Surveillance of Antimicrobial Resistance of Escherichia coli Isolates from Intestinal Contents of Dairy and Veal Calves in the Veneto Region, Northeaster Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Samples Tested
2.2. Isolation of E. coli
2.3. Antimicrobial Susceptibility Testing
2.4. Statistical Analyses
3. Results
3.1. Proportion of Antibiotic Resistant E. coli
3.2. Intestinal Carriage of Multidrug-Resistant E. coli in Veal and Dairy Calves
3.3. MIC50 and MIC90 Values of E. coli Isolated Strains Detected in Dairy and Veal Calves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magnusson, U.; Sternberg, S.; Eklund, G.; Rozstalnyy, A. Prudent and Efficient Use of Antimicrobials in Pigs and Poultry; FAO Animal Production and Health manual: Rome, Italy, 2019. [Google Scholar] [CrossRef]
- WHO. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015; Available online: https://apps.who.int/iris/handle/10665/193736 (accessed on 10 January 2024).
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, 521–547. [Google Scholar] [CrossRef]
- Birkegard, A.C.; Halasa, T.; Graesboll, K.; Clasen, J.; Folkesson, A.; Toft, N. Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms. Sci. Rep. 2017, 7, 9683. [Google Scholar] [CrossRef] [PubMed]
- Formenti, N.; Martinelli, C.; Vitale, N.; Giovannini, S.; Salogni, C.; Tonni, M.; Scali, F.; Birbes, L.; D’Incau, M.; Guarneri, F.; et al. Antimicrobial Resistance of Escherichia coli in Dairy Calves: A 15-Year Retrospective Analysis and Comparison of Treated and Untreated Animals. Animals 2021, 11, 2328. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.; Wales, A. Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection. Compr. Rev. Food. Sci. Food. Saf. 2019, 18, 753–774. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, L.; Albini, E.; Lovito, C.; Blasi, F.; Maresca, C.; Massacci, F.R.; Orsini, S.; Tofani, S.; Pezzotti, G.; Diaz Vicuna, E.; et al. Antibiotic consumption is a major driver of antibiotic resistance in calves raised on Italian cow-calf beef farms. Res. Vet. Sci. 2022, 145, 71–81. [Google Scholar] [CrossRef]
- European Medicine Agency (EMA). Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2022. Trends from 2010 to 2022. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2022-trends-2010-2022-thirteenth-esvac-report_en.pdf (accessed on 10 January 2024).
- Catry, B.; Dewulf, J.; Maes, D.; Pardon, B.; Callens, B.; Vanrobaeys, M.; Opsomer, G.; de Kruif, A.; Haesebrouck, F. Effect of Antimicrobial Consumption and Production Type on Antibacterial Resistance in the Bovine Respiratory and Digestive Tract. PLoS ONE 2016, 11, e0146488. [Google Scholar] [CrossRef]
- Checkley, S.L.; Campbell, J.R.; Chirino-Trejo, M.; Janzen, E.D.; McKinnon, J.J. Antimicrobial resistance in generic fecal Escherichia coil obtained from beef cattle on arrival at the feedlot and prior to slaughter, and associations with volume of total individual cattle antimicrobial treatments in one western Canadian feedlot. Can. J. Vet. Res. 2008, 72, 101–108. [Google Scholar] [PubMed]
- Khachatryan, A.R.; Hancock, D.D.; Besser, T.E.; Call, D.R. Role of calf-adapted Escherichia coli in maintenance of antimicrobial drug resistance in dairy calves. Appl. Environ. Microbiol. 2004, 70, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Berge, A.C.; Atwill, E.R.; Sischo, W.M. Animal and farm influences on the dynamics of antibiotic resistance in faecal Escherichia coli in young dairy calves. Prev. Vet. Med. 2005, 69, 25–38. [Google Scholar] [CrossRef]
- Watson, E.; Jeckel, S.; Snow, L.; Stubbs, R.; Teale, C.; Wearing, H.; Horton, R.; Toszeghy, M.; Tearne, O.; Ellis-Iversen, J.; et al. Epidemiology of extended spectrum beta-lactamase E. coli (CTX-M-15) on a commercial dairy farm. Vet. Microbiol. 2012, 154, 339–346. [Google Scholar] [CrossRef]
- Salerno, B.; Cornaggia, M.; Sabatino, R.; Di Cesare, A.; Furlan, M.; Barco, L.; Orsini, M.; Cordioli, B.; Mantovani, C.; Bano, L.; et al. Calves as Main Reservoir of Antibiotic Resistance Genes in Dairy Farms. Front. Public Health 2022, 10, 918658. [Google Scholar] [CrossRef]
- Liu, J.; Taft, D.H.; Maldonado-Gomez, M.X.; Johnson, D.; Treiber, M.L.; Lemay, D.G.; DePeters, E.J.; Mills, D.A. The fecal resistome of dairy cattle is associated with diet during nursing. Nat. Commun. 2019, 10, 4406. [Google Scholar] [CrossRef]
- Cao, H.; Pradhan, A.K.; Karns, J.S.; Hovingh, E.; Wolfgang, D.R.; Vinyard, B.T.; Kim, S.W.; Salaheen, S.; Haley, B.J.; Van Kessel, J.A.S. Age-Associated Distribution of Antimicrobial-Resistant Salmonella enterica and Escherichia coli Isolated from Dairy Herds in Pennsylvania, 2013–2015. Foodborne Pathog. Dis. 2019, 16, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Khachatryan, A.R.; Besser, T.E.; Hancock, D.D.; Call, D.R. Use of a nonmedicated dietary supplement correlates with increased prevalence of streptomycin-sulfa-tetracycline-resistant Escherichia coli on a dairy farm. Appl. Environ. Microbiol. 2006, 72, 4583–4588. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.F.; Teixeira, A.G.V.; Lima, F.S.; Ganda, E.K.; Higgins, C.H.; Oikonomou, G.; Bicalho, R.C. The bovine colostrum microbiome and its association with clinical mastitis. J. Dairy Sci. 2017, 100, 3031–3042. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, G. Present situation and future challenges of beef cattle production in Italy and the role of the research. Ital. J. Anim. Sci. 2010, 6, 389–396. [Google Scholar] [CrossRef]
- EUROVEAL. Vision of the European Veal Sector. Available online: https://fefac.eu/wp-content/uploads/2021/04/Vision_Paper_veal_Sector_final_Friday-15-04-2021.pdf (accessed on 17 March 2024).
- Vinayamohan, P.G.; Locke, S.R.; Portillo-Gonzalez, R.; Renaud, D.L.; Habing, G.G. Antimicrobial Use and Resistance in Surplus Dairy Calf Production Systems. Microorganisms 2022, 10, 1652. [Google Scholar] [CrossRef]
- Council of the European Union. Council Directive 2008/119/EC of 18 December 2008 Laying Down Minimum Standards for the Protection of Calves. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02008L0119-20191214 (accessed on 10 January 2024).
- Shivley, C.B.; Lombard, J.E.; Urie, N.J.; Weary, D.M.; von Keyserlingk, M.A.G. Management of preweaned bull calves on dairy operations in the United States. J. Dairy Sci. 2019, 102, 4489–4497. [Google Scholar] [CrossRef]
- Wilson, D.J.; Stojkov, J.; Renaud, D.L.; Fraser, D. Risk factors for poor health outcomes for male dairy calves undergoing transportation in western Canada. Can. Vet. J. 2020, 61, 1265–1272. [Google Scholar]
- Renaud, D.; Pardon, B. Preparing Male Dairy Calves for the Veal and Dairy Beef Industry. Vet. Clin. N. Am. Food Anim. Pract. 2022, 38, 77–92. [Google Scholar] [CrossRef]
- Creutzinger, K.; Pempek, J.; Habing, G.; Proudfoot, K.; Locke, S.; Wilson, D.; Renaud, D. Perspectives on the Management of Surplus Dairy Calves in the United States and Canada. Front. Vet. Sci. 2021, 8, 661453. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G. Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. J. AOAC Int. 2018, 101, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Damiaans, B.; Renault, V.; Sarrazin, S.; Berge, A.C.; Pardon, B.; Ribbens, S.; Saegerman, C.; Dewulf, J. Biosecurity practices in Belgian veal calf farming: Level of implementation, attitudes, strengths, weaknesses and constraints. Prev. Vet. Med. 2019, 172, 104768. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Notice: Guidelines for the prudent use of antimicrobials in veterinary medicine (2015/C 299/04). Off. J. Eur. Union 2015, 58, 7–26. [Google Scholar]
- European Parliament Regulation (EU). 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, 62, L4/43–L44/167. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2019:004:FULL (accessed on 17 March 2024).
- Renaud, D.L.; Overton, M.W.; Kelton, D.F.; LeBlanc, S.J.; Dhuyvetter, K.C.; Duffield, T.F. Effect of health status evaluated at arrival on growth in milk-fed veal calves: A prospective single cohort study. J. Dairy Sci. 2018, 101, 10383–10390. [Google Scholar] [CrossRef]
- Baptiste, K.E.; Kyvsgaard, N.C. Do antimicrobial mass medications work? A systematic review and meta-analysis of randomised clinical trials investigating antimicrobial prophylaxis or metaphylaxis against naturally occurring bovine respiratory disease. Pathog. Dis. 2017, 75, ftx083. [Google Scholar] [CrossRef]
- Schonecker, L.; Schnyder, P.; Overesch, G.; Schupbach-Regula, G.; Meylan, M. Associations between antimicrobial treatment modalities and antimicrobial susceptibility in Pasteurellaceae and E. coli isolated from veal calves under field conditions. Vet. Microbiol. 2019, 236, 108363. [Google Scholar] [CrossRef]
- Bosco, C.; Rugna, G.; Bonilauri, P.; Garbarino, C.A.; Prosperi, A.; Fontana, M.C.; Frasnelli, M.; Fiorentini, L.; Barsi, F.; Bassi, P. Antimicrobial resistance evaluation and detection of ETEC virulent factors in Escherichia coli isolated from cattle in Emilia Romagna from 2017 to 2021. In Proceedings of the 53rd National Congress of the Italian Society of Buiatrics (SIB), Online, 22–26 November 2021; pp. 109–116. [Google Scholar]
- Gonzalez, S.M.; Steiner, A.; Gassner, B.; Regula, G. Antimicrobial use in Swiss dairy farms: Quantification and evaluation of data quality. Prev. Vet. Med. 2010, 95, 50–63. [Google Scholar] [CrossRef]
- Pardon, B.; Catry, B.; Dewulf, J.; Persoons, D.; Hostens, M.; De Bleecker, K.; Deprez, P. Prospective study on quantitative and qualitative antimicrobial and anti-inflammatory drug use in white veal calves. J. Antimicrob. Chemother. 2012, 67, 1027–1038. [Google Scholar] [CrossRef]
- Anonymous. Veterinary Information System: National Database of Farms. Available online: https://www.vetinfo.it/p_servizi_csn/#/ (accessed on 15 March 2023).
- ISO 9001:2015; Quality Management Systems—Requirements. ISO International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-5:v1:en (accessed on 10 January 2024).
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 5th ed.; CLSI Standard VET01; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 4th ed.; CLSI supplement VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 10.0.; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2020; Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 10 January 2024).
- CASFM. Comité de L’antibiogramme de la Société Française de Microbiologie. Groupe de Travail Antibiogramme Vétérinaire. Recommandations Vétérinaires. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2019/07/CASFM_VET2019.pdf (accessed on 10 January 2024).
- Hu, Y.; Liu, L.; Zhang, X.; Feng, Y.; Zong, Z. In Vitro Activity of Neomycin, Streptomycin, Paromomycin and Apramycin against Carbapenem-Resistant Enterobacteriaceae Clinical Strains. Front. Microbiol. 2017, 8, 2275. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. European Committee on Antimicrobial Susceptibility. Antimicrobial Wild Type Distributions of Microorganisms. Available online: https://mic.eucast.org/search/ (accessed on 10 January 2024).
- ISO 13485:2016; Medical Devices. Quality Management Systems—Requirements for Regulatory Purposes. ISO International Organization for Standardization: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/59752.html (accessed on 10 January 2024).
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 6th ed.; CLSI supplement VET01S; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2023. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet. Microbiol. 2010, 141, 601–604. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022, 20, e07209. [Google Scholar] [CrossRef] [PubMed]
- Aerts, M.; Faes, C.; Nysen, R. Development of statistical methods for the evaluation of data on antimicrobial resistance in bacterial isolates from animals and food. EFSA Support. Publ. 2011, 8, 186E. [Google Scholar] [CrossRef]
- De Lucia, A.; Card, R.M.; Duggett, N.; Smith, R.P.; Davies, R.; Cawthraw, S.A.; Anjum, M.F.; Rambaldi, M.; Ostanello, F.; Martelli, F. Reduction in antimicrobial resistance prevalence in Escherichia coli from a pig farm following withdrawal of group antimicrobial treatment. Vet. Microbiol. 2021, 258, 109125. [Google Scholar] [CrossRef]
- Michael, A.; Kelman, T.; Pitesky, M. Overview of Quantitative Methodologies to Understand Antimicrobial Resistance via Minimum Inhibitory Concentration. Animals 2020, 10, 1405. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J. 2023, 21, e07867. [Google Scholar] [CrossRef] [PubMed]
- Tenhagen, B.A.; Kasbohrer, A.; Grobbel, M.; Hammerl, J.; Kaspar, H. Antimicrobial resistance in E. coli from different cattle populations in Germany. Tierarztl Prax Ausg. G Grosstiere Nutztiere 2020, 48, 218–227. [Google Scholar] [CrossRef]
- Boireau, C.; Morignat, E.; Cazeau, G.; Jarrige, N.; Jouy, E.; Haenni, M.; Madec, J.Y.; Leblond, A.; Gay, E. Antimicrobial resistance trends in Escherichia coli isolated from diseased food-producing animals in France: A 14-year period time-series study. Zoonoses Public Health 2018, 65, e86–e94. [Google Scholar] [CrossRef]
- ClassyFarm Sistema Informativo Veterinario Ministero della Salute Repubblica_Italiana. Available online: https://cf-appservice06-es.azurewebsites.net/dashboard (accessed on 12 February 2024).
- Meshref, A.E.; Eldesoukey, I.E.; Alouffi, A.S.; Alrashedi, S.A.; Osman, S.A.; Ahmed, A.M. Molecular Analysis of Antimicrobial Resistance among Enterobacteriaceae Isolated from Diarrhoeic Calves in Egypt. Animals 2021, 11, 1712. [Google Scholar] [CrossRef]
- Garcia-Migura, L.; Hendriksen, R.S.; Fraile, L.; Aarestrup, F.M. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: The missing link between consumption and resistance in veterinary medicine. Vet. Microbiol. 2014, 170, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pavelquesi, S.L.S.; de Oliveira Ferreira, A.C.A.; Rodrigues, A.R.M.; de Souza Silva, C.M.; Orsi, D.C.; da Silva, I.C.R. Presence of tetracycline and sulfonamide resistance genes in Salmonella spp.: Literature review. Antibiotics 2021, 10, 1314. [Google Scholar] [CrossRef]
- Eibl, C.; Bexiga, R.; Viora, L.; Guyot, H.; Felix, J.; Wilms, J.; Tichy, A.; Hund, A. The Antibiotic Treatment of Calf Diarrhea in Four European Countries: A Survey. Antibiotics 2021, 10, 910. [Google Scholar] [CrossRef] [PubMed]
- Diana, A.; Santinello, M.; Penasa, M.; Scali, F.; Magni, E.; Alborali, G.L.; Bertocchi, L.; De Marchi, M. Use of antimicrobials in beef cattle: An observational study in the north of Italy. Prev. Vet. Med. 2020, 181, 105032. [Google Scholar] [CrossRef]
- Dowling, P.M. Peptide Antibiotics: Polymyxins, Glycopeptides, Bacitracin, and Fosfomycin. In Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Giguère, S., Prescott, J.F., Dowling, P.M., Eds.; John Wiley & Sons, Inc.: Ames, IA, USA, 2013; p. 198. [Google Scholar]
- Mormede, P.; Soissons, J.; Bluthe, R.M.; Raoult, J.; Legarff, G.; Levieux, D.; Dantzer, R. Effect of transportation on blood serum composition, disease incidence, and production traits in young calves. Influence of the journey duration. Ann. Rech. Vet. 1982, 13, 369–384. [Google Scholar]
- Schnyder, P.; Schonecker, L.; Schupbach-Regula, G.; Meylan, M. Effects of management practices, animal transport and barn climate on animal health and antimicrobial use in Swiss veal calf operations. Prev. Vet. Med. 2019, 167, 146–157. [Google Scholar] [CrossRef]
- Mitrenga, S.; Popp, J.; Becker, A.; Hartmann, M.; Ertugrul, H.; Sartison, D.; Deutsch, S.; Meemken, D.; Kreienbrock, L.; Hille, K. Veterinary drug administration in German veal calves: An exploratory study on retrospective data. Prev. Vet. Med. 2020, 183, 105131. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, N.; Bassi, P.; Maragno, D.; Padovani, A.; Trambajolo, G. Uso Prudente Dell’antibiotico Nell’allevamento Bovino da Latte. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_3347_allegato.pdf (accessed on 12 February 2024).
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J. Dairy Sci. 2015, 98, 500–516. [Google Scholar] [CrossRef]
- Maynou, G.; Migura-Garcia, L.; Chester-Jones, H.; Ziegler, D.; Bach, A.; Terre, M. Effects of feeding pasteurized waste milk to dairy calves on phenotypes and genotypes of antimicrobial resistance in fecal Escherichia coli isolates before and after weaning. J. Dairy Sci. 2017, 100, 7967–7979. [Google Scholar] [CrossRef]
- Mwenifumbo, M.; Cookson, A.L.; Zhao, S.; Fayaz, A.; Browne, A.S.; Benschop, J.; Burgess, S.A. The characterisation of antimicrobial resistant Escherichia coli from dairy calves. J. Med. Microbiol. 2023, 72, 001742. [Google Scholar] [CrossRef]
- Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernandez Escamez, P.S.; Girones, R.; Koutsoumanis, K.; Lindqvist, R.; Norrung, B.; et al. Risk for the development of Antimicrobial Resistance (AMR) due to feeding of calves with milk containing residues of antibiotics. EFSA J. 2017, 15, e04665. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial | Abbreviation | Antimicrobial Class | Clinical Breakpoint (µg/mL) | References and Specie | ECOFF d (µg/mL) | ||
---|---|---|---|---|---|---|---|
S a≤ | I b= | R c≥ | R c≥ | ||||
Ampicillin | AMP | Aminopenicillins | 0.25 | 0.5 | 1 | [40], cattle | 16 |
Colistin | COL | Polymyxins | 2 | - | 4 | [41], human | 4 |
Enrofloxacin | ENR | Quinolones | 0.5 | 1–2 | 4 | [40], dog | 0.25 |
Florfenicol | FLO | Amphenicols | 4 | 8 | 16 | [40], swine | 32 |
Flumequine | FLQ | Quinolones | 4 | 8 | 16 | [42], all species | 4 |
Gentamicin | GEN | Aminoglycosides | 4 | 8 | 16 | [40], human | 4 |
Paromomycin | PRM | Aminoglycosides | 8 | 16 | 32 | [43], human | n.a. |
Tetracycline | TET | Tetracyclines | 4 | 8 | 16 | [40], human | 16 |
Trimethoprim/ sulfamethoxazole | SX-T | Sulfonamides | 2/38 | - | 4/76 | [40], human | 1 |
Antimicrobials | Animal Breeding | No. of Tested E. coli Isolates | Clinical Breakpoint: No. of Resistant E. coli Isolates (%) | 95%CI | p | ECOFF: No. of Resistant E. coli Isolates (%) | 95%CI | p | ||
---|---|---|---|---|---|---|---|---|---|---|
AMP | veal calves | 276 | 276 | (100.0) | - | 0.35 | 250 | (90.6) | 86.6–93.5 | <0.001 |
dairy calves | 874 | 869 | (99.4) | 98.7–99.8 | 650 | (74.4) | 71.4–77.1 | |||
total | 1150 | 1145 | (99.6) | 99.0–99.8 | 900 | (78.3) | 75.8–80.5 | |||
COL | veal calves | 276 | 48 | (17.4) | 13.4–22.3 | <0.001 | 48 | (17.4) | 13.4–22.3 | <0.001 |
dairy calves | 874 | 55 | (6.3) | 4.9–8.1 | 55 | (6.3) | 4.9–8.1 | |||
total | 1150 | 103 | (9.0) | 7.4–10.7 | 103 | (9.0) | 7.4–10.7 | |||
ENR | veal calves | 276 | 155 | (56.2) | 50.3–61.9 | <0.001 | 217 | (78.6) | 73.4–83.0 | <0.001 |
dairy calves | 874 | 384 | (43.9) | 40.7–47.2 | 529 | (60.5) | 75.2–63.7 | |||
total | 1150 | 539 | (46.9) | 44.0–49.8 | 746 | (64.9) | 62.1–67.6 | |||
FLO | veal calves | 276 | 187 | (67.8) | 62.0–73.0 | <0.001 | 158 | (57.2) | 51.3–62.9 | <0.001 |
dairy calves | 874 | 328 | (37.5) | 34.4–40.8 | 275 | (31.5) | 28.5–34.6 | |||
total | 1150 | 515 | (44.8) | 41.9–47.7 | 433 | (37.7) | 34.9–40.5 | |||
FLQ | veal calves | 276 | 172 | (62.3) | 56.5–67.8 | <0.001 | 217 | (78.6) | 73.4–83.0 | <0.001 |
dairy calves | 874 | 414 | (47.4) | 44.1–50.7 | 541 | (61.9) | 58.6–65.1 | |||
total | 1150 | 586 | (51.0) | 48.1–53.8 | 758 | (65.9) | 63.1–68.6 | |||
GEN | veal calves | 276 | 120 | (43.5) | 37.8–49.4 | <0.001 | 145 | (52.5) | 46.6–58.3 | <0.001 |
dairy calves | 874 | 211 | (24.1) | 21.4–27.1 | 257 | (29.4) | 26.5–32.5 | |||
total | 1150 | 331 | (28.8) | 26.2–31.5 | 402 | (35.0) | 32.2–37.8 | |||
PRM | veal calves | 276 | 197 | (71.4) | 65.8–76.4 | <0.001 | - a | - | - | - |
dairy calves | 874 | 483 | (55.3) | 51.0–58.5 | ||||||
total | 1150 | 680 | (59.1) | 56.3–61.9 | ||||||
TET | veal calves | 276 | 261 | (94.6) | 91.2–96.7 | <0.001 | 261 | (94.6) | 91.2–96.7 | <0.001 |
dairy calves | 874 | 669 | (76.5) | 73.6–79.2 | 669 | (76.5) | 73.6–79.2 | |||
total | 1150 | 930 | (80.9) | 78.5–83.0 | 930 | (80.9) | 78.5–83.0 | |||
SX-T | veal calves | 276 | 234 | (84.8) | 80.1–88.5 | <0.001 | 236 | (85.5) | 80.9–89.2 | <0.001 |
dairy calves | 874 | 499 | (57.1) | 53.8–60.3 | 525 | (60.1) | 56.8–63.3 | |||
total | 1150 | 733 | (63.7) | 60.9–66.5 | 761 | (66.2) | 63.4–68.8 |
Veal and Dairy Calves | Veal Calves | Dairy Calves | |||||||
---|---|---|---|---|---|---|---|---|---|
Resistance Profile | No. of Isolates within Resistance Profile (%) | Cumulative Percentage | No. of Isolates within Resistance Profile (%) | Cumulative Percentage | No. of Isolates within Resistance Profile (%) | Cumulative Percentage | |||
AMP-ENR-FLO-FLQ-GEN-PRM-TET-SX-T | 144 | 16.0 | 16.0 | 66 | 26.1 | 26.1 | 78 | 12.0 | 12.0 |
AMP-ENR-FLO-FLQ-PRM-TET-SX-T | 73 | 8.1 | 24.1 | 26 | 10.3 | 36.4 | 47 | 7.2 | 19.3 |
AMP-ENR-FLQ-PRM-TET-SX-T | 60 | 6.7 | 30.7 | 9 | 3.6 | 39.9 | 51 | 7.9 | 27.1 |
AMP-PRM-TET-SX-T | 57 | 6.3 | 37.0 | 15 | 5.9 | 45.8 | 42 | 6.5 | 33.6 |
AMP-TET-SX-T | 48 | 5.3 | 42.4 | 15 | 5.9 | 51.8 | 33 | 5.1 | 38.7 |
AMP-PRM-TET | 46 | 5.1 | 47.5 | 2 | 0.8 | 52.6 | 44 | 6.8 | 45.5 |
AMP-ENR-FLQ-PRM-TET | 38 | 4.2 | 51.7 | 0 | 0.0 | 52.6 | 38 | 5.9 | 51.3 |
AMP-COL-ENR-FLO-FLQ-GEN-PRM-TET-SX-T | 37 | 4.1 | 55.8 | 17 | 6.7 | 59.3 | 20 | 3.1 | 54.4 |
AMP-FLO-PRM-TET-SX-T | 31 | 3.4 | 59.2 | 10 | 4.0 | 63.2 | 21 | 3.2 | 57.6 |
AMP-ENR-FLO-FLQ-TET-SX-T | 29 | 3.2 | 62.4 | 10 | 4.0 | 67.2 | 19 | 2.9 | 60.6 |
AMP-FLO-GEN-PRM-TET-SX-T | 28 | 3.1 | 65.5 | 7 | 2.8 | 70.0 | 21 | 3.2 | 63.8 |
AMP-ENR-FLQ-TET-SX-T | 26 | 2.9 | 68.4 | 0 | 0.0 | 70.0 | 26 | 4.0 | 67.8 |
AMP-ENR-FLO-FLQ-GEN-TET-SX-T | 22 | 2.4 | 70.8 | 7 | 2.8 | 72.7 | 15 | 2.3 | 70.1 |
AMP-FLO-TET-SX-T | 22 | 2.4 | 73.3 | 4 | 1.6 | 74.3 | 18 | 2.8 | 72.9 |
AMP-FLO-TET | 15 | 1.7 | 74.9 | 6 | 2.4 | 76.7 | 9 | 1.4 | 74.3 |
AMP-ENR-FLQ-GEN-PRM-TET-SX-T | 15 | 1.7 | 76.6 | 3 | 1.2 | 77.9 | 12 | 1.8 | 76.1 |
AMP-FLO-FLQ-GEN-PRM-TET-SX-T | 15 | 1.7 | 78.3 | 3 | 1.2 | 79.1 | 12 | 1.8 | 78.0 |
AMP-COL-ENR-FLO-FLQ-PRM-TET-SX-T | 13 | 1.4 | 79.7 | 5 | 2.0 | 81.0 | 8 | 1.2 | 79.2 |
AMP-FLO-FLQ-PRM-TET-SX-T | 12 | 1.3 | 81.0 | 6 | 2.4 | 83.4 | 6 | 0.9 | 80.1 |
AMP-ENR-FLQ-GEN-PRM-TET | 11 | 1.2 | 82.3 | 2 | 0.8 | 84.2 | 9 | 1.4 | 81.5 |
AMP-GEN-PRM-TET-SX-T | 11 | 1.2 | 83.5 | 4 | 1.6 | 85.8 | 7 | 1.1 | 82.6 |
Total isolates in reported profiles | 753 | 217 | 536 | ||||||
Total isolates in other MDR profiles | 149 | 16.5 | 36 | 14.2 | 113 | 17.4 | |||
Total MDR isolates | 902 | 253 | 649 |
Antimicrobial | Animal Breeding | Dilution Range (μg/mL) | Minimum MIC Value (μg/mL) | Maximum MIC Value (μg/mL) | MIC50 (μg/mL) | MIC90 (μg/mL) |
---|---|---|---|---|---|---|
AMP | veal calves | 0.25–32 | 1 | >32 | >32 | >32 |
dairy calves | ≤0.25 | >32 | >32 | >32 | ||
Total | ≤0.25 | >32 | >32 | >32 | ||
COL | veal calves | 0.03125–8 | ≤0.03125 | >8 | 1 | 8 |
dairy calves | ≤0.03125 | >8 | 0.50 | 1 | ||
Total | ≤0.03125 | >8 | 0.50 | 2 | ||
ENR | veal calves | 0.015625–32 | ≤0.015625 | >32 | 8 | >32 |
dairy calves | ≤0.015625 | >32 | 0.50 | 32 | ||
Total | ≤0.015625 | >32 | 1 | >32 | ||
FLO | veal calves | 1–64 | ≤1 | >64 | >64 | >64 |
dairy calves | ≤1 | >64 | 8 | >64 | ||
Total | ≤1 | >64 | 8 | >64 | ||
FLQ | veal calves | 1–32 | ≤1 | >32 | 32 | >32 |
dairy calves | ≤1 | >32 | 8 | >32 | ||
Total | ≤1 | >32 | 16 | >32 | ||
GEN | veal calves | 0.25–32 | ≤0.25 | >32 | 4 | >32 |
dairy calves | ≤0.25 | >32 | 0.50 | 32 | ||
Total | ≤0.25 | >32 | 1 | >32 | ||
PRM | veal calves | 1–32 | ≤1 | >32 | >32 | >32 |
dairy calves | ≤1 | >32 | >32 | >32 | ||
Total | ≤1 | >32 | >32 | >32 | ||
TET | veal calves | 0.50–16 | ≤0.50 | >16 | >16 | >16 |
dairy calves | ≤0.50 | >16 | >16 | >16 | ||
Total | ≤0.50 | >16 | >16 | >16 | ||
SX-T | veal calves | 0.0625–16 | ≤0.0625 | >16 | >16 | >16 |
dairy calves | ≤0.0625 | >16 | >16 | >16 | ||
Total | ≤0.0625 | >16 | >16 | >16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bortolami, L.; Barberio, A.; Schiavon, E.; Martignago, F.; Littamè, E.; Sturaro, A.; Gagliazzo, L.; De Lucia, A.; Ostanello, F. Surveillance of Antimicrobial Resistance of Escherichia coli Isolates from Intestinal Contents of Dairy and Veal Calves in the Veneto Region, Northeaster Italy. Animals 2024, 14, 1429. https://doi.org/10.3390/ani14101429
Bortolami L, Barberio A, Schiavon E, Martignago F, Littamè E, Sturaro A, Gagliazzo L, De Lucia A, Ostanello F. Surveillance of Antimicrobial Resistance of Escherichia coli Isolates from Intestinal Contents of Dairy and Veal Calves in the Veneto Region, Northeaster Italy. Animals. 2024; 14(10):1429. https://doi.org/10.3390/ani14101429
Chicago/Turabian StyleBortolami, Laura, Antonio Barberio, Eliana Schiavon, Federico Martignago, Erica Littamè, Anna Sturaro, Laura Gagliazzo, Alessia De Lucia, and Fabio Ostanello. 2024. "Surveillance of Antimicrobial Resistance of Escherichia coli Isolates from Intestinal Contents of Dairy and Veal Calves in the Veneto Region, Northeaster Italy" Animals 14, no. 10: 1429. https://doi.org/10.3390/ani14101429
APA StyleBortolami, L., Barberio, A., Schiavon, E., Martignago, F., Littamè, E., Sturaro, A., Gagliazzo, L., De Lucia, A., & Ostanello, F. (2024). Surveillance of Antimicrobial Resistance of Escherichia coli Isolates from Intestinal Contents of Dairy and Veal Calves in the Veneto Region, Northeaster Italy. Animals, 14(10), 1429. https://doi.org/10.3390/ani14101429