Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analyses
3. Results
3.1. Human Casualties in Transport and Wildlife-Related Accidents
3.2. Involved Wildlife Species
3.3. Temporal Distribution of WVA-Related Human Casualties
3.4. Influence of the Road Type and Spatial Distribution of Human Casualties
3.5. Influence of Wildlife Fencing and Warning Signs
3.6. Transport Type and Driving-Related Aspects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garlichs, K.; Huber, M.; Wolf, L. How Human Drivers Can Benefit from Collective Perception: A User Study. IEEE Intell. Transp. Syst. Mag. 2023, 15, 25–35. [Google Scholar] [CrossRef]
- Ascensão, F.; Barrientos, R.; D’Amico, M. Wildlife collisions put a dent in road safety. Science 2021, 374, 1208. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Road Safety Statistics—Characteristics at National and Regional Level. 2018. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Road_safety_statistics_-_characteristics_at_national_and_regional_level&oldid=463733 (accessed on 11 December 2023).
- Tumavičė, A.; Jasiūnienė, V.; Kravcovas, I. Identification and analysis of problems in the implementation of road safety audit in Lithuania. Balt. J. Road Bridge Eng. 2020, 15, 111–126. [Google Scholar] [CrossRef]
- UN General Assembly. Improving Global Road Safety. 2020. Available online: https://undocs.org/en/A/RES/74/299 (accessed on 15 January 2024).
- World Health Organization. Global Road Safety Performance Targets. 2021. Available online: https://www.who.int/multi-media/details/global-road-safety-performance-targets (accessed on 15 January 2024).
- European Commission.Road Safety: 20,640 People Died in a Road Crash Last Year—Progress Remains Too Slow. 2023. Available online: https://transport.ec.europa.eu/news-events/news/road-safety-20640-people-died-road-crash-last-year-progress-remains-too-slow-2023-10-19_en (accessed on 19 January 2024).
- European Transport Safety Council. Road Deaths in the European Union—Latest Data. 2023. Available online: https://etsc.eu/euroadsafetydata/ (accessed on 17 January 2024).
- Björnberg, E.; Hansson, S.O.; Belin, M.Å.; Tingvall, C. (Eds.) The Vision Zero Handbook; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–1240. [Google Scholar]
- Shi, G.; Methoxha, V.; Atkinson-Palombo, C.; Garrick, N. Moving Beyond the Vision Zero Slogan. Transp. Res. Rec. 2023, 2677, 1027–1038. [Google Scholar] [CrossRef]
- Mayorov, V.I.; Denisenko, V.V.; Solovev, S.G. A systemic approach to road safety in the EU. Jurídicas CUC 2023, 19, 259–278. [Google Scholar] [CrossRef]
- Conover, M.R. Numbers of human fatalities, injuries, and illnesses in the United States due to wildlife. Hum.–Wildl. Interact. 2019, 13, 12. [Google Scholar] [CrossRef]
- Žuraulis, V.; Pumputis, V. Vision Zero in Lithuania. In Vision Zero Handbook; Björnberg, E., Hansson, S.O., Belin, M.Å., Tingvall, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 398–438. [Google Scholar] [CrossRef]
- Lee, T.S.; Jones, P.F.; Jakes, A.F.; Jensen, M.; Sanderson, K.; Duke, D. Where to invest in road mitigation? A comparison of multiscale wildlife data to inform roadway prioritization. J. Nat. Conserv. 2023, 71, 126327. [Google Scholar] [CrossRef]
- Sugiarto, W. Impact of Wildlife Crossing Structures on Wildlife–Vehicle Collisions. Transp. Res. Rec. 2023, 2677, 670–685. [Google Scholar] [CrossRef]
- Paemelaere, E.A.; Mejía, A.; Quintero, S.; Hallett, M.; Li, F.; Wilson, A.; Barnabas, H.; Albert, A.; Li, R.; Baird, L.; et al. The road towards wildlife friendlier infrastructure: Mitigation planning through landscape-level priority settings and species connectivity frameworks. Environ. Impact Assess. Rev. 2023, 99, 107010. [Google Scholar] [CrossRef]
- Pagany, R. Wildlife-vehicle collisions—Influencing factors, data collection and research methods. Biol. Conserv. 2020, 251, 108758. [Google Scholar] [CrossRef]
- Torres, D.F.; Oliveira, E.S.; Alves, R.R.N. Understanding human–wildlife conflicts and their implications. In Ethnozoology; Nóbrega Alves, R.R., Albuquerque, U.A., Eds.; Academic Press: London, UK, 2018; pp. 421–445. [Google Scholar] [CrossRef]
- Abra, F.D.; Granziera, B.M.; Huijser, M.P.; Ferraz, K.M.P.M.D.B.; Haddad, C.M.; Paolino, R.M. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS ONE 2019, 4, e0215152. [Google Scholar] [CrossRef]
- Grilo, C.; Koroleva, E.; Andrášik, R.; Bíl, M.; González-Suárez, M. Roadkill risk and population vulnerability in European birds and mammals. Front. Ecol. Environ. 2020, 18, 323–328. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Chruszcz, B.; Gunson, K.E. Highway mitigation fencing reduces wildlife-vehicle collisions. Wildl. Soc. Bull. 2001, 29, 646–653. [Google Scholar]
- Ford, A.T.; Clevenger, A.P.; Huijser, M.P.; Dibb, A. Planning and prioritization strategies for phased highway mitigation using wildlife-vehicle collision data. Wildl. Biol. 2011, 17, 253–265. [Google Scholar] [CrossRef]
- Huijser, M.P.; Fairbank, E.R.; Camel-Means, W.; Graham, J.; Watson, V.; Basting, P.; Becker, D. Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife–vehicle collisions and providing safe crossing opportunities for large mammals. Biol. Conserv. 2016, 197, 61–68. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. Mammal Roadkills in Lithuanian Urban Areas: A 15-Year Study. Animals 2023, 13, 3272. [Google Scholar] [CrossRef]
- Pop, M.I.; Gradinaru, S.R.; Popescu, V.D.; Haase, D.; Iojă, C.I. Emergency-line calls as an indicator to assess human–wildlife interaction in urban areas. Ecosphere 2023, 14, e4418. [Google Scholar] [CrossRef]
- Denneboom, D.; Bar-Massada, A.; Shwartz, A. Wildlife mortality risk posed by high and low traffic roads. Conserv. Biol. 2024, 38, e14159. [Google Scholar] [CrossRef]
- Kučas, A.; Balčiauskas, L.; Lavalle, C. Identification of Urban and Wildlife Terrestrial Corridor Intersections for Planning of Wildlife-Vehicle Collision Mitigation Measures. Land 2023, 12, 758. [Google Scholar] [CrossRef]
- Kučas, A.; Balčiauskas, L. Impact of Road Fencing on Ungulate-Vehicle Collisions and Hotspot Patterns. Land 2021, 10, 338. [Google Scholar] [CrossRef]
- Brieger, F.; Kämmerle, J.L.; Hagen, R.; Suchant, R. Behavioural reactions to oncoming vehicles as a crucial aspect of wildlife-vehicle collision risk in three common wildlife species. Accid. Anal. Prev. 2022, 168, 106564. [Google Scholar] [CrossRef]
- Borza, S.; Godó, L.; Valkó, O.; Végvári, Z.; Deák, B. Better safe than sorry–Understanding the attitude and habits of drivers can help mitigating animal-vehicle collisions. J. Environ. Manag. 2023, 339, 117917. [Google Scholar] [CrossRef]
- Sagberg, F.; Selpi; Bianchi Piccinini, G.F.; Engström, J. A review of research on driving styles and road safety. Hum. Factors 2015, 57, 1248–1275. [Google Scholar] [CrossRef]
- Al-Bdairi, N.S.S.; Behnood, A.; Hernandez, S. Temporal stability of driver injury severities in animal-vehicle collisions: A random parameters with heterogeneity in means (and variances) approach. Anal. Methods Accid. Res. 2020, 26, 100120. [Google Scholar] [CrossRef]
- McCollister, M.F.; Van Manen, F.T. Effectiveness of wildlife underpasses and fencing to reduce wildlife-vehicle collisions. J. Wildl. Manag. 2010, 74, 1722–1731. [Google Scholar] [CrossRef]
- Sundaram, N.; Meena, S.D. Integrated animal monitoring system with animal detection and classification capabilities: A review on image modality, techniques, applications, and challenges. Artif. Intell. Rev. 2023, 56, 1–51. [Google Scholar] [CrossRef]
- Singer, P.; Tse, Y.F. AI ethics: The case for including animals. AI Ethics 2023, 3, 539–551. [Google Scholar] [CrossRef]
- Jasiūnienė, V.; Vaiškūnaitė, R. Road safety assessment considering the expected fatal accident density. Balt. J. Road Bridge Eng. 2020, 15, 31–48. [Google Scholar] [CrossRef]
- Naidič, E.; Bražiūnas, J. Žūčių Lietuvos keliuose dinamika ir priežastys. Sci.—Future Lith. 2023, 5, 1–10. [Google Scholar] [CrossRef]
- Ušpalytė-Vitkūnienė, R.; Laureshyn, A. The typical traffic accident in Lithuania in comparison with Sweden. Balt. J. Road Bridge Eng. 2020, 15, 60–73. [Google Scholar] [CrossRef]
- Činčikaitė, R.; Meidutė-Kavaliauskienė, I. Study of the influence of sustainable transport on traffic incidents. Bus. Manag. Econ. Eng. 2023, 21, 237–247. [Google Scholar] [CrossRef]
- Leonavičienė, T.; Pukalskas, S.; Pumputis, V.; Kulešienė, E.; Žuraulis, V. Investigation of factors that have affected the outcomes of road traffic accidents on Lithuanian roads. Balt. J. Road Bridge Eng. 2020, 15, 1–20. [Google Scholar] [CrossRef]
- EU. Available online: https://european-union.europa.eu/principles-countries-history/country-profiles/lithuania_en (accessed on 25 December 2023).
- European Environmental Agency CORINE Land Cover—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 22 August 2023).
- State Service for Protected Areas under the Ministry of Environment of Lithuania. Available online: https://vstt.lrv.lt/en/lithuanian-protected-areas/ (accessed on 15 November 2023).
- Eismo Intensyvumas. Available online: https://lakd.lt/eismo-intensyvumas (accessed on 20 August 2023).
- Statistinė Informacija. Available online: https://lakd.lt/statistine-informacija (accessed on 21 July 2023).
- Eismo Įvykių Lietuvoje Statistika. 2023. Available online: https://lkpt.policija.lrv.lt/lt/statistika/eismo-ivykiu-lietuvoje-statistika (accessed on 15 December 2023).
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi: Open Source Epidemiologic Statistics for Public Health. Available online: http://OpenEpi.com (accessed on 5 January 2024).
- Fleiss, J.L.; Levin, B.; Paik, M.C. Statistical Methods for Rates and Proportions, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–800. [Google Scholar]
- G-Test Calculator. Available online: https://elem.com/~btilly/effective-ab-testing/g-test-calculator.html (accessed on 5 January 2024).
- Past 4—The Past of the Future. Available online: https://www.nhm.uio.no/english/research/resources/past/ (accessed on 1 January 2024).
- Prūsaitė, J. (Ed.) Lietuvos Fauna. Žinduoliai; Mokslas: Vilnius, Lithuania, 1988; pp. 1–295. [Google Scholar]
- Logminas, V. (Ed.) Lietuvos Fauna, Paukščiai; Mokslas: Vilnius, Lithuania, 1990; Volume 1, pp. 1–366. [Google Scholar]
- Baleišis, R.; Bluzma, P.; Balčiauskas, L. Lietuvos Kanopiniai Žvėrys, 3rd ed.; Akstis: Vilnius, Lithuania, 2003; pp. 1–216. [Google Scholar]
- Visuotinė Lietuvių Enciklopedija. Available online: https://www.vle.lt/ (accessed on 11 January 2024).
- Kalendorius.today. Available online: https://www.kalendorius.today/ (accessed on 25 September 2023).
- Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. Lockdown’s Silver Lining? Different Levels of Roadkill during the COVID-19 Times in Lithuania. Animals 2023, 13, 2918. [Google Scholar] [CrossRef]
- Wildlife-Vehicle Collision Reduction Study: Report to Congress. Available online: https://wafwa.org/wp-content/uploads/2021/04/2007-Report-to-Congress.pdf (accessed on 5 January 2024).
- Rahman, M.A.; Das, S.; Sun, X.; Sun, M.; Hossain, M.M. Using unsupervised learning to investigate injury-associated factors of animal-vehicle crashes. Int. J. Inj. Control Saf. Promot. 2023, 30, 210–219. [Google Scholar] [CrossRef]
- Seiler, A.; Bhardwaj, M. Wildlife and Traffic: An Inevitable but Not Unsolvable Problem? In Problematic Wildlife II; Angelici, F., Rossi, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 171–190. [Google Scholar] [CrossRef]
- Medžiojamųjų Gyvūnų Apskaita (2022–2023 Metų Medžioklės Sezonas). Available online: https://am.lrv.lt/lt/veiklos-sritys-1/gamtos-apsauga/medziokle/medziojamuju-zveriu-apskaita/medziojamuju-gyvunu-apskaita-2022-2023-metu-medziokles-sezonas/ (accessed on 14 January 2024).
- Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. The Impact of Roadkill on Cervid Populations in Lithuania. Forests 2023, 14, 1224. [Google Scholar] [CrossRef]
- Bíl, M.; Kubeček, J.; Andrášik, R. Ungulate-vehicle collision risk and traffic volume on roads. Eur. J. Wildl. Res. 2020, 66, 59. [Google Scholar] [CrossRef]
- Apollonio, M.; Andersen, R.; Putman, R. (Eds.) European Ungulates and Their Management in the 21st Century; Cambridge University Press: New York, NY, USA, 2010; pp. 1–604. [Google Scholar]
- Laliberté, J.; St-Laurent, M.H. In the wrong place at the wrong time: Moose and deer movement patterns influence wildlife-vehicle collision risk. Accid. Anal. Prev. 2020, 135, 105365. [Google Scholar] [CrossRef]
- Kučas, A.; Balčiauskas, L. Temporal patterns of ungulate-vehicle collisions in Lithuania. J. Environ. Manag. 2020, 273, 111172. [Google Scholar] [CrossRef]
- Putzu, N.; Bonetto, D.; Civallero, V.; Fenoglio, S.; Meneguz, P.G.; Preacco, N.; Tizzani, P. Temporal patterns of ungulate-vehicle collisions in a subalpine Italian region. Ital. J. Zool. 2014, 81, 463–470. [Google Scholar] [CrossRef]
- Kämmerle, J.-L.; Brieger, F.; Kröschel, M.; Hagen, R.; Storch, I.; Suchant, R.; Apollonio, M. Temporal patterns in road crossing behaviour in roe deer (Capreolus capreolus) at sites with wildlife warning reflectors. PLoS ONE 2017, 12, e0184761. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M.; Rolandsen, C.M.; Neumann, W.; Kukko, T.; Tiilikainen, R.; Pusenius, J.; Solberg, E.J.; Ericsson, G. Temporal patterns of moose-vehicle collisions with and without personal injuries. Accid. Anal. Prev. 2017, 98, 167–173. [Google Scholar] [CrossRef]
- Bíl, M.; Andrášik, R.; Kušta, T.; Bartonička, T. Ungulate-vehicle crashes peak a month earlier than 38 years ago due to global warming. Clim. Change 2023, 176, 84. [Google Scholar] [CrossRef]
- Menapace, M.; Tattoni, C.; Tondini, N.; Zatelli, P.; Ciolli, M. Human-wildlife conflict and road collisions with ungulates. A risk analysis and design solutions in Trentino, Italy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 125–131. [Google Scholar] [CrossRef]
- Cserkész, T.; Ottlecz, B.; Cserkész-Nagy, Á.; Farkas, J. Interchange as the main factor determining wildlife–vehicle collision hotspots on the fenced highways: Spatial analysis and applications. Eur. J. Wildl. Res. 2013, 59, 587–597. [Google Scholar] [CrossRef]
- Šprem, N.; Duduković, D.; Keros, T.; Konjević, D. Wildlife-vehicle collisions in Croatia—A hazard for humans and animals. Coll. Antropol. 2013, 37, 531–535. [Google Scholar]
- Pokorny, B. Roe deer-vehicle collisions in Slovenia: Situation, mitigation strategy and countermeasures. Vet. Arh. 2006, 76, 177–187. [Google Scholar]
- Markolt, F.; Hervai, A.; Havas, G.; Szemethy, L.; Heltai, M. Landscape factors influencing roe deer roadkill frequencies on the M3 highway of Hungary. Rev. Agric. Rural. Dev. 2012, 1, 44–49. [Google Scholar]
- Hothorn, T.; Müller, J.; Held, L.; Möst, L.; Mysterud, A. Temporal patterns of deer-vehicle collisions consistent with deer activity pattern and density increase but not general accident risk. Accid. Anal. Prev. 2015, 81, 143–152. [Google Scholar] [CrossRef]
- Vanlaar, W.; Barrett, H.; Hing, M.; Brown, S.; Robertson, R. Canadian wildlife-vehicle collisions: An examination of knowledge and behavior for collision prevention. J. Saf. Res. 2019, 68, 181–186. [Google Scholar] [CrossRef]
- Wilkins, D.; Kockelman, K.; Jiang, N. Animal-vehicle collisions in Texas: How to protect travelers and animals on roadways. Accident Anal. Prev. 2019, 131, 157–170. [Google Scholar] [CrossRef]
- Carvalho-Roel, C.F.; Alves, G.B.; de Almeida Jácomo, A.T.; Moreira, R.A.; Tôrres, N.M.; Silveira, L. Wildlife roadkill in the surroundings of Emas National Park, Cerrado biome, Brazil. Oecologia Aust. 2021, 25, 795–806. [Google Scholar] [CrossRef]
- dos Santos, A.B.; Gatti, A.; Santos, M.R.d.D.; Merçon, L.; Westermeyer, I.; Ardente, N.C.; Gonzaga, L.F.O.P.; Barreto, L.M.; Damásio, L.; Rocha, T.L.; et al. Roadkills of Lowland Tapir Tapirus terrestris (Mammalia: Perissodactyla: Tapiridae) in one of its last refuges in the Atlantic Forest. J. Threat. Taxa 2021, 13, 19921–19929. [Google Scholar] [CrossRef]
- Giummarra, M.J.; Beck, B.; Gabbe, B.J. Classification of road traffic injury collision characteristics using text mining analysis: Implications for road injury prevention. PLoS ONE 2021, 16, e0245636. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, J.H.; Curtis, P.D.; Curtis, G.; Williams, A.F. Methods to reduce traffic crashes involving deer: What works and what does not. Traffic Inj. Prev. 2004, 5, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Garrah, E.; Danby, R.K.; Eberhardt, E.; Cunnington, G.M.; Mitchell, S. Hot spots and hot times: Wildlife road mortality in a regional conservation corridor. Environ. Manag. 2015, 56, 874–889. [Google Scholar] [CrossRef] [PubMed]
- Balčiauskas, L.; Stratford, J.; Balčiauskienė, L.; Kučas, A. Importance of professional roadkill data in assessing diversity of mammal roadkills. Transp. Res. Part D Transp. Environ. 2020, 87, 102493. [Google Scholar] [CrossRef]
- Ascensão, F.; Ribeiro, Y.G.G.; Campos, Z.; Yogui, D.R.; Desbiez, A.L. Forecasting seasonal peaks in roadkill patterns for improving road management. J. Environ. Manag. 2022, 321, 115903. [Google Scholar] [CrossRef]
Species | Body Mass, kg | Fatalities | Injuries | |||
---|---|---|---|---|---|---|
WVA Number | N | WVA Number | N | Per 1 WVA | ||
European bison (Bison bonasus) | 700 | 4 | 7 | 1.75 | ||
Moose (Alces alces) | 325 | 14 | 14 | 170 | 217 | 1.28 |
Red deer (Cervus elaphus) | 105 | 17 | 21 | 1.24 | ||
Roe deer (Capreolus capreolus) | 28 | 2 | 2 | 49 | 51 | 1.04 |
Wild boar (Sus scrofa) | 120 | 9 | 10 | 1.11 | ||
Red fox (Vulpes vulpes) | 5.3 | 1 | 1 | 1.00 | ||
European hare (Lepus europaeus) | 4.6 | 2 | 2 | 1.00 | ||
White stork (Ciconia ciconia) | 4.5 | 1 | 1 | 1.00 | ||
Horse (Equus ferus caballus) | 600 | 2 | 3 | 22 | 32 | 1.45 |
Cattle (Bos taurus) | 400 | 1 | 1 | 23 | 34 | 1.48 |
Cat (Felis catus) | 4 | 1 | 1 | 1.00 | ||
Dog (Canis familiaris) | 10 | 21 | 23 | 1.10 | ||
Species not identified | 2 | 2 | 40 | 52 | 1.30 |
Casualty | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Ost | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fatality | 1 | 1 | 1 | 3 | 3 | 4 | 5 | 2 | 1 | |||
Injury | 14 | 8 | 9 | 23 | 55 | 44 | 39 | 27 | 53 | 42 | 26 | 16 |
Total | 15 | 8 | 10 | 24 | 58 | 47 | 39 | 31 | 58 | 42 | 28 | 17 |
% | 4.0 | 2.1 | 2.7 | 6.4 | 15.4 | 12.5 | 10.3 | 8.2 | 15.4 | 11.1 | 7.4 | 4.5 |
Casualty | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
---|---|---|---|---|---|---|---|
Death | 1 | 4 | 4 | 1 | 3 | 1 | 7 |
Injury | 35 | 47 | 50 | 43 | 62 | 59 | 60 |
Total | 36 | 51 | 54 | 44 | 65 | 60 | 67 |
% | 9.6 | 13.6 | 14.4 | 11.8 | 17.4 | 16.0 | 17.9 |
Road | Casualty | Per 1000 km | ||
---|---|---|---|---|
Fatality | Injury | Total | ||
Main | 11 a | 154 a | 165 | 94.25 |
National | 4 a | 112 b | 116 | 23.54 |
Regional | 6 a | 32 c | 38 | 2.61 |
Other | 0 | 58 d | 58 | n/a |
Main Road | AADT in 2016 | WVA with Human Injuries | |||||
---|---|---|---|---|---|---|---|
Number | Length, km | Cars | Trucks | Total | n | % | per km |
A1 | 311.4 | 18,937 | 2895 | 21,832 | 51 | 33.1 | 0.164 |
A2 | 135.9 | 10,910 | 1230 | 12,140 | 21 | 13.6 | 0.155 |
A11 | 146.85 | 5166 | 580 | 5746 | 17 | 11.0 | 0.116 |
A6 | 185.4 | 6181 | 876 | 7057 | 12 | 7.8 | 0.065 |
A12 | 186.09 | 4669 | 547 | 5216 | 9 | 5.8 | 0.048 |
A4 | 134.46 | 4720 | 389 | 5109 | 8 | 5.2 | 0.059 |
A14 | 95.6 | 6584 | 435 | 7019 | 7 | 4.5 | 0.073 |
A16 | 137.51 | 5307 | 589 | 5896 | 6 | 3.9 | 0.044 |
A13 | 45.15 | 10,842 | 701 | 11,543 | 5 | 3.2 | 0.111 |
A10 | 66.1 | 7776 | 2408 | 10,184 | 4 | 2.6 | 0.061 |
A8 | 87.86 | 7038 | 2504 | 9542 | 3 | 1.9 | 0.034 |
A9 | 78.94 | 7667 | 896 | 8563 | 3 | 1.9 | 0.038 |
A5 | 97.06 | 15,078 | 5280 | 20,358 | 2 | 1.3 | 0.021 |
A7 | 42.21 | 4595 | 560 | 5155 | 2 | 1.3 | 0.047 |
A15 | 49.28 | 5428 | 548 | 5976 | 2 | 1.3 | 0.041 |
A17 | 22.28 | 8029 | 2708 | 10,737 | 1 | 0.6 | 0.045 |
A3 | 33.99 | 5863 | 917 | 6780 | 1 | 0.6 | 0.029 |
Fatal Casualties | Injuries | ||
---|---|---|---|
Sequence | N | Sequence | N |
1 | 13 | 1, 6 | 1 |
1, 2 | 1 | 1, 6, 10 | 1 |
1, 2, 10 | 2 | 1, 7, 4 | 2 |
1, 3 | 2 | 1, 8, 4 | 1 |
1, 7, 4 | 1 | 1, 9 | 2 |
1, 7, 10 | 1 | 1, 10 | 7 |
1, 9, 8 | 1 | 1, 12 | 2 |
Injuries | 2, 1 | 1 | |
1 | 280 | 5 | 4 |
1, 2 | 14 | 5, 2 | 1 |
1, 2, 3 | 9 | 5, 2, 3 | 1 |
1, 2, 10 | 4 | 5, 2, 10 | 1 |
1, 2, 9 | 3 | 5, 10 | 3 |
1, 2, 11 | 1 | 6, 2 | 1 |
1, 3 | 2 | 6, 2, 3 | 1 |
1, 4 | 1 | 6, 2, 10 | 1 |
1, 5 | 1 | 6, 7, 4 | 1 |
1, 5, 10 | 1 | Other | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022. Animals 2024, 14, 1452. https://doi.org/10.3390/ani14101452
Balčiauskas L, Kučas A, Balčiauskienė L. Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022. Animals. 2024; 14(10):1452. https://doi.org/10.3390/ani14101452
Chicago/Turabian StyleBalčiauskas, Linas, Andrius Kučas, and Laima Balčiauskienė. 2024. "Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022" Animals 14, no. 10: 1452. https://doi.org/10.3390/ani14101452
APA StyleBalčiauskas, L., Kučas, A., & Balčiauskienė, L. (2024). Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022. Animals, 14(10), 1452. https://doi.org/10.3390/ani14101452