Identification of Ruminal Fermentation Curves of Some Legume Forages Using Particle Swarm Optimization
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Particle Swarm Optimization (PSO)
2.3. Curve Fitting
2.4. Optimal Problem-Solving Model
2.5. Proposed Algorithm
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aliu, S.; Rusinovci, I.; Fetahu, S.; Zeka, D. Performance of Forage Crops and Grass Mixtures in Kosovo. In Grasses and Grassland Aspects; BoD—Books on Demand: Norderstedt, Germany, 2019. [Google Scholar]
- Mahanta, S.K.; Garcia, S.C.; Islam, M.R. Forage based feeding systems of dairy animals: Issues, limitations and strategies. Range Manag. Agrofor. 2020, 41, 188–199. [Google Scholar]
- Zhang, X.; Wang, H.; Guo, X. Effects of total mixed ration with various silage on growth performance, serum parameters, ruminal fermentation, and bacteria community profile in beef cattle. Food Sci. Nutr. 2021, 9, 5959–5970. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sun, X.; You, P. Animal, feed and rumen fermentation attributes associated with methane emissions from sheep fed brassica crops. J. Anim. Physiol. Anim. Nutr. 2021, 105, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.N.; Li, S.Z.; Chen, X.; Qin, G.X.; Wang, T.; Sun, Z.; Zhen, Y.G. Effects of different combinations of sugar and starch concentrations on ruminal fermentation and bacterial-community composition in vitro. Front. Nutr. 2021, 8, 727714. [Google Scholar] [CrossRef] [PubMed]
- Lagrange, S.; Lobón, S.; Villalba, J.J. Gas production kinetics and in vitro degradability of tannin-containing legumes, alfalfa and their mixtures. Anim. Feed Sci. Technol. 2019, 253, 56–64. [Google Scholar] [CrossRef]
- Palangi, V.; Besharati, M. Validation of in situ disappearance curves utilizing mathematical models for incubating fish meal and cottonseed meal. Semina: Cien. Agrar. 2020, 41, 3391–3396. [Google Scholar] [CrossRef]
- Do, D.T.; Le, T.Q.T.; Le, N.Q.K. Using deep neural networks and biological subwords to detect protein S-sulfenylation sites. Brief. Bioinform. 2021, 22, bbaa128. [Google Scholar] [CrossRef]
- Palangi, V. In situ ruminal degradation of sallow tree leaves using different mathematical models. Rev. MVZ Córdoba 2021, 26, e2170. [Google Scholar] [CrossRef]
- Bannink, A.; Kar, S.; Schokker, D.; Dijkstra, J. A conceptual approach to the mathematical modelling of microbial functionality in the rumen. In Improving Rumen Function; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 69–94. [Google Scholar]
- McFadden, L.J.; Menendez, H.M.; Olson, K.; Brennan, J.R.; Ehlert, K.; Blair, A. 4 Developing a Dry Matter Intake Prediction Equation for Grazing Animals based on Real-Time Enteric Emissions Measurements. J. Anim. Sci. 2022, 100, 1. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Zhang, J. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Bensingh, R.J.; Machavaram, R.; Boopathy, S.R.; Jebaraj, C. Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO). Measurement 2019, 134, 359–374. [Google Scholar] [CrossRef]
- Palangi, V.; Macit, M. Indictable mitigation of methane emission using some organic acids as additives towards a cleaner ecosystem. Waste Biomass Valorization 2021, 12, 4825–4834. [Google Scholar] [CrossRef]
- Reynolds, C.W. Flocks, Herds and Schools: A Distributed Behavioral Model. ACM SIGGRAPH Comput. Graph. 1987, 21, 25–34. [Google Scholar] [CrossRef]
- Coello, C.C.; Lechuga, M.S. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1051–1056. [Google Scholar]
- Ma, Y.F.; Zhang, H.J. Contrast-Based Image Attention Analysis by using Fuzzy Growing. In Proceedings of the Eleventh ACM International Conference on Multimedia, Berkeley, CA, USA, 2–8 November 2003; pp. 374–381. [Google Scholar]
- Cavalca, D.L.; Spavieri, G.; Fernandes, R.A. Comparative Analysis between Particle Swarm Optimization Algorithms Applied to Price-Based Demand Response. In Proceedings of the Artificial Intelligence and Soft Computing: 17th International Conference, ICAISC 2018, Zakopane, Poland, 3–7 June 2018; Part I 17. Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 323–332. [Google Scholar]
- Chaubey, N.; Goree, J.; Lanham, S.J.; Kushner, M.J. Positive charging of grains in an afterglow plasma is enhanced by ions drifting in an electric field. Phys. Plasmas 2021, 28, 103702. [Google Scholar] [CrossRef]
- Nasrollahzadeh, S.; Maadani, M.; Pourmina, M.A. Optimal motion sensor placement in smart homes and intelligent environments using a hybrid WOA-PSO algorithm. J. Reliab. Intell. Environ. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Song, S.; Xiong, X.; Wu, X.; Xue, Z. Modeling the SOFC by BP neural network algorithm. Int. J. Hydrog. Energy 2021, 46, 20065–20077. [Google Scholar] [CrossRef]
- Palangi, V.; Macit, M.; Bayat, A.R. Mathematical models describing disappearance of Lucerne hay in the rumen using the nylon bag technique. South Afr. J. Anim. Sci. 2020, 50, 719–725. [Google Scholar] [CrossRef]
- Sebaaly, H.; Varma, S.; Maina, J.W. Optimizing asphalt mix design process using artificial neural network and genetic algorithm. Constr. Build. Mater. 2018, 168, 660–670. [Google Scholar] [CrossRef]
- Woodhouse, E.J.; Collingridge, D. Incrementalism, intelligent trial-and-error, and the future of political decision theory. In An Heretical Heir of the Enlightenment; Routledge: New York, NY, USA, 2019; pp. 131–154. [Google Scholar]
- Lookman, T.; Balachandran, P.V.; Xue, D.; Yuan, R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. NPJ Comput. Mater. 2019, 5, 21. [Google Scholar] [CrossRef]
- Boussaada, A.; Arhab, R.; Calabrò, S.; Grazioli, R.; Ferrara, M.; Musco, N.; Cutrignelli, M.I. Effect of Eucalyptus globulus leaves extracts on in vitro rumen fermentation, methanogenesis, degradability and protozoa population. Ann. Anim. Sci. 2018, 18, 753–767. [Google Scholar] [CrossRef]
- Bachmann, M.; Kuhnitzsch, C.; Michel, S.; Thierbach, A.; Bochnia, M.; Greef, J.M.; Zeyner, A. Effect of toasting grain silages from field peas (Pisum sativum) and field beans (Vicia faba) on in vitro gas production, methane production, and post-ruminal crude protein content. Anim. Nutr. 2020, 6, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wan, X. Multiple-factor associative effects of peanut shell combined with alfalfa and concentrate determined by in vitro gas production method. Czech J. Anim. Sci. 2019, 64, 352–360. [Google Scholar] [CrossRef]
- Ayaşan, T.; Esen, S.; Cabi, E.; Eseceli, H.; Esen, V.K. Effect of arbuscular mycorrhizal inoculation on the quality and in vitro gas production of einkorn wheat straw. South Afr. J. Anim. Sci. 2020, 50, 415–420. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, F.; Zhang, X.; Yun, Y.; Wang, L.; Yu, Z. Nutritional quality and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk, and their mixtures. Agriculture 2021, 11, 1205. [Google Scholar] [CrossRef]
- Eseceli, H.; Ayasan, T.; Koç, F.; Esen, V.K.; Esen, S. Nutrient and mineral contents, and in vitro digestibility of kermes oak (Quercus coccifera L.) and mock privet (Phillyrea latifolia L.). Alinteri J. Agric. Sci. 2020, 35, 100–106. [Google Scholar]
- Esen, S.; Koc, F.; Özdüven, L.; Eseceli, H.; Evren, C.; Karadağ, H. In situ and in vitro nutritive value assessment of styrax officinalis l. as an alternative forage source for goat feeding. J. Agric. Sci. 2022, 28, 181–188. [Google Scholar] [CrossRef]
- Mohammadabadi, T.; Chaji, M.; Direkvandi, E.; Alqaisi, O. Effect of replacing alfalfa hay with Leucaena leucocephala (L. Leucocephala) leaves on in vitro gas production, digestibility and in situ degradability in buffalo. Acta Scientiarum. Anim. Sci. 2021, 43, 1–9. [Google Scholar] [CrossRef]
- Bayatkouhsar, J.; Rezaii, F.; Ghanbari, F.; Rahchamani, R. Morning vs. afternoon harvest time of alfalfa, clover, and barley affect the chemical composition and nutritional value of silage. Iran. J. Appl. Anim. Sci. 2022, 12, 11–21. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
Parameter | Value | Description |
---|---|---|
nPop | 500 | Numerical value of particles |
MaxIt | 100 | Maximal iteration count |
n | 7 | n is the problem’s dimension |
C1 | 1.5 | PSO parameter C1 |
C2 | 2 | PSO parameter C2 |
wdamp | 1 | Inertial weight damping ratio |
Parameters 1 | SSE 2 | R2 | Adjusted R2 | RMSE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | c | L | d | k | |||||
Alfalfa | ||||||||||
Model I 3 | 7.171 | 59.61 | 0.07045 | - | - | - | 40.2406 | 0.9832 | 0.9748 | 3.1718 |
Model II | 23.36 | 43.42 | 0.07046 | 0.3169 | - | - | 40.2406 | 0.9832 | 0.9664 | 3.6625 |
Model III | −211.6 | 58.47 | 0.07602 | - | - | 0.7505 | 44.6032 | 0.9814 | 0.9627 | 3.8559 |
Model IV | 28.66 | 47.71 | 0.01097 | 5.73 | 0.3819 | - | 6.5756 | 0.9973 | 0.9918 | 1.8132 |
Vetch | ||||||||||
Model I | 5.017 | 52.97 | 0.07508 | - | - | - | 27.2274 | 0.9851 | 0.9777 | 2.6090 |
Model II | 18.94 | 39.05 | 0.07509 | 0.305 | - | - | 27.2274 | 0.9851 | 0.9702 | 3.0126 |
Model III | −174.1 | 51.92 | 0.08169 | - | - | 0.7322 | 29.8218 | 0.9837 | 0.9674 | 3.1529 |
Model IV | 23.46 | 41.78 | −0.0105 | 5.2 | 0.3991 | - | 11.8790 | 0.9935 | 0.9805 | 2.4371 |
Clover | ||||||||||
Model I | 8.191 | 63.5 | 0.06554 | - | - | - | 33.0409 | 0.9881 | 0.9822 | 2.8741 |
Model II | 25.78 | 45.91 | 0.06555 | 0.3244 | - | - | 33.0409 | 0.9881 | 0.9763 | 3.3187 |
Model III | −234.7 | 62.38 | 0.07069 | - | - | 0.759 | 37.0349 | 0.9867 | 0.9734 | 3.5135 |
Model IV | 32.17 | 50.77 | −0.009137 | 6.464 | 0.3488 | - | 5.868 | 0.9979 | 0.9937 | 1.7129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palangi, V. Identification of Ruminal Fermentation Curves of Some Legume Forages Using Particle Swarm Optimization. Animals 2023, 13, 1339. https://doi.org/10.3390/ani13081339
Palangi V. Identification of Ruminal Fermentation Curves of Some Legume Forages Using Particle Swarm Optimization. Animals. 2023; 13(8):1339. https://doi.org/10.3390/ani13081339
Chicago/Turabian StylePalangi, Valiollah. 2023. "Identification of Ruminal Fermentation Curves of Some Legume Forages Using Particle Swarm Optimization" Animals 13, no. 8: 1339. https://doi.org/10.3390/ani13081339
APA StylePalangi, V. (2023). Identification of Ruminal Fermentation Curves of Some Legume Forages Using Particle Swarm Optimization. Animals, 13(8), 1339. https://doi.org/10.3390/ani13081339