Food Allocation under Asynchronous Hatching Conditions of Great Tits (Parus major)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fieldwork
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lack, D. The significance of clutch-size. Ibis 1947, 89, 302–352. [Google Scholar] [CrossRef]
- Lack, D. The Natural Regulation of Animal Numbers; Clarendon Press: Oxford, UK, 1954. [Google Scholar]
- Ricklefs, R.E. Brood reduction in the Curve-billed Thrasher. Condor 1965, 67, 505–510. [Google Scholar] [CrossRef]
- Clark, A.B.; Wilson, D.S. Avian breeding adaptations: Hatching asynchrony, brood reduction, and nest failure. Q. Rev. Biol. 1981, 56, 253–277. [Google Scholar] [CrossRef]
- Pijanowski, B.C. A revision of Lack’s brood reduction hypothesis. Am. Nat. 1992, 139, 1270–1292. [Google Scholar] [CrossRef]
- Mock, D.W. Brood reduction: Narrow sense, broad sense. J. Avian Biol. 1994, 25, 3–7. [Google Scholar] [CrossRef]
- Stenning, M.J. Hatching asynchrony, brood reduction and other rapidly reproducing hypotheses. Trends Ecol. Evol. 1996, 11, 243–246. [Google Scholar] [CrossRef]
- Lack, D. Ecological adaptations for breeding in birds. Auk 1968, 86, 774–777. [Google Scholar]
- Magrath, R.D. Hatching asynchrony and reproductive success in the blackbird. Nature 1989, 339, 536–538. [Google Scholar] [CrossRef]
- Magrath, R.D. Hatching asynchrony in altricial birds. Biol. Rev. 1990, 65, 587–622. [Google Scholar] [CrossRef]
- Forbes, S.; Glassey, B.; Thornton, S.; Earle, L. The secondary adjustment of clutch size in red-winged blackbirds (Agelaius phoeniceus). Behav. Ecol. Sociobiol. 2001, 50, 37–44. [Google Scholar] [CrossRef]
- Soler, M.; Ruiz-Raya, F.; Sánchez-Pérez, L.; Ibáñez-Álamo, J.D. Parents preferentially feed larger offspring in asynchronously hatched broods irrespective of scramble competition. Anim. Behav. 2022, 194, 193–198. [Google Scholar] [CrossRef]
- Estes, W.A.; Mannan, R.W. Feeding behavior of Cooper’s Hawks at urban and rural nests in southeastern Arizona. Condor 2003, 105, 107–116. [Google Scholar] [CrossRef]
- Giovanni, M.D.; Boal, C.W.; Whitlaw, H.A. Prey use and provisioning rates of breeding Ferruginous and Swainson’s hawks on the southern Great Plains, USA. Wilson J. Ornithol. 2007, 119, 558–569. [Google Scholar] [CrossRef]
- Lee, J.K.; Chung, O.S. Under what conditions is brood reduction effective? Ethol. Ecol. Evol. 2020, 32, 361–373. [Google Scholar] [CrossRef]
- Reynolds, P.S. Brood reduction and siblicide in black-billed magpies (Pica pica). Auk 1996, 113, 189–199. [Google Scholar] [CrossRef]
- Harper, R.G.; Juliano, S.A.; Thompson, C.F. Hatching asynchrony in the house wren, Troglodytes aedon: A test of the brood-reduction hypothesis. Behav. Ecol. 1992, 3, 76–83. [Google Scholar] [CrossRef]
- Whittingham, L.A.; Dunn, P.O.; Clotfelter, E.D. Parental allocation of food to nestling tree swallows: The influence of nestling behaviour, sex and paternity. Anim. Behav. 2003, 65, 1203–1210. [Google Scholar] [CrossRef]
- Auer, S.K.; Bassar, R.D.; Fontaine, J.J.; Martin, T.E. Breeding biology of passerines in a subtropical montane forest in northwestern Argentina. Condor 2007, 109, 321–333. [Google Scholar] [CrossRef]
- Cholewa, M.; Wesołowski, T. Nestling food of European hole-nesting passerines: Do we know enough to test the adaptive hypotheses on breeding seasons? Acta Ornithol. 2011, 46, 105–116. [Google Scholar] [CrossRef]
- Lee, J.K.; Jang, W.; Chung, O.S.; Lee, W.S. The relationships between prey size, nestling age, provisioning rate, and elevation in the Varied Tit Parus varius. Ornithol. Sci. 2016, 15, 29–36. [Google Scholar] [CrossRef]
- Gonzalez, L.M.; Margalida, A.; Sanchez, R.; Oria, J. Supplementary feeding as an effective tool for improving breeding success in the Spanish imperial eagle (Aquila adalberti). Biol. Conserv. 2006, 129, 477–486. [Google Scholar] [CrossRef]
- Morandini, V.; Ferrer, M. Sibling aggression and brood reduction: A review. Ethol. Ecol. Evol. 2015, 27, 2–16. [Google Scholar] [CrossRef]
- Ferrer, M.; Morandini, V.; Baguena, G. Reintroducing endangered raptors: A case study of supplementary feeding and removal of nestlings from wild populations. J. Appl. Ecol. 2018, 55, 1360–1367. [Google Scholar] [CrossRef]
- Perrins, C.M. Population fluctuations and clutch-size in the Great Tit, Parus major L. J. Anim. Ecol. 1965, 34, 601–647. [Google Scholar] [CrossRef]
- Boyce, M.S.; Perrins, C.M. Optimizing great tit clutch size in a fluctuating environment. Ecology 1987, 68, 142–153. [Google Scholar] [CrossRef]
- Perrins, C.M.; McCleery, R.H. Laying dates and clutch size in the great tit. Wilson Bull. 1989, 101, 236–253. [Google Scholar]
- Amundsen, T.; Slagsvold, T. Hatching asynchrony in great tits: A bet-hedging strategy? Ecology 1998, 79, 295–304. [Google Scholar] [CrossRef]
- Podlas, K.A.; Richner, H. The adaptive function of hatching asynchrony: An experimental study in great tits. Anim. Behav. 2013, 86, 567–576. [Google Scholar] [CrossRef]
- Won, P.O. Illustrated Flora & Fauna of Korea; Avifauna; Ministry of Education: Seoul, Republic of Korea, 1981; Volume 25.
- Brush, T. Cavity use by secondary cavity-nesting birds and response to manipulations. Condor 1983, 85, 461–466. [Google Scholar] [CrossRef]
- Lambrechts, M.M.; Adriaensen, F.; Ardia, D.R.; Artemyev, A.V.; Atiénzar, F.; Bańbura, J.; Barba, E.; Bouvier, J.C.; Camprodon, J.; Cooper, C.B.; et al. The design of artificial nestboxes for the study of secondary hole-nesting birds: A review of methodological inconsistencies and potential biases. Acta Ornithol. 2010, 45, 1–26. [Google Scholar] [CrossRef]
- Remacha, C.; Delgado, J.A. Spatial nest-box selection of cavity-nesting bird species in response to proximity to recreational infrastructures. Landsc. Urban Plan. 2009, 93, 46–53. [Google Scholar] [CrossRef]
- Slagsvold, T. Asynchronous hatching in passerines birds: Influence of hatching failure and brood reduction. Ornis Scand. 1985, 16, 81–87. [Google Scholar] [CrossRef]
- Schöll, E.M.; Hille, S.M. Heavy and persistent rainfall leads to brood reduction and nest failure in a passerines bird. J. Avian Biol. 2020, 51. [Google Scholar] [CrossRef]
- Grundel, R. Determinants of nestling feeding rates and parental investment in the Mountain Chickadee. Condor 1987, 89, 319–328. [Google Scholar] [CrossRef]
- Barba, E.; Atienzar, F.; Marin, M.; Monros, J.S.; Gil-Delgado, J.A. Patterns of nestling provisioning by a single-prey loader bird, Great Tit Parus major. Bird Study 2009, 56, 187–197. [Google Scholar] [CrossRef]
- Lee, J.K.; Chung, O.S.; Lee, W.S. Altitudinal variation in parental provisioning of nestling Varied Tits (Poecile varius). Wilson J. Ornithol. 2011, 123, 283–288. [Google Scholar] [CrossRef]
- Moreno-Rueda, G.; Soler, M.; MartíN-Vivaldi, M.; Palomino, J.J. Brood provisioning rate and food allocation rules according to nestling begging in a clutch-adjusting species, the Rufous-tailed Scrub-robin Cercotrichas galactotes. Acta Ornithol. 2009, 44, 167–175. [Google Scholar] [CrossRef]
- Lee, S.I.; Choi, J.; Choe, J.C. Hunger is not the only determinant of nestling begging behavior and parental feeding in the Black-billed Magpie Pica pica. Acta Ornithol. 2012, 47, 10–18. [Google Scholar] [CrossRef]
- Smith, H.G.; Montgomerie, R. Nestling American robins compete with siblings by begging. Behav. Ecol. Sociobiol. 1991, 29, 307–312. [Google Scholar] [CrossRef]
- Bengtsson, H.; Rydén, O. Parental feeding rate in relation to begging behavior in asynchronously hatched broods of the great tit Parus major. Behav. Ecol. Sociobiol. 1983, 12, 243–251. [Google Scholar] [CrossRef]
- Grieco, F. Short-term regulation of food-provisioning rate and effect on prey size in blue tits, Parus caeruleus. Anim. Behav. 2001, 62, 107–116. [Google Scholar] [CrossRef]
- Sacchi, R.; Saino, N.; Galeotti, P. Features of begging calls reveal general condition and need of food of barn swallow (Hirundo rustica) nestlings. Behav. Ecol. 2002, 13, 268–273. [Google Scholar] [CrossRef]
- Wetzel, D.P.; Mutzel, A.; Wright, J.; Dingemanse, N.J. Novel sources of (co) variation in nestling begging behavior and hunger at different biological levels of analysis. Behav. Ecol. 2020, 31, 960–970. [Google Scholar] [CrossRef]
- Malacarne, G.; Cucco, M.; Bertolo, E. Sibling competition in asynchronously hatched broods of the pallid swift (Apus pallidus). Ethol. Ecol. Evol. 1994, 6, 293–300. [Google Scholar] [CrossRef]
- Poelman, E.H.; Mateman, A.C.; Cassey, P. Consistent feeding positions of great tit parents. Anim. Behav. 2006, 72, 1249–1257. [Google Scholar]
- Nuhlíčková, S.; Svetlík, J.; Eckenfellner, M.; Knauer, F.; Hoi, H. Interaction between nestling behaviour and nest-space use. Ethol. Ecol. Evol. 2021, 33, 496–514. [Google Scholar] [CrossRef]
- Budden, A.E.; Wright, J. Learning during competitive positioning in the nest: Do nestlings use ideal free ‘foraging’tactics? Behav. Ecol. Sociobiol. 2005, 58, 227–236. [Google Scholar] [CrossRef]
- Kölliker, M.; Richner, H. Navigation in a cup: Chick positioning in great tit, Parus major, nests. Anim. Behav. 2004, 68, 941–948. [Google Scholar] [CrossRef]
- Hussell, D.J. On the adaptive basis for hatching asynchrony: Brood reduction, nest failure and asynchronous hatching in snow buntings. Ornis Scand. 1985, 16, 205–212. [Google Scholar] [CrossRef]
- Cash, K.J.; Evans, R.M. Brood reduction in the American white pelican (Pelecanus erythrohynchos). Behav. Ecol. Sociobiol. 1986, 18, 413–418. [Google Scholar] [CrossRef]
- Arnold, T.W.; Rohwer, F.C.; Armstrong, T. Egg viability, nest predation, and the adaptive significance of clutch size in prairie ducks. Am. Nat. 1987, 130, 643–653. [Google Scholar] [CrossRef]
- Stoleson, S.H.; Beissinger, S.R. Hatching asynchrony and the onset of incubation in birds, revisited. In Current Ornithology; Springer: Boston, MA, USA, 1995; pp. 191–270. [Google Scholar]
- Ardia, D.R.; Cooper, C.B.; Dhondt, A.A. Warm temperatures lead to early onset of incubation, shorter incubation periods and greater hatching asynchrony in tree swallows Tachycineta bicolor at the extremes of their range. J. Avian Biol. 2006, 37, 137–142. [Google Scholar] [CrossRef]
- Beissinger, S.R.; Waltman, J.R. Extraordinary clutch size and hatching asynchrony of a neotropical parrot. Auk 1991, 108, 863–871. [Google Scholar]
- Lee, J.K.; Chung, O.S.; Park, J.Y.; Kim, H.J.; Hur, W.H.; Kim, S.H.; Kim, J.H. Effects of the Saemangeum Reclamation Project on migratory shorebird staging in the Saemangeum and Geum Estuaries, South Korea. Bird Conserv. Int. 2018, 28, 238–250. [Google Scholar] [CrossRef]
- García-Navas, V.; Ferrer, E.S.; Serrano-Davies, E. Experimental evidence for parental, but not parentally biased, favouritism in relation to offspring size in B lue T its C yanistes caeruleus. Ibis 2014, 156, 404–414. [Google Scholar] [CrossRef]
- Mainwaring, M.C.; Beal, J.L.; Hartley, I.R. Zebra finches are bolder in an asocial, rather than social, context. Behav. Process. 2011, 87, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Lessells, C.M.; McNamara, J.M. Sexual conflict over parental investment in repeated bouts: Negotiation reduces overall care. Proc. R. Soc. B Biol. Sci. 2012, 279, 1506–1514. [Google Scholar] [CrossRef]
Hatched Nest Types | Number of First Hatched Nestlings (Mean ± SE) | Number of Second Hatched Nestlings (Mean ± SE) | Number of Third Hatched Nestlings (Mean ± SE) | Clutch Size (Mean ± SE) | Number of Feedings per Nestling 09:00~12:00 a.m. (Mean ± SE) | Number of Feedings per Nestling Day 1~6 (Mean ± SE) |
---|---|---|---|---|---|---|
Nests that hatched over two days | 4.75 ± 1.98 | 3.13 ± 1.97 | - | 7.88 ± 0.60 | 20.54 ± 11.56 | 123.25 ± 47.07 |
Nests that hatched over three days | 3.80 ± 1.83 | 3.00 ± 1.67 | 1.20 ± 0.40 | 8.00 ± 1.26 | 23.05 ± 9.39 | 138.30 ± 30.11 |
Linear | Resource | Unstandardized Coefficients | Standardized Coefficients | t | p | F | R2 | |
---|---|---|---|---|---|---|---|---|
B | SE | β | ||||||
Constant term | −4.023 | 2.986 | −1.347 | 0.178 | ||||
Independent variable | hatching order | 0.040 | 0.043 | 0.033 | 0.917 | 0.360 | 57.931 | 0.337 |
beak-open order | 0.650 | 0.042 | 0.533 | 15.638 | <0.001 | |||
nestling age | 0.077 | 0.012 | 0.225 | 6.319 | <0.001 | |||
nestling location | −0.041 | 0.025 | −0.056 | −1.628 | 0.104 | |||
date | 8.642 × 10−5 | 0.000 | 0.044 | 1.284 | 0.200 |
Linear | Resource | Unstandardized Coefficients | Standardized Coefficients | t | p | F | R2 | |
---|---|---|---|---|---|---|---|---|
B | SE | β | ||||||
Constant term | 5.104 | 3.624 | 1.408 | 0.159 | ||||
Independent variable | hatching order | −0.013 | 0.025 | −0.017 | −0.543 | 0.587 | 77.492 | 0.295 |
beak-open order | 0.696 | 0.037 | 0.525 | 18.971 | <0.001 | |||
nestling age | 0.045 | 0.011 | 0.128 | 4.210 | <0.001 | |||
nestling location | 0.041 | 0.022 | 0.051 | 1.849 | 0.065 | |||
date | 0.000 | 0.000 | −0.040 | −1.448 | 0.148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-W.; Lee, J.-K. Food Allocation under Asynchronous Hatching Conditions of Great Tits (Parus major). Animals 2023, 13, 1443. https://doi.org/10.3390/ani13091443
Kang J-W, Lee J-K. Food Allocation under Asynchronous Hatching Conditions of Great Tits (Parus major). Animals. 2023; 13(9):1443. https://doi.org/10.3390/ani13091443
Chicago/Turabian StyleKang, Ji-Won, and Jong-Koo Lee. 2023. "Food Allocation under Asynchronous Hatching Conditions of Great Tits (Parus major)" Animals 13, no. 9: 1443. https://doi.org/10.3390/ani13091443