus details. Nat. Neurosci. 2004, 7, 380–388. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Hu, P.; Zhao, Z.; Shi, L. Dynamic Nonlinear Spatial Integrations on Encoding Contrasting Stimuli of Tectal Neurons. Animals 2024, 14, 1577. https://doi.org/10.3390/ani14111577
Huang S, Hu P, Zhao Z, Shi L. Dynamic Nonlinear Spatial Integrations on Encoding Contrasting Stimuli of Tectal Neurons. Animals. 2024; 14(11):1577. https://doi.org/10.3390/ani14111577
Chicago/Turabian StyleHuang, Shuman, Pingge Hu, Zhenmeng Zhao, and Li Shi. 2024. "Dynamic Nonlinear Spatial Integrations on Encoding Contrasting Stimuli of Tectal Neurons" Animals 14, no. 11: 1577. https://doi.org/10.3390/ani14111577
APA StyleHuang, S., Hu, P., Zhao, Z., & Shi, L. (2024). Dynamic Nonlinear Spatial Integrations on Encoding Contrasting Stimuli of Tectal Neurons. Animals, 14(11), 1577. https://doi.org/10.3390/ani14111577