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Simple Summary: Forage plants are important for ruminant nutrition, so identifying their quality
and nutritional value is effective in describing animal nutrition. A ruminal microbe attaches itself or
is within close proximity to the surfaces of particulate substrates (primarily the inner surfaces) to
digest them. However, incubation in the rumen can result in significant changes in the number of
attached microbes. Nonlinear models may provide more accurate and comprehensive descriptions of
feed fermentability. Improving the model suitability and validating the model are enhanced with low
iterations. However, particle swarm optimization is the novelty of this study since it has never been
used to study the digestive process with the above models.

Abstract: The modeling process has a wide range of applications in animal nutrition. The purpose
of this work is to determine whether particle swarm optimization (PSO) could be used to explain
the fermentation curves of some legume forages. The model suited the fermentation data with
minor statistical differences (R2 > 0.98). In addition, reducing the number of iterations enhanced this
method’s benefits. Only Models I and II could successfully fit the fermentability data (R2 > 0.98) in
the vetch and white clover fermentation curve because the negative parameters (calculated in Models
III and IV) were not biologically acceptable. Model IV could only fit the alfalfa fermentation curve,
which had higher R values and demonstrated the model’s dependability. In conclusion, it is advised
to use PSO to match the fermentation curves. By examining the fermentation curves of feed materials,
animal nutritionists can obtain a broader view of what ruminants require in terms of nutrition.

Keywords: legume forages; fermentation curves; mathematical model

1. Introduction

Forages are obtained from forage plants and natural or artificial meadows [1]. In order
to feed ruminant animals in an economical and physiologically sound manner, forage must
be used. Nutritional demands are partially satisfied by forages that also provide some
protection against some metabolic illnesses. Animal feed products with a high amount of
nutritional forage are high-quality, and crucial to the state economy and the quality of life
of its citizens [2,3]. In order to fit multiple mathematical models and choose the best-suited
to represent the in vitro incubation of feeds, reliable estimates of fermentation parameters
are necessary. Fermentation parameters are significant components of rumen models [4,5].
As fermentation parameters are positively correlated with digestibility, energy content, and
possible reductions in the fill effect in forage, it may be possible to classify DMI intake
between species by presenting each forage as a single forage or presenting each forage as a
preferred food in a cafeteria test [6].

Different nutritional sciences utilize modeling to explain various phenomena and
express connections among the components that affect a biological process [7]. There
are numerous methods for estimating feed-quality proportions; however, the detailed
studies of biological processes could offer valuable insight into the dynamics of biological
processes and reveal their other dimensions [8,9]. Nonlinear models could be used to
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obtain more detailed and comprehensive information on the degradability of feeds. Data
from an in vitro technique showed that many mathematical models have been created as
prospective candidates to characterize the potential ruminal fermentability of feeds. Various
models have been applied to estimate nutrient degradability parameters, and hypotheses
have been developed concerning the biological processes that drive the separation of
ruminal digestion in order to develop mathematical models capable of predicting rumen
disappearance [10,11]. Different artificial-intelligence techniques have been extensively
applied to a variety of sciences [12,13]. One of these techniques, the particle swarm
optimization (PSO) methodology, is most applicable to the study of fermentation curves.
Particle swarm optimization (PSO) adjusts each particle’s position according to its previous
position, and the locations in its immediate vicinity on the basis of previous experiences.
The first iteration of the algorithm was motivated by a simulation of a flock of birds engaged
in social behavior while searching for food. Each bird adjusts its location on the basis of its
prior location or by coming into contact with the bird that located the best food. Each bird
in the method is a potential solution in the issue search space, which includes elements of
position, velocity, communication with other birds, and the memory of prior positions. Each
bird can make decisions using the information [14]. With the PSO method, fermentation
curves are better fitted, and the method can reach convergence and reduce errors with
intelligent parameter estimation.

However, feed evaluation might benefit more from defining digestible models and
showing their degradation curves. Animal nutritional science can be viewed from a fresh
perspective by integrating recent developments in swarm intelligence with ruminal degra-
dation and applying these sciences to improving the curves, which can reduce common
errors in this area. This study aims to identify ruminal fermentation curves by optimizing
the particle swarm. The digestion rate depends on how long the food remains in the diges-
tive tract. As a result, changes in the fermentation process can be depicted by segmenting
feed into the following parts: (1) quickly fermentable fraction, (2) slowly fermentable frac-
tion, and (3) indigestible. We hypothesized that nonlinear models could be used to obtain
more detailed and comprehensive information regarding the fermentability of feeds. The
objective of this study was to use particle swarm optimization to produce the fermentation
curves of hay from alfalfa (Medicago polymorpha), vetch (Vicia villosa), and white clover
(Trifolium repens).

2. Materials and Methods
2.1. Data Collection

Using the raw data of Palangi and Macit [15], the proposed approach was vali-
dated. In this calculation, alfalfa (Medicago polymorphia), clover (Trifolium repens), and
vetch (Vicia villosa) were used for gas production in vitro as in [15]. The volume of the gas
was measured and sampled after 3, 6, 12, 24, 48, 72, and 96 h of incubation. As mentioned
in the previous article, the control treatments’ raw data were used for this experiment.
The degradability statistics was organized according to various incubation times, and
incorporated in the software’s editor window.

2.2. Particle Swarm Optimization (PSO)

Collective intelligence optimization algorithms, such as PSO, are one type of intelli-
gence algorithm. An initial population is predicated on this type of dynamic computing
and other dynamic approaches. The process begins with a particle or component that
consists of a population of randomly generated solutions. The fundamental concept can
be found in a 1987 paper by Reynolds that simulated the movement of birds in flocks [16].
According to that article, the collective behavior of the birds was driven by three simple
movements: alignment, separation, and cohesion. Due to the strong performance of this
algorithm, it attracted much attention. Consequently, indepth research was performed, and
several varieties of the method presented [17–19]. Due to its generality, this technique was
applied in many other domains [20–22].
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On the basis of a simulation of birds searching for food in a flock, the first version
of the algorithm was developed. Additionally, each bird could use the information to
make decisions. At every step, the PSO algorithm moves particles toward a better position
through a finite number of steps. In each step, each particle moves according to one of three
tendencies: to continue its current motion, to move to the best position it had previously
found (pBest), or to move to the best position that the whole system had found (gBest).
Figure 1 shows how each particle moves in a specific direction.

2.3. Curve Fitting

From the collected data using the in vitro approach, various mathematical models
were created as prospective candidates to characterize the kinetics of feed fermentation.
The behavior of the model was examined using the first-order kinetics model (without and
with a lag phase) [23]. The mathematical definition is as follows:

Model (I)—first-order kinetic model without a lag phase:

P = a + b (1 − e−ct) (1)

Model (II)—first-order kinetics model with lag phase:

P = a + b (1 − e−c(t+L)) (2)

It develops ideas about biological principles that characterize the percentage of rumen
disappearance while using various models to predict nutrient degradability characteristics.
These models can be used to estimate the ruminal digestion parameters of feed, which can
subsequently be used to compare feeds or various nutritional systems [7].

Model (III)—Gompertz model:

P = a + b (K − Kexp(−ct)/K − 1) (3)

Model (IV)—generalised Mitscherlich model:

P = a + b (1 − e−c(t−L)−d(
√

t−
√

L)) (4)

The degradability process can also be simulated using sigmoid models instead of
linear models. In addition to linear models, nonlinear models may provide more accurate
and comprehensive information about feed degradation. In order to calculate the initial
residual sum of squares for all permutations of starting values, and to begin the iterations
with the best set, the model uses many probable starting values on a grid by providing
PSO with more than one starting values. The beginning points and ranges needed for the
models were defined, and the models were identified using the editor’s tool script. For
calculating the error values of the fitted curve, the goodness-of-fit function was used.

2.4. Optimal Problem-Solving Model

This part outlines the examination of the fitting issue, and a PSO-based approach to
equation optimization fitting is described. The PSO algorithm must be updated to take
into account the circumstances of the issue. The selection of the fitness function is the most
crucial aspect for this algorithm to take into account. The algorithm’s main goal is to reduce
the fitness function. Additionally, effective variables should be identified, and function
minimization should be optimally modified. The PSO algorithm for fitting the curve is
as follows.

2.5. Proposed Algorithm

The algorithm’s main goal is to identify the relation that could best represent the
necessary data. The quantification of random particles is the algorithm’s first step. Values
a, b, c, L, d, and k in each particle can be combined to form the ideal solution. In the
PSO algorithm, one of the parameters is population size, which must be changed. When
the population is small, there is a lower chance of finding the best answer, and when
the population increases, the algorithm takes longer to execute. As a result, a reasonable
number ought to be taken into account. Using the values of variables for each particle, the
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fitness function value is calculated. The results represent the best particle value, pBest. The
minimal value of the best general particle was also be saved as gBest.

Cost is another component of the PSO algorithm. To determine the cost, the problem’s
circumstances must be taken into account. Finding a relation that could fit all of the problem
data is the aim. Hence, any departure from the function diagram can be seen as a mistake.
The overall number of errors may be viewed as a cost, depending on the specifics of the
issue. An overall reduction in errors is the goal of cost optimization implementation.

3. Results and Discussion

The online version of MATLAB was employed in this study. The coefficients of the
equations were divided into a four-dimensional search space for the efficient operation
of the PSO algorithm’s efficient operation. Table 1 was used to set the PSO algorithm’s
parameters. As illustrated in Figure 1, the iteration of in vitro gas production data showed
that legume forages had the lowest iteration. As opposed to linear citizenship equations,
which can be solved in one step, nonlinear citizenship equations can only be solved after
successive iterations. Iterations such as these are due to the software assuming different
parameter values at the beginning, and then fitting the data with a curve on the basis of
these values. To achieve the best fit between the equation and the data, this method uses a
trial-and-error procedure [24,25]. By applying this method, we could more quickly find
equations that are suitable for describing the behavior of models [26]. A model’s behavior is
most accurately described by the method used in the following figures. Model evaluations
are relative processes that include all readily available criticism methods and involve the
evaluator from their perspective.

Table 1. Particle swarm optimization parameters.

Parameter Value Description

nPop 500 Numerical value of particles
MaxIt 100 Maximal iteration count

n 7 n is the problem’s dimension
C1 1.5 PSO parameter C1
C2 2 PSO parameter C2

wdamp 1 Inertial weight damping ratio
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As illustrated in Figure 2, the best cost of in vitro gas production for legume forages
was obtained with the least number of iterations. As opposed to linear equations of
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subordination that can be solved in one step, nonlinear equations of subordination can only
be solved with successive iterations that are the result of the software assuming different
initial values for the parameters. Then, they are fitted to the curve on the basis of these
values, and often on the basis of experience and previous testing results. For each parameter,
an initial value must be considered before solving the subparameter. As long as the new
values for the parameters do not result in a better fit (residual value with less error) than that
of the previously selected values, the process is repeated. By providing more parameters to
the evaluator, the PSO method reduces the evaluator’s opinion. The number of required
iterations to reach the solution is also considered in examining the model’s behavior, so a
higher number indicates a less competent model in fitting the data. Reducing the number
of iterations increases the validity of the model and shows its suitability. Figures 3–5 show
the results of the ruminal fermentation curve for alfalfa, vetch, and clover.
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There are several control parameters that affect the fundamental PSO, such as the
problem size, the number of particles, the acceleration coefficients, the inertial weights, the
neighborhood size, and the number of iterations. Some of these parameters are random
values that scale the contribution of cognitive and social components. In Table 2, some of
them are listed.
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Table 2. In vitro gas production parameters of legume forages using a mathematical model fitted
with PSO.

Parameters 1

SSE 2 R2 Adjusted R2 RMSE
a b c L d k

Alfalfa
Model I 3 7.171 59.61 0.07045 - - - 40.2406 0.9832 0.9748 3.1718
Model II 23.36 43.42 0.07046 0.3169 - - 40.2406 0.9832 0.9664 3.6625
Model III −211.6 58.47 0.07602 - - 0.7505 44.6032 0.9814 0.9627 3.8559
Model IV 28.66 47.71 0.01097 5.73 0.3819 - 6.5756 0.9973 0.9918 1.8132

Vetch
Model I 5.017 52.97 0.07508 - - - 27.2274 0.9851 0.9777 2.6090
Model II 18.94 39.05 0.07509 0.305 - - 27.2274 0.9851 0.9702 3.0126
Model III −174.1 51.92 0.08169 - - 0.7322 29.8218 0.9837 0.9674 3.1529
Model IV 23.46 41.78 −0.0105 5.2 0.3991 - 11.8790 0.9935 0.9805 2.4371

Clover
Model I 8.191 63.5 0.06554 - - - 33.0409 0.9881 0.9822 2.8741
Model II 25.78 45.91 0.06555 0.3244 - - 33.0409 0.9881 0.9763 3.3187
Model III −234.7 62.38 0.07069 - - 0.759 37.0349 0.9867 0.9734 3.5135
Model IV 32.17 50.77 −0.009137 6.464 0.3488 - 5.868 0.9979 0.9937 1.7129

1 a = rapidly soluble fraction (%); b = slowly fermentable fraction (%); c = fermentation rate constant (%/h) of
fraction ‘b’; L = lag time (h); d = is the parameter pertaining to the variable fractional rate of fermentation; k = slope,
or fermentation rate coefficient (h−1); 2 SSE = sum of squares due to error; R-squared = the proportion of the
variation in the dependent variable that is predictable from the independent variable; Adj R-squared = a modified
version of R-squared that was adjusted for the number of predictors in the mode; RMSE = root-mean-square error.
3 Model I, first-order kinetic model without lag phase; Model II, first-order kinetic model with lag phase; Model
III, Gompertz model; Model IV, generalized Mitscherlich model.

Table 2 lists the predicted parameters for a mathematical model fitted with PSO that
describes in vitro gas production data for legume forages. During model evaluation, all
available methods are used to review the model, but this is a relative process becaue the
evaluator is involved. In general, none of the proposed models is complete; they are usually
incomplete in some aspects. In addition to examining the behavior and statistical tests of
models to choose the best, the biological significance of the estimated metaparameters and
their justification were also considered.

As a result of the high concentrations of slowly fermentable fraction b (especially in
clover), passage contents were increased. Forages should have less of Part b, but for feeds
containing high-value biological proteins, Part b should be increased, so that most of the
protein could pass through rumen digestion and be absorbed. Gas production during
in vitro incubation indicates ruminal degradation and microbial activity [27], and a higher
b fraction indicates higher rumen undegradable protein (RUP) content [28]. Yuan and
Wan [29], and Ayaşan et al. [30] reported negative values for Part a, which is consistent
with the findings of the current investigation. However, negative values for Parts a and b
are not biologically acceptable. The lag time in the study of Wang et al. [31] varied between
−0.14 and 0.75 (h), which is consistent with our research. The calculated fermentation rate
constant (c) in the study of Eseceli et al. [32] was parallel with that in our study. According
to Esen et al. [33], who studied the nutritive value of Styrax officinalis L. shrubs at four stages
of maturity, namely, preflowering (PF), flowering (FL), seed linkage (SL), and fruiting (FR),
reported “a” fractions of 31.50, 21.13, 11.60 and 22.70, respectively, which were higher than
those in our results. Another study [34] showed that alfalfa hay had 56.1% of the slowly
fermentable fraction, which is consistent with our findings. These achievements are in
agreement with the reports of Palangi et al. [23], who noted that the fermentation curves for
legume forages vary according to their maturity and chemical composition. As previously
discussed by Bayatkouhsar et al. [35], cutting alfalfa in the afternoon as opposed to in the
morning may result in higher concentrations of soluble carbohydrates, leaf content, and
true protein, which may impact the fermentation pattern using the gas production method.
Therefore, harvest time can be a source of changes in fermentation parameters.

Comparing the various models for estimating the fermentation characteristics of
legume forages shows that Models I and II, described by Orskov and McDonald [36],
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attained convergence, whereas others were not biologically acceptable due to the predicted
negative values. Among the models that had attained convergence, Model I, without lag
time, had the greatest fit even though its performance was marginally superior to that of
the other models. Despite only being able to fit alfalfa, our results reveal that Model IV
was the most successful of all fitted models due to its higher adjusted R squared (Adj R2)
value. Model IV could only fit the alfalfa fermentation curve, which had higher R values
and demonstrated the model’s dependability. A longer delay time (5.73) indicated that
the inclusion of alfalfa in the combinations may have delayed the microbial fermentation
of digestible components or may have caused a change in the site of digestion. The
slower in vitro fermentation of the vetch fractions was likely caused by the increase in acid
detergent lignin (ADL) concentration, which constrained access to the cell content, and
decreased the degradation of nutrients.

The mean square of the prediction error was calculated as the sum of the squares of
the difference between the late predicted and observed values divided by the number of
observations, and its smaller numerical value indicates the suitability of the model. Models
I and II had the least sum of squares due to error (SSE) for vetch forages, so these models
had high merit in fitting this forage. In connection with the components of the mean square
of the prediction error, the error in terms of the central tendency shows how much the
average of the predicted values deviated from the observed values. The error in terms of
subordination measures the deviation of the least-squares subordination coefficient from
the first (the number that is obtained if the predicted values are completely accurate); when
it is large, it shows the inability of the model to predict the dependent variable. The error in
terms of dispersion is the expression of the dispersion in the observed values that remains
after removing errors in terms of subordination and the central tendency.

Glycocellulose feeds undergo ruminal fermentation in a dynamic system that is influ-
enced by interactions among animals, their diet, and the microbial population. The ability
of an animal to digest raw fibers in the rumen often depends on the animal’s digestive
capacity in relation to the activity and digestibility of the rumen, and the amount of con-
sumed forage. This has led to the development of different mathematical models describing
the ratio of rumen disappearance as a result of applying different models to estimate feed
degradability parameters and to formulate hypotheses related to the biological principles
that govern the separation of ruminal digestion. In this way, different feed materials or
nutritional systems can be compared by estimating ruminal digestion parameters. By
studying the digestive models of feed materials, animal nutritionists could more accurately
determine the needs of ruminant animals. The performance of each model in terms of
the fitting fermentation curves was around average, and the statistical evaluations of the
models showed only slight variations. However, depending on the model’s structure and
the used parameters, the estimated parameters varied among the models.

4. Conclusions

The study findings clearly show that the R2 and adjusted R2 values were appropriately
high. R2 indicates how well a curve or line fits the data points. In addition to indicating
how well terms fit a curve or line, the adjusted R2 adjusts for the number of terms in a
model. Therefore, these parameters show that the curves were well-fitted. Fewer required
consecutive iterations to solve the model quickly also suggest that the algorithm quickly
found the solution. As a result of the fewer iterations, this method was more efficient at
solving the model. Therefore, fitting the fermentability curves with PSO is recommended,
and the approach is easily adaptable to various models. It is sufficient to alter the fitness
function and some parameter values. Therefore, this method could intelligently estimate
values and optimize curve fitting with the initial parameters. Equations require that,
after modifying the fitting equation in accordance with its formula, the remaining PSO
algorithm parameters be tuned while maintaining the dimensions of the problem space.
However, for Equation (4) (the generalized Mitscherlich model), we also need to enlarge
the problem space to 6, which is equivalent to parameters a, b, c, L, d, and k. Additionally,
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the parameters of the algorithm were fine-tuned, and the fitness function was modified;
this method was effective in achieving this goal due to its intelligence. To implement the
calculated parameters for use in practice, the biological properties of the tested models
should be taken into account given their similar performance; hence, the best models are
recommended by matching the results with biological facts. As a result, the application of
the method described in this work to other models is simple. There are different digestion
models to investigate the process of the ruminal degradability of edible DM and CP.
Different mathematical models allow for better parameter comparisons to understand the
ideal biological relationships between feeds and feeding systems. In order to obtain more
information for the right decisions in ruminant feed rations, it is recommended to fit other
statistical models that estimate more parameters.
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