Ancient Diseases in Vertebrates: Tumours through the Ages
Abstract
:Simple Summary
Abstract
1. Introduction
2. Types of Tumours in Fossils
3. Technological and Methodological Advances in the Detection of Neoplasia in Fossils
4. Tumour Descriptions in Fossil Remains
4.1. Proterozoic (2.5 Billion to 539 Ma) Aeon
4.2. Paleozoic (541 to 252 Ma) Era
4.3. Mesozoic (252 to 66 Ma) Era
4.4. Cenozoic (66 MA to 0 MA) Era
4.5. Statistical Analyses
5. Cancer through Time
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirkpatrick, C.L.; Campbell, R.A.; Hunt, K.J. Paleo-Oncology: Taking Stock and Moving Forward. Int. J. Paleopathol. 2018, 21, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, B.M.; Martin, L.D. Skeletal Impact of Disease: Bulletin 33; New Mexico Museum of Natural History and Science: Albuquerque, NM, USA, 2006. [Google Scholar]
- Rothschild, B.M.; Martin, L.D. Paleopathology: Disease in the Fossil Record/Bruce M. Rothschild and Larry D. Martin; CRC Press: Boca Raton, FL, USA, 1993; ISBN 978-0-8493-8897-2. [Google Scholar]
- Rodriguez, J.; Ruiz Patiño, A.; Ávila, J.; Sotelo Rodríguez, D.C.; Arrieta, O.; Zatarain, L.; Ordóñez-Reyes, C.; Cardona, A. Paleo-oncología. Medicina 2021, 42, 723–735. [Google Scholar] [CrossRef]
- Barbosa, F.H.D.S.; Porpino, K.D.O.; Bergqvist, L.P.; Rothschild, B.M. Elucidating Bone Diseases in Brazilian Pleistocene Sloths (Xenarthra, Pilosa, Folivora): First Cases Reported for the Nothrotheriidae and Megalonychidae Families. Ameghiniana 2017, 54, 331–340. [Google Scholar] [CrossRef]
- Baiano, M.A.; Cerda, I.A.; Bertozzo, F.; Pol, D. New Information on Paleopathologies in Non-Avian Theropod Dinosaurs: A Case Study on South American Abelisaurids. BMC Ecol. Evol. 2024, 24, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Farke, A.A.; Wolff, E.D.S.; Tanke, D.H. Evidence of Combat in Triceratops. PLoS ONE 2009, 4, e4252. [Google Scholar] [CrossRef] [PubMed]
- DePalma, R.A.; Burnham, D.A.; Martin, L.D.; Rothschild, B.M.; Larson, P.L. Physical Evidence of Predatory Behavior in Tyrannosaurus Rex. Proc. Natl. Acad. Sci. USA 2013, 110, 12560–12564. [Google Scholar] [CrossRef] [PubMed]
- Cadée, G.C.; Goldring, R. Chapter 1—The Wadden Sea, Cradle of Invertebrate Ichnology. In Trace Fossils; Miller, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 3–13. ISBN 978-0-444-52949-7. [Google Scholar]
- Gingras, M.K. Ichnology. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Oxford, UK, 2021; pp. 669–680. ISBN 978-0-08-102909-1. [Google Scholar]
- Westall, F.; de Wit, M.J.; Dann, J.; van der Gaast, S.; de Ronde, C.E.J.; Gerneke, D. Early Archean Fossil Bacteria and Biofilms in Hydrothermally-Influenced Sediments from the Barberton Greenstone Belt, South Africa. Precambrian Res. 2001, 106, 93–116. [Google Scholar] [CrossRef]
- Noffke, N.; Christian, D.; Wacey, D.; Hazen, R.M. Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia. Astrobiology 2013, 13, 1103–1124. [Google Scholar] [CrossRef] [PubMed]
- Cruzado-Caballero, P.; Lecuona, A.; Cerda, I.; Díaz-Martínez, I. Osseous Paleopathologies of Bonapartesaurus Rionegrensis (Ornithopoda, Hadrosauridae) from Allen Formation (Upper Cretaceous) of Patagonia Argentina. Cretac. Res. 2021, 124, 104800. [Google Scholar] [CrossRef]
- Cruzado-Caballero, P.; Díaz Martínez, I.; Rothschild, B.; Bedell, M.; Pereda Suberbiola, X. A Limping Dinosaur in the Late Jurassic: Pathologies in the Pes of the Neornithischian Othnielosaurus Consors from the Morrison Formation (Upper Jurassic, USA). Hist. Biol. 2020, 33, 1753–1759. [Google Scholar] [CrossRef]
- Rothschild, B.M.; Tanke, D.H.; Helbling, M.; Martin, L.D. Epidemiologic Study of Tumors in Dinosaurs. Naturwissenschaften 2003, 90, 495–500. [Google Scholar] [CrossRef]
- Tammela, T.; Sage, J. Investigating Tumor Heterogeneity in Mouse Models. Annu. Rev. Cancer Biol. 2020, 4, 99–119. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Locker, J.; Nalesnik, M.; Reyes, J.; Jaffe, R.; Alashari, M.; Nour, B.; Tzakis, A.; Dickman, P.S. The Association of Epstein–Barr Virus with Smooth-Muscle Tumors Occurring after Organ Transplantation. N. Engl. J. Med. 1995, 332, 19–25. [Google Scholar] [CrossRef]
- Prier, J.E.; Brodey, R.S. Canine Neoplasia. Bull. World Health Organ. 1963, 29, 331–344. [Google Scholar]
- Cruz-Ochoa, P.F.; Ochoa-Amaya, J.E.; Cruz-Casallas, P.E. Patología comparada de neoplasias en carnívoros salvajes. Orinoquia 2017, 21, 41. [Google Scholar] [CrossRef]
- Dodueva, I.E.; Lebedeva, M.A.; Kuznetsova, K.A.; Gancheva, M.S.; Paponova, S.S.; Lutova, L.L. Plant Tumors: A Hundred Years of Study. Planta 2020, 251, 82. [Google Scholar] [CrossRef]
- Greenacre, C.B. Spontaneous Tumors of Small Mammals. Vet. Clin. N. Am. Exot. Anim. Pract. 2004, 7, 627–651. [Google Scholar] [CrossRef]
- Vengušt, G.; Žele, D. Fibropapilomas (skin tumours) of roe deer (Capreolus capreolus)—Cases in Slovenia. Zlatorogov Zb. 2012, 1, 65–71. [Google Scholar]
- Poljsak, B.; Kovac, V.; Dahmane, R.; Levec, T.; Starc, A. Cancer Etiology: A Metabolic Disease Originating from Life’s Major Evolutionary Transition? Oxidative Med. Cell. Longev. 2019, 2019, e7831952. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.M. Tumor Viruses. In The Cell: A Molecular Approach, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000. [Google Scholar]
- Kitsoulis, C.V.; Baxevanis, A.D.; Abatzopoulos, T.J. The Occurrence of Cancer in Vertebrates: A Mini Review. J. Biol. Res.-Thessalon. 2020, 27, 9. [Google Scholar] [CrossRef]
- Capasso, L.L. Antiquity of Cancer. Int. J. Cancer 2005, 113, 2–13. [Google Scholar] [CrossRef]
- de Souza Barbosa, F.H.; da Silva, L.H.M.; de Araújo-Júnior, H.I. Differentiating Taphonomic and Paleopathological Features in Vertebrate Paleontology: A Study Case with Quaternary Mammals. PalZ 2020, 94, 595–601. [Google Scholar] [CrossRef]
- Tan, C.; Yu, H.-D.; Ren, X.-X.; Dai, H.; Ma, Q.-Y.; Xiong, C.; Zhao, Z.-Q.; You, H.-L. Pathological Ribs in Sauropod Dinosaurs from the Middle Jurassic of Yunyang, Chongqing, Southwestern China. Hist. Biol. 2023, 35, 475–482. [Google Scholar] [CrossRef]
- Talevi, M.; Rothschild, B.; Fernández, M.; Reguero, M.; Mitidieri, M. A Pathological Scapula in a Mosasaur from the Upper Maastrichtian of Antarctica: Evidence of Infectious Arthritis and Spondyloarthropathy. Cretac. Res. 2019, 100, 1–4. [Google Scholar] [CrossRef]
- Baba, A.I.; Câtoi, C. Bone and joint tumors. In Comparative Oncology; The Publishing House of the Romanian Academy: Bucharest, Romania, 2007. [Google Scholar]
- David Roodman, G.; Silbermann, R. Mechanisms of Osteolytic and Osteoblastic Skeletal Lesions. Bonekey Rep. 2015, 4, 753. [Google Scholar] [CrossRef]
- Walsh, K.M.; Denholm, L.J.; Cooper, B.J. Epithelial Odontogenic Tumours in Domestic Animals. J. Comp. Pathol. 1987, 97, 503–521. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V. Multiple Myeloma: 2022 Update on Diagnosis, Risk-Stratification and Management. Am. J. Hematol. 2022, 97, 1086–1107. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.J.; Sundberg, J.P. Hemangiomas and Hemangiosarcomas in Inbred Laboratory Mice. Lab. Anim. Sci. 1995, 45, 497–502. [Google Scholar] [PubMed]
- Kirkpatrick, C. Neoplasm or Not? Considering the Limitations of Paleo-Oncology. AΚAΔHΜΙA AΘHΝΩΝ (Special Issue on Palaeo-Oncology). In Proceedings of the 2nd International Symposium of the European Society of Oncology History, New York, NY, USA, September 2004; pp. 49–66. [Google Scholar]
- Whitney, M.R.; Otoo, B.K.A.; Angielczyk, K.D.; Pierce, S.E. Fossil Bone Histology Reveals Ancient Origins for Rapid Juvenile Growth in Tetrapods. Commun. Biol. 2022, 5, 1280. [Google Scholar] [CrossRef] [PubMed]
- Bailleul, A.M.; O’Connor, J.; Schweitzer, M.H. Dinosaur Paleohistology: Review, Trends and New Avenues of Investigation. PeerJ 2019, 7, e7764. [Google Scholar] [CrossRef]
- Ravosa, M.J.; Menegaz, R.A.; Scott, J.E.; Daegling, D.J.; McAbee, K.R. Limitations of a Morphological Criterion of Adaptive Inference in the Fossil Record. Biol. Rev. 2016, 91, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.K.; Wang, G.; Seet, J.E.; Teo, L.L.S.; Chong, V.F.H. MRI for Transformation of Preserved Organs and Their Pathologies into Digital Formats for Medical Education and Creation of a Virtual Pathology Museum. A Pilot Study. Clin. Radiol. 2013, 68, e114–e122. [Google Scholar] [CrossRef] [PubMed]
- Jutras, L.C. Magnetic Resonance of Hearts in a Jar: Breathing New Life into Old Pathological Specimens. Cardiol. Young 2010, 20, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Mietchen, D.; Aberhan, M.; Manz, B.; Hampe, O.; Mohr, B.; Neumann, C.; Volke, F. Three-Dimensional Magnetic Resonance Imaging of Fossils across Taxa. Biogeosciences 2008, 5, 25–41. [Google Scholar] [CrossRef]
- Hedrick, B.P.; Yohe, L.; Vander Linden, A.; Dávalos, L.M.; Sears, K.; Sadier, A.; Rossiter, S.J.; Davies, K.T.J.; Dumont, E. Assessing Soft-Tissue Shrinkage Estimates in Museum Specimens Imaged With Diffusible Iodine-Based Contrast-Enhanced Computed Tomography (diceCT). Microsc. Microanal. 2018, 24, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Hunt, K.J.; Roberts, C.; Kirkpatrick, C. Taking Stock: A Systematic Review of Archaeological Evidence of Cancers in Human and Early Hominin Remains. Int. J. Paleopathol. 2018, 21, 12–26. [Google Scholar] [CrossRef]
- Durmaz, A.A.; Karaca, E.; Demkow, U.; Toruner, G.; Schoumans, J.; Cogulu, O. Evolution of Genetic Techniques: Past, Present, and Beyond. Biomed. Res. Int. 2015, 2015, 461524. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, E.; Lari, M.; Gigli, E.; De Bellis, G.; Caramelli, D. Ancient DNA Studies: New Perspectives on Old Samples. Genet. Sel. Evol. 2012, 44, 21. [Google Scholar] [CrossRef] [PubMed]
- Kerner, G.; Choin, J.; Quintana-Murci, L. Ancient DNA as a Tool for Medical Research. Nat. Med. 2023, 29, 1048–1051. [Google Scholar] [CrossRef] [PubMed]
- Knoll, A.H.; Holland, H.D. Life, N.R.C. (US) P. on E. of P.G.C. on Oxygen and Proterozoic Evolution: An Update. In Effects of Past Global Change on Life; National Academies Press (US): Washington, DC, USA, 1995. [Google Scholar]
- Elias, S.A. Earth History. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-12-409548-9. [Google Scholar]
- Baker, C.V. The evolution and elaboration of vertebrate neural crest cells. Curr. Opin. Genet. Dev. 2008, 18, 536–543. [Google Scholar] [CrossRef]
- Putnam, N.; Butts, T.; Ferrier, D. The amphioxus genome and the evolution of the chordate karyotype. Nature 2008, 453, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Gewin, V. Functional Genomics Thickens the Biological Plot. PLoS Biol. 2005, 3, e219. [Google Scholar] [CrossRef]
- Davydov, V.I.; Korn, D.; Schmitz, M.D.; Gradstein, F.M.; Hammer, O. Chapter 23—The Carboniferous Period. In The Geologic Time Scale; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Boston, MA, USA, 2012; pp. 603–651. ISBN 978-0-444-59425-9. [Google Scholar]
- Siek, T.; Rando, C.; Cieślik, A.; Spinek, A.; Waldron, T. A Palaeoepidemiological Investigation of Osteomata, with Reference to Medieval Poland. Int. J. Osteoarchaeol. 2021, 31, 154–161. [Google Scholar] [CrossRef]
- Moodie, R.L. Tumors in the lower Carboniferous. Science 1927, 66, 540. [Google Scholar] [CrossRef] [PubMed]
- Whitney, M.R.; Mose, L.; Sidor, C.A. Odontoma in a 255-Million-Year-Old Mammalian Forebear. JAMA Oncol. 2017, 3, 998–1000. [Google Scholar] [CrossRef]
- Falcon-Lang, H.J.; Benton, M.J.; Stimson, M. Ecology of Earliest Reptiles Inferred from Basal Pennsylvanian Trackways. J. Geol. Soc. 2007, 164, 1113–1118. [Google Scholar] [CrossRef]
- A Procolophonoid Reptile with Temporal Fenestration from the Middle Triassic of Brazil. In Proceedings of the Royal Society of London. Series B: Biological Sciences. Available online: https://royalsocietypublishing.org/doi/10.1098/rspb.2004.2748 (accessed on 26 December 2023).
- Rieppel, O.; deBraga, M. Turtles as Diapsid Reptiles. Nature 1996, 384, 453–455. [Google Scholar] [CrossRef]
- Surmik, D.; Słowiak-Morkovina, J.; Szczygielski, T.; Kamaszewski, M.; Kalita, S.; Teschner, E.M.; Dróżdż, D.; Duda, P.; Rothschild, B.M.; Konietzko-Meier, D. An Insight into Cancer Palaeobiology: Does the Mesozoic Neoplasm Support Tissue Organization Field Theory of Tumorigenesis? BMC Ecol. Evol. 2022, 22, 143. [Google Scholar] [CrossRef]
- Gubin, I.M.; Petrovichev, N.N.; Solov’ev, I.N.; Kochergina, N.V.; Luk’ianchenko, A.B.; Markov, S.M. Cranial bone neoplasm in early Triassic amphibia. Vopr. Onkol. 2001, 47, 449–455. [Google Scholar] [PubMed]
- Novikov, I.V.; Haiduk, P.A.; Gribanov, A.V.; Ivanov, A.N.; Novikov, A.V.; Starodubtseva, I.A. The Earliest Case of Neoplastic Bone Lesion in Tetrapods. Paleontol. J. 2020, 54, 68–72. [Google Scholar] [CrossRef]
- Haridy, Y.; Witzmann, F.; Asbach, P.; Schoch, R.R.; Fröbisch, N.; Rothschild, B.M. Triassic Cancer—Osteosarcoma in a 240-Million-Year-Old Stem-Turtle. JAMA Oncol. 2019, 5, 425. [Google Scholar] [CrossRef] [PubMed]
- Moodie, R.L. Status of Our Knowledge of Mesozoic Pathology. Geol. Soc. Am. Bull. 1921, 32, 321–326. [Google Scholar] [CrossRef]
- Hao, B.-Q.; Ye, Y.; Maidment, S.C.; Bertazzo, S.; Peng, G.-Z.; You, H.-L. Femoral Osteopathy in Gigantspinosaurus Sichuanensis (Dinosauria: Stegosauria) from the Late Jurassic of Sichuan Basin, Southwestern China. Hist. Biol. 2020, 32, 1028–1035. [Google Scholar] [CrossRef]
- Stadman, K. Society of Vertebrate Paleontology. J. Vertebr. Paleontol. 1992; 45.z. [Google Scholar]
- Lull, R.S.; Le Vene, C.M.; Peabody Museum of Natural History. A Revision of the Ceratopsia or Horned Dinosaurs; Tuttle, Morehouse & Taylor Co.: New Haven, CT, USA, 1933. [Google Scholar]
- Capasso, L. Possible Notochordal Chordoma in a Fossil Fish from the Late Cretaceous of Lebanon. Int. J. Paleopathol. 2022, 37, 6–8. [Google Scholar] [CrossRef]
- Dumbravă, M.D.; Rothschild, B.M.; Weishampel, D.B.; Csiki-Sava, Z.; Andrei, R.A.; Acheson, K.A.; Codrea, V.A. A Dinosaurian Facial Deformity and the First Occurrence of Ameloblastoma in the Fossil Record. Sci. Rep. 2016, 6, 29271. [Google Scholar] [CrossRef]
- Rothschild, B.M.; Witzke, B.J.; Hershkovitz, I. Metastatic Cancer in the Jurassic. Lancet 1999, 354, 398. [Google Scholar] [CrossRef]
- Rothschild, B.M.; Tanke, D.; Hershkovitz, I.; Schultz, M. Mesozoic Neoplasia: Origins of Haemangioma in the Jurassic Age. Lancet 1998, 351, 1862. [Google Scholar] [CrossRef]
- Moodie, P.R.L. Paleontological Evidences of the Antiquity of Disease. Sci. Mon. 1918, 7, 265–281. [Google Scholar]
- Gonzalez, R.; Gallina, P.A.; Cerda, I.A. Multiple Paleopathologies in the Dinosaur Bonitasaura Salgadoi (Sauropoda: Titanosauria) from the Upper Cretaceous of Patagonia, Argentina. Cretac. Res. 2017, 79, 159–170. [Google Scholar] [CrossRef]
- Barbosa, F.H.dS.; Pereira, P.V.L.G.dC.; Bergqvist, L.P.; Rothschild, B.M. Multiple Neoplasms in a Single Sauropod Dinosaur from the Upper Cretaceous of Brazil. Cretac. Res. 2016, 62, 13–17. [Google Scholar] [CrossRef]
- Moodie, R.L. Studies in Paleopathology. III. Opisthotonus and Allied Phenomena Among Fossil Vertebrates. Am. Nat. 1918, 52, 384–394. [Google Scholar] [CrossRef]
- Sawyer, G. Paleopathology of the paleocene crocodile leidyosuchus (=borealosuchus) formidabilis. Monogr. Sci. Mus. Minn. 1998, 4, 43. [Google Scholar]
- Ekhtiari, S.; Chiba, K.; Popovic, S.; Crowther, R.; Wohl, G.; Kin On Wong, A.; Tanke, D.H.; Dufault, D.M.; Geen, O.D.; Parasu, N.; et al. First Case of Osteosarcoma in a Dinosaur: A Multimodal Diagnosis. Lancet Oncol. 2020, 21, 1021–1022. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, B.M.; Tanke, D.; Rühli, F.; Pokhojaev, A.; May, H. Suggested Case of Langerhans Cell Histiocytosis in a Cretaceous Dinosaur. Sci. Rep. 2020, 10, 2203. [Google Scholar] [CrossRef] [PubMed]
- Taya, M. CT and Histopathology Used to Diagnose Osteosarcoma in a Dinosaur. Radiol. Imaging Cancer 2020, 2, e209028. [Google Scholar] [CrossRef] [PubMed]
- Arbour, V.M.; Currie, P.J. Tail and Pelvis Pathologies of Ankylosaurian Dinosaurs. Hist. Biol. 2011, 23, 375–390. [Google Scholar] [CrossRef]
- Norman, D. The Illustrated Encyclopedia of Dinosaurs, 1st ed.; Crescent: New York, NY, USA; London, UK, 1985; ISBN 978-0-517-46890-6. [Google Scholar]
- Baker, J.R.; Brothwell, D. Animal Diseases in Archaeolog; Studies in Archaeological Science; Academic Press: London, UK, 1980; ISBN 978-0-12-074150-2. [Google Scholar]
- Scott, W.B. Notes on the Canidæ of the White River Oligocene. Trans. Am. Philos. Soc. 1898, 19, 325–415. [Google Scholar] [CrossRef]
- Scott, W.B.; Jepsen, G.L. The Mammalian Fauna of the White River Oligocene: Part I. Insectivora and Carnivora. Trans. Am. Philos. Soc. 1936, 28, 1–153. [Google Scholar] [CrossRef]
- Weems, R. Middle Miocene Sea Turtles (Syllomus, Procolpochelys, Psephophorus) from the Calvert Formation. J. Paleontol. 1974, 48, 278–303. [Google Scholar]
- Rothschild, B.; Schultze, H.-P.; Pellegrini, R. Osseous and Other Hard Tissue Pathologies in Turtles and Abnormalities of Mineral Deposition. In Morphology and Evolution of Turtles; Springer: Berlin/Heidelberg, Germany, 2013; pp. 501–534. ISBN 978-94-007-4308-3. [Google Scholar]
- Cidade, G.M.; Solórzano, A.; Rincón, A.D.; Hsiou, A.S.; Barbosa, F.H.D.S. On a Cranial Bony Nodular Protuberance on Mourasuchus Pattersoni Cidade et al. 2017 (Crocodylia, Alligatoroidea) from the Late Miocene of Venezuela. Hist. Biol. 2019, 31, 866–871. [Google Scholar] [CrossRef]
- Wang, X.; Rothschild, B.M. Multiple Hereditary Osteochondroma in Oligocene Hesperocyon (Carnivora: Canidae). J. Vertebr. Paleontol. 1992, 12, 387–394. [Google Scholar] [CrossRef]
- Hampe, O.; Witzmann, F.; Asbach, P. A Benign Bone-Forming Tumour (Osteoma) on the Skull of a Fossil Balaenopterid Whale from the Pliocene of Chile. Alcheringa Australas. J. Palaeontol. 2014, 38, 266–272. [Google Scholar] [CrossRef]
- do Amaral, R.V.; Carvalho, L.B.D.; Azevedo, S.A.K.D.; Delcourt, R. The First Evidence of Pituitary Gland Tumor in Ground Sloth Valgipes Bucklandi Lund, 1839. Anat. Rec. 2022, 305, 1394–1401. [Google Scholar] [CrossRef]
- Leshchinskiy, S. Enzootic Diseases and Extinction of Mammoths as a Reflection of Deep Geochemical Changes in Ecosystems of Northern Eurasia. Archaeol. Anthr. Sci. 2015, 7, 297–317. [Google Scholar] [CrossRef]
- Krzemińska, A.; Wędzicha, S. Pathological Changes on the Ribs of Woolly Mammoths (Mammuthus Primigenius). Quat. Int. 2015, 359–360, 186–194. [Google Scholar] [CrossRef]
- Hunter, H.; Lamgston, W. Odontoma in a Northern Mammoth. Paleontology 1964, 7, 674–681. [Google Scholar]
- Kubiak, H. Przyklady Anomalii W Uzebieniu Sloni Kopalnych. Folia Quat. 1965, 19, 45–61. [Google Scholar]
- Miralles, A.; Crusafont, P. Algunos Casos de Paleopatologia y de Paleoteratologia En Artiodactilos Del Terciario Espagnol. Rev. Estud. Geol. 1952, 16, 225–230. [Google Scholar]
- Moodie, R. Studies in Paleodontology, 20: The Teeth and Jaws of Nothrotherium; Pacific Dental Gazette: San Francisco, CA, USA, 1929; pp. 677–680. [Google Scholar]
- Barbosa, F.H.d.S.; Porpino, K.d.O.; Rothschild, B.M.; da Silva, R.C.; Capone, D. First Cancer in an Extinct Quaternary Non-Human Mammal. Hist. Biol. 2021, 33, 2878–2882. [Google Scholar] [CrossRef]
- Pales, L. Pathologie de l’ours Des Caverns (Collections Felix Gariigou Au Mus’ Ee de Foix). Ann. Paleontol. 1959, 44, 1–44. [Google Scholar]
- Withalm, G. Pathologies of Cave Bear Bones from Potočka Zijalka (Slovenia). Mitt. Komm. Quartärforsch. Osterr. Akad. Wiss. 2004, 13, 183–196. [Google Scholar]
- Capasso, L.; Di Tota, G. The Antiquity of Osteosarcoma. Int. J. Osteoarchaeol. 1996, 6, 512–514. [Google Scholar] [CrossRef]
- Cabrera, A. Anomalias Patologicas Dentarias En Algunos Ungulados Pampeanos. Notas Mus La Plata 1934, 2, 183–185. [Google Scholar]
- Patte, E. Molare Pathologique d’une Cheval Fossile. Interpretation d’un Cas Actuel. Mammalia. Mammalia 1937, 1, 97–105. [Google Scholar]
- Kobayashi, T. Odontoma in a Fossil Elephant from the Inland Sea of Japan. J. Geol. Geogr. Jpn. 1937, 14, 59–60. [Google Scholar]
- Conkling, S. News from Members. Soc. Vertebr. Paleontol. 1990, 150, 41. [Google Scholar]
- Garutt, N. Traumatic Skull Damages in the Woolly Rhinoceros. Cranium 1997, 14, 37–40. [Google Scholar]
- Binois, A.; Bridault, A.; Pion, G.; Ducrocq, T. Dental Development Pathology in Wild Artiodactyls: Two Prehistoric Case Studies from France. Int. J. Paleopathol. 2014, 4, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.R.; Brothwell, D.R. Neoplasia. In Animal Diseases in Archaeology; Oxbow Books: Oxford, UK, 1980. [Google Scholar]
- Harcourt, R.A. Animal Bones from Durrington Walls. G.J. Wainwright u. I.H. Longworth, Durrington Walls: Excavations 1966–1968; Reports of the Research Committee of the Society of Antiquaries of London; Society of Antiquaries of London: London, UK, 1971; p. 338AD. [Google Scholar]
- Fisher, A.K. A Compact Osteoma in the Skull of a Horse. J. Am. Vet. Med. Assoc. 1952, 121, 42–44. [Google Scholar]
- Bartosiewicz, L.; Gal, L. Shuffling Nags, Lame Ducks: The Archaeology of Animal Disease; Oxbow Books: Oxford, UK, 2013. [Google Scholar]
- Imhof, U. The discovery of a horse skeleton from the 17th century in Kiesen in Bern canton. Schweiz Arch. Tierheilkd. 1994, 136, 4–8. [Google Scholar]
- Janeczek, M.; Skalec, A.; Ciaputa, R.; Chrószcz, A.; Grieco, V.; Rozwadowski, G.; Poradowski, D.; Spychalski, P. Identification of Probable Telangiectatic Osteosarcoma from a Dog Skull from Multicultural Settlement Polwica-Skrzypnik in Lower Silesia, Poland. Int. J. Paleopathol. 2019, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Osypinska, M.; Piotr, O. New Evidence for the Emergence of the Human-Pet Relation in Early Roman Berenike (1st–2nd Century AD). Pol. Archaeol. Mediterr. 2018, 26, 167–192. [Google Scholar] [CrossRef]
- Chinsamy, A.; Tumarkin-Deratzian, A. Pathologic Bone Tissues in a Turkey Vulture and a Nonavian Dinosaur: Implications for Interpreting Endosteal Bone and Radial Fibrolamellar Bone in Fossil Dinosaurs. Anat. Rec. 2009, 292, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.A. Inverse Correlation between an Organ’s Cancer Rate and Its Evolutionary Antiquity. Organogenesis 2004, 1, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.P. The Possible Evolutionary Role of Tumors in the Origin of New Cell Types. Med. Hypotheses 2010, 74, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Houssaye, A. “Pachyostosis” in Aquatic Amniotes: A Review. Integr. Zool. 2009, 4, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Halperin, E.C. Paleo-Oncology: The Role of Ancient Remains in the Study of Cancer. Perspect. Biol. Med. 2004, 47, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Caulin, A.F.; Maley, C.C. Peto’s Paradox: Evolution’s Prescription for Cancer Prevention. Trends Ecol. Evol. 2011, 26, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Peto, H.; Roe, F.J.C.; Lee, P.N.; Levy, L.; Clack, J. Cancer and Ageing in Mice and Men. Br. J. Cancer 1975, 32, 411–426. [Google Scholar] [CrossRef]
- Gazzellone, A.; Sangiorgi, E. From Churchill to Elephants: The Role of Protective Genes against Cancer. Genes 2024, 15, 118. [Google Scholar] [CrossRef]
- Erten, E.Y.; Tollis, M.; Kokko, H. Bird Size with Dinosaur-Level Cancer Defences: Can Evolutionary Lags during Miniaturisation Explain Cancer Robustness in Birds? Bioryiv 2020, preprint. [Google Scholar] [CrossRef]
- Tomanelli, M.; Florio, T.; Vargas, G.C.; Pagano, A.; Modesto, P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life 2023, 13, 2284. [Google Scholar] [CrossRef] [PubMed]
- Nagy, J.D.; Victor, E.M.; Cropper, J.H. Why Don’t All Whales Have Cancer? A Novel Hypothesis Resolving Peto’s Paradox. Integr. Comp. Biol. 2007, 47, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Rehemtulla, A. Dinosaurs and Ancient Civilizations: Reflections on the Treatment of Cancer. Neoplasia 2010, 12, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Neiburger, E.J.; Joyce, D. Part Two: Schaefer Mammoth: Ancient Pathology. Cent. States Archaeol. J. 2004, 51, 82–88. [Google Scholar]
- Perillo, M.; Silla, A.; Punzo, A.; Caliceti, C.; Kriete, A.; Sell, C.; Lorenzini, A. Peto’s Paradox: Nature Has Used Multiple Strategies to Keep Cancer at Bay While Evolving Long Lifespans and Large Body Masses. A Systematic Mini-Review. Biomed. J. 2024, 47, 100654. [Google Scholar] [CrossRef] [PubMed]
- Tollis, M.; Boddy, A.M.; Maley, C.C. Peto’s Paradox: How Has Evolution Solved the Problem of Cancer Prevention? BMC Biol. 2017, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- McAloose, D.; Newton, A.L. Wildlife Cancer: A Conservation Perspective. Nat. Rev. Cancer 2009, 9, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Madsen, T.; Arnal, A.; Vittecoq, M.; Bernex, F.; Abadie, J.; Labrut, S.; Garcia, D.; Faugère, D.; Lemberger, K.; Beckmann, C.; et al. Cancer Prevalence and Etiology in Wild and Captive Animals. In Ecology and Evolution of Cancer; Elsevier: Amsterdam, The Netherlands, 2017; pp. 11–46. ISBN 978-0-12-804310-3. [Google Scholar]
- Huber, D.; Severin, K.; Vlahović, D.; Križanac, S.; Mofardin, S.; Buhin, I.M.; Zagradišnik, L.M.; Šoštarić-Zuckermann, I.-C.; Kurilj, A.G.; Artuković, B.; et al. Cancer Morbidity in Croatian Cats: Retrospective Study on Spontaneously Arising Tumors (2009–2019). Top. Companion Anim. Med. 2024, 58, 100841. [Google Scholar] [CrossRef]
- Szewczyk, M.; Lechowski, R.; Zabielska, K. What Do We Know about Canine Osteosarcoma Treatment?—Review. Vet. Res. Commun. 2015, 39, 61–67. [Google Scholar] [CrossRef]
Tumour | Malignancy | Origin Cells | Affected Structures | Macroscopic Observation | Microscopic Observation | References |
---|---|---|---|---|---|---|
Osteoma | Benign | Osteoblasts | Mandibular bones, nasal sinuses, facial and cranial bones, limbs, sternum, ribs and skull | Delimited; covered with connective vascular tissue; at cut dense bone tissue, with fibrous connective tissue. | Osteoblasts and osteoclastic modelling form trabecular growth, with bone structures perpendicular to the surface of the tumour. | [30] |
Osteosarcoma | Malignant | Mesenchymal stem cells | Long bones | Increased volume of the affected bone; congestion; oedema; presence of osteofibrous tissue; muscular atrophy; regional lymph nodes are enlarged and hard. | Depending on the dominance of a particular tissue, it can be classified as osteoblastic, chondroblastic or fibroblastic. Production of malignant osteoid cells with marked pleomorphism, varying in size, shape, and nuclear features. The tumour stroma may contain a mixture of spindle-shaped cells, multinucleated giant cells, and areas of necrosis. | [30] |
Osteoblastic tumour | Benign | Osteoblasts | Spine, long bones | Well-defined, expansive masses within the bone; firm consistency. | Irregularly shaped trabeculae or sheets of woven bone interspersed with osteoblasts; cytologic atypia with enlarged nuclei and increased mitotic activity. | [31] |
Odontoma | Benign | Odontoblasts, ameloblasts, and dental papilla cells. | Jaws, typically within the bone or embedded in the soft tissues surrounding developing teeth | Clusters or aggregates of denticles fused in a compact mass. | Multiple, small, tooth-like structures called denticles are organised arrangements of dental tissues (dentin, enamel, cementum, and pulp). | [32] |
Ameloblastoma | Benign | Epithelial cells | Jaws | Single, well-defined masses or multicystic lesions with irregular borders. Vary in size and shape. | Islands or strands of epithelial cells arranged in a variety of patterns—follicular, plexiform, or acanthomatous arrangements, among others. A fibrous connective tissue stroma surrounds the epithelial islands. | [32] |
Myeloma | Malignant | Plasma cells | Bone marrow | Bone destruction. | Presence of abnormal plasma cells. | [33] |
Hemangioma | Benign | Endothelial cells | Vascular or cavernous neocapillaries | Aspect of a hemorrhagic mass, similar to telangiectatic osteosarcoma. | Necrotic foci and hemorrhagic spaces are found in the neoplastic mass, along with capillaries with irregular lumen, bordered by immature endothelial cells, in a fibrous stroma. | [34] |
Period | Time (M.A.) | Country Where Found | Species | Vertebrate Group | Anatomical Localisation | Type of Tumour | Malignancy | Ref |
---|---|---|---|---|---|---|---|---|
Devonian | 358–419 | USA (Ohio) | Dinichthys spp. | O | Lower jawbone | Unknown | NA | [4,26] |
Carboniferous | 358–298 | USA | Phanerosteon mirabile | O | Vertebrate | Osteoma | B | [53,54] |
Permian | 298–251 | USA | Gorgonopsian | S | Canine root | Odontoma | B | [55] |
Period | Time (M.A.) | Country Where Found | Species | Vertebrate Group | Anatomical Localisation | Type of Tumour | Malignancy | Ref |
---|---|---|---|---|---|---|---|---|
Triassic | 225–215 | Poland | Metoposaurus krasiejowensis | A | Vertebral intercentrum | Osteosarcoma | M | [59] |
225–215 | Russia | Parotosuchus sp. | A | Craneal bone | Parostotic osteosarcoma | M | [60] | |
225–215 | Russia | Benthosuchus korobkovi | A | Right lower jaw | Non-odontogenic osteoma | B | [61] | |
240 | Germany | Pappochelys rosinae | SA | Femur | Osteosarcoma | M | [62] | |
Jurassic | 157–146 | USA | Apatosaurus | SA | Vertebrate | Hemangioma | B | [63] |
157–146 | USA | Apatosaurus | SA | Rib | Osteochondroma | B | [26] | |
161.5–145.0 | China | Gigantspinosaurus sichuanensis | SA | Femur | Unknown | NA | [64] | |
155–145 | USA (Utah) | Allosaurus fragilis | SA | Humerus | Chondrosarcoma | M | [65] | |
161–166 | USA | Ceratopsia | SA | Skull | Myeloma | M | [66] | |
Cretaceous | 145–55 | Lebanon | Pycnodontiformes | A | The caudal tract of the vertebral column | Notochord chordoma | M | [67] |
145–66 | Romania | Telmatosaurus transsylvanica | SA | Lower jaw | Ameloblastoma | B | [68] | |
73–66 | USA (Colorado) | Edmontosaurus | SA | Long bone | Metastatic cancer of sarcoma or osteosarcoma | M | [69] | |
73–66 | USA (Utah) | Edmontosaurus | SA | Vertebra | Hemangiosarcoma | M | [70] | |
73–66 | USA (Montana) | Edmontosaurus | SA | Vertebra | Osteoblastoma, hemangioma, desmoplastic | B | [15] | |
73–66 | China | Lambeosaurinae bactrosaurus | SA | Vertebra | Hemangioma | B | [15] | |
81–76.7 | Canada, USA | Brachylophosaurus | SA | Vertebra | Hemangioma | B | [15] | |
81–76.7 | Mongolia | Gilmoreosaurus | SA | Vertebra | Hemangioma | B | [15] | |
73–66 | USA | Mosasauridae | SA | Vertebra | Osteoma | B | [63] | |
84–81 | USA | Platecarpus | SA | Vertebra | Osteoma | B | [71] | |
84–81 | Patagonia (Argentina) | Bonitasaura salgadoi | SA | Femur | Osteoblastic tumour | B | [72] | |
73–66 | Argentina | Bonapartesaurus rionegrensis | SA | Metatarsal II | Unknown | NA | [13] | |
73–66 | Brazil | Titanosauridae | SA | Vertebra | Osteoma | B | [73] | |
73–66 | USA (Minnesota) | Leidyosuchus (Borealosuchus) formidabilis | SA | Ungual, phalanx, femora, scapula, vertebra | Osteoma | B | [74,75] | |
76.5–75.5 | Canada | Centrosaurus apertus | SA | Fibula | Osteosarcoma | M | [76] | |
73–66 | Canada | Platercapus | SA | Scapula | Osteoma | B | [26] | |
83.6–72.1 | Canada | Stenonychosaurus inegualis | SA | Cranial crest | Unknown | NA | [26] | |
68–66 | USA | Triceratops | SA | Scapula | Unknown | NA | [26] | |
73–66 | Canada (Alberta) | Hadrosauridae | SA | Vertebra | Langerhans Cell Histiocytosis (LCH) | M | [77] | |
75 | USA | Centrosaurus apertus | SA | Fibula | Osteosarcoma | M | [78] | |
76.4–75.6 | Canada | Euoplocephalus | SA | Vertebra | Unknown | B | [79] | |
68–66 | USA | Torosaurus latus | SA | Squamosal | Myeloma | M | [80] |
Period | Time (M.A.) | Country Where Found | Species | Vertebrate Group | Anatomical Localisation | Type of Tumour | Malignancy | Ref |
---|---|---|---|---|---|---|---|---|
Eocene | 56.0–33.9 | Unknown | Daphaenus spp. | S | Unknown | Chondrosarcoma | M | [81] |
56.0–33.9 | USA (Nebraska) | Daphaenus spp. | S | Jaw, teeth | Odontoma | B | [82,83] | |
Oligocene | 33.9–23 | Brazil | Daphaenus felinus | S | Radii | Unknown | NA | [71] |
Miocene | 23.03–5.333 | USA | Syllomus aegyptiacus | SA | Shell | Osteoma | B | [84,85] |
23.03–5.333 | Venezuela | Mourasuchus pattersoni | SA | Jaw | Osteoma/hamartoma | B | [86] | |
23.03–5.333 | USA | Hesperocyon gregarius | S | Radii | Osteochondroma | B | [87] | |
Pliocene | 5.3–2.6 | Chile | ‘Megaptera’ hubachi | S | Skull | Osteoma | B | [88] |
5.33—2.6 | Chile | Balaenopteridae | SA | Skull | Osteoma | B | [75] | |
Pleistocene | 2.5–0.17 | Brazil | Valgipes bucklandi | S | Basisphenoid | Pituitary tumour | N | [89] |
2.5–0.17 | Russia, Poland | Mammuthus primigenius | S | Long limb bones, vertebrae, scapulae and ribs | Osteoid-osteoma, osteoblastoma | B | [90] | |
2.5–0.17 | Poland | Mammuthus primigenius | S | Ribs | Unknown | NA | [91] | |
2.5–0.17 | USA | Mammuthus primigenius | S | Tooth | Odontoma | B | [92] | |
2.5–0.17 | Poland | Mammuthus primigenius | S | Tooth | Osteoma | B | [93] | |
2.5–0.17 | Spain, France | Bovidae | S | Mandible | Osteoma, cyst | B | [94] | |
2.5–0.17 | South America | Nothrotherium maquinense | S | Jaw, teeth | Odontoma | B | [95] | |
2.5–0.17 | Brazil | Nothrotherium maquinense | S | Femur | Osteosarcoma | M | [96] | |
2.5–0.17 | France | Ursus spelaeus | S | Unknown | Benign tumour | B | [97] | |
2.5–0.17 | Slovenia | Ursus spelaeus | S | Jaw | Unknown | NA | [98] | |
2.5–0.17 | USA | Ursus spelaeus | S | Femur | Osteosarcoma | M | [99] | |
2.5–0.17 | Argentina | Ungulates | S | Tooth | Odontoma | B | [100] | |
2.5–0.17 | France | Equidae | S | Molar | Odontoma | B | [101] | |
2.5–0.17 | Japan | Palaeoloxodon naumanni | S | Tooth | Odontoma | B | [102] | |
2.5–0.17 | North America | Bison latifrons | S | Unknown | Osteosarcoma | M | [103] | |
2.5–0.17 | Russia | Coelodonta antiquitatis | S | Skull | Osteoma | B | [104] | |
2.5–0.17 | North America and Europe | Aphanius crassicaudatus | O | Vertebra | Osteoma | B | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcês, A.; Pires, I.; Garcês, S. Ancient Diseases in Vertebrates: Tumours through the Ages. Animals 2024, 14, 1474. https://doi.org/10.3390/ani14101474
Garcês A, Pires I, Garcês S. Ancient Diseases in Vertebrates: Tumours through the Ages. Animals. 2024; 14(10):1474. https://doi.org/10.3390/ani14101474
Chicago/Turabian StyleGarcês, Andreia, Isabel Pires, and Sara Garcês. 2024. "Ancient Diseases in Vertebrates: Tumours through the Ages" Animals 14, no. 10: 1474. https://doi.org/10.3390/ani14101474
APA StyleGarcês, A., Pires, I., & Garcês, S. (2024). Ancient Diseases in Vertebrates: Tumours through the Ages. Animals, 14(10), 1474. https://doi.org/10.3390/ani14101474