Literature Review on Technological Applications to Monitor and Evaluate Calves’ Health and Welfare
Abstract
:Simple Summary
Abstract
1. Introduction
2. Technological Applications to Monitor Calves’ Health and Welfare
2.1. Automatic Milk Feeding System
2.2. Triaxial Dimension Accelerometers
2.3. Infrared Thermography
2.4. Image Processing Techniques
2.5. Heart Rate Monitors
2.6. Ruminal Boluses
2.7. Location Devices
2.8. Sound Analysis Systems
2.9. Multi-Technological Approach
2.10. Machine Learning
3. Conclusions
4. Challenges for the Future
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pickett, H. Farm Animal Welfare: Past, Present and Future; The Food Ethics Council: London, UK, 2014. [Google Scholar]
- Tzanidakis, C.; Simitzis, P.; Panagakis, P. Systems: Improving Sustainability and Efficiency of Animal Production. In Sustainability: Cases and Studies in Using Operations Research and Management Science Methods; García Márquez, F.P., Lev, B., Eds.; International Series in Operations Research & Management Science; Springer International Publishing: Cham, Switzerland, 2023; pp. 285–337. ISBN 978-3-031-16619-8. [Google Scholar]
- Ponnampalam, E.N.; Holman, B.W.B. Sustainability II: Sustainable Animal Production and Meat Processing. In Lawrie’s Meat Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 727–798. [Google Scholar] [CrossRef]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors 2022, 22, 4319. [Google Scholar] [CrossRef]
- Odintsov Vaintrub, M.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Review: Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal 2021, 15, 100143. [Google Scholar] [CrossRef]
- Knight, C.H. Review: Sensor techniques in ruminants: More than fitness trackers. Animal 2020, 14, S187–S195. [Google Scholar] [CrossRef] [Green Version]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems Precision livestock farming: Biology meets technology. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Halachmi, I.; Guarino, M. Editorial: Precision livestock farming: A ‘per animal’ approach using advanced monitoring technologies. Animal 2016, 10, 1482–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, J.H.C.; Cantor, M.C.; Neave, H.W. Symposium review: Precision technologies for dairy calves and management applications. J. Dairy Sci. 2020, 104, 1203–1219. [Google Scholar] [CrossRef]
- Eckelkamp, E.A. Invited Review: Current state of wearable precision dairy technologies in disease detection. Appl. Anim. Sci. 2019, 35, 209–220. [Google Scholar] [CrossRef]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Bewley, J. Precision Dairy Farming: Advanced Analysis Solutions for Future Profitability. In Proceedings of the The First North American Conference on Precision Dairy Management, Toronto, ON, Canada, 2–5 March 2010; p. 16. Available online: http://www.precisiondairy2010.com/proceedings/s1bewley.pdf (accessed on 6 August 2022).
- Stygar, A.H.; Gómez, Y.; Berteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A Systematic Review on Commercially Available and Validated Sensor Technologies for Welfare Assessment of Dairy Cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef]
- Sun, D.; Webb, L.; van der Tol, P.P.J.; van Reenen, K. A Systematic Review of Automatic Health Monitoring in Calves: Glimpsing the Future From Current Practice. Front. Vet. Sci. 2021, 8, 761468. [Google Scholar] [CrossRef] [PubMed]
- Scoley, G.; Gordon, A.; Morrison, S.J. The effect of calf jacket usage on performance, behaviour and physiological responses of group-housed dairy calves. Animal 2019, 13, 2876–2884. [Google Scholar] [CrossRef] [PubMed]
- Uetake, K. Newborn calf welfare: A review focusing on mortality rates. Anim. Sci. J. 2013, 84, 101–105. [Google Scholar] [CrossRef]
- Lombard, J.; Urie, N.; Garry, F.; Godden, S.; Quigley, J.; Earleywine, T.; McGuirk, S.; Moore, D.; Branan, M.; Chamorro, M.; et al. Consensus recommendations on calf- and herd-level passive immunity in dairy calves in the United States. J. Dairy Sci. 2020, 103, 7611–7624. [Google Scholar] [CrossRef]
- Donovan, G.A.; Dohoo, I.R.; Montgomery, D.M.; Bennett, F.L. Associations between passive immunity and morbidity and mortality in dairy heifers in Florida, USA. Prev. Vet. Med. 1998, 34, 31–46. [Google Scholar] [CrossRef]
- Cramer, M.C.; Stanton, A.L. Associations between health status and the probability of approaching a novel object or stationary human in preweaned group-housed dairy calves. J. Dairy Sci. 2015, 98, 7298–7308. [Google Scholar] [CrossRef] [Green Version]
- Shecaira, C.L.; Seino, C.H.; Bombardelli, J.A.; Reis, G.A.; Fusada, E.J.; Azedo, M.R.; Benesi, F.J. Using thermography as a diagnostic tool for omphalitis on newborn calves. J. Therm. Biol. 2018, 71, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Boccardo, A.; Sala, G.; Ferrulli, V.; Pravettoni, D. Cut-off values for predictors associated with outcome in dairy calves suffering from neonatal calf diarrhea. A retrospective study of 605 cases. Livest. Sci. 2021, 245, 104407. [Google Scholar] [CrossRef]
- Hyde, R.M.; Green, M.J.; Sherwin, V.E.; Hudson, C.; Gibbons, J.; Forshaw, T.; Vickers, M.; Down, P.M. Quantitative analysis of calf mortality in Great Britain. J. Dairy Sci. 2020, 103, 2615–2623. [Google Scholar] [CrossRef]
- Knauer, W.A.; Godden, S.M.; Dietrich, A.; Hawkins, D.M.; James, R.E. Evaluation of applying statistical process control techniques to daily average feeding behaviors to detect disease in automatically fed group-housed preweaned dairy calves. J. Dairy Sci. 2018, 101, 8135–8145. [Google Scholar] [CrossRef] [PubMed]
- Lowe, G.L.; Sutherland, M.A.; Waas, J.R.; Schaefer, A.L.; Cox, N.R.; Stewart, M. Physiological and behavioral responses as indicators for early disease detection in dairy calves. J. Dairy Sci. 2019, 102, 5389–5402. [Google Scholar] [CrossRef] [Green Version]
- Lowe, G.L.; Sutherland, M.A.; Waas, J.R.; Cox, N.R.; Schaefer, A.L.; Stewart, M. Effect of milk allowance on the suitability of automated behavioural and physiological measures as early disease indicators in calves. Appl. Anim. Behav. Sci. 2021, 234, 105202. [Google Scholar] [CrossRef]
- Fraser, D. Understanding animal welfare. Acta Vet. Scand. 2008, 50, S1. [Google Scholar] [CrossRef] [Green Version]
- Oca, M.A. Temperature Asymmetries in Facial Areas as Indicators of Affective State in Dairy Calves and Horses. Ph.D. Thesis, University of Bristol, Bristol, UK, 2021. [Google Scholar]
- Morrison, J.; Renaud, D.L.; Churchill, K.J.; Costa, J.H.C.; Steele, M.A.; Winder, C.B. Predicting morbidity and mortality using automated milk feeders: A scoping review. J. Dairy Sci. 2021, 104, 7177–7194. [Google Scholar] [CrossRef]
- De Paula Vieira, A.; Guesdon, V.; de Passillé, A.M.; von Keyserlingk, M.A.G.; Weary, D.M. Behavioural indicators of hunger in dairy calves. Appl. Anim. Behav. Sci. 2008, 109, 180–189. [Google Scholar] [CrossRef]
- Rosenberger, K.; Costa, J.H.C.; Neave, H.W.; von Keyserlingk, M.A.G.; Weary, D.M. The effect of milk allowance on behavior and weight gains in dairy calves. J. Dairy Sci. 2017, 100, 504–512. [Google Scholar] [CrossRef] [Green Version]
- Prado, M.E.; Wilkerson, J.; Schneider, L.G.; Krawczel, P.D. Influence of milk feeding levels and calf housing on subsequent performance of Holstein heifers. JDS Commun. 2021, 2, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Bach, A.; Weary, D.M.; von Keyserlingk, M.A.G. Invited review: Transitioning from milk to solid feed in dairy heifers. J. Dairy Sci. 2016, 99, 885–902. [Google Scholar] [CrossRef] [Green Version]
- Hostiou, N.; Fagon, J.; Chauvat, S.; Turlot, A.; Kling-Eveillard, F.; Boivin, X.; Allain, C. Impact of precision livestock farming on work and human-animal interactions on dairy farms. A review. Biotechnol. Agron. Société Environ. 2017, 21, 268–275. [Google Scholar] [CrossRef]
- Svensson, C.; Jensen, M.B. Short Communication: Identification of Diseased Calves by Use of Data from Automatic Milk Feeders. J. Dairy Sci. 2007, 90, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Borderas, T.F.; Rushen, J.; von Keyserlingk, M.A.G.; de Passillé, A.M.B. Automated measurement of changes in feeding behavior of milk-fed calves associated with illness. J. Dairy Sci. 2009, 92, 4549–4554. [Google Scholar] [CrossRef] [Green Version]
- Knauer, W.A.; Godden, S.M.; Dietrich, A.; James, R.E. The association between daily average feeding behaviors and morbidity in automatically fed group-housed preweaned dairy calves. J. Dairy Sci. 2017, 100, 5642–5652. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, M.A.; Lowe, G.L.; Huddart, F.J.; Waas, J.R.; Stewart, M. Measurement of dairy calf behavior prior to onset of clinical disease and in response to disbudding using automated calf feeders and accelerometers. J. Dairy Sci. 2018, 101, 8208–8216. [Google Scholar] [CrossRef]
- Cantor, M.C.; Renaud, D.L.; Costa, J.H.C. Nutraceutical intervention with colostrum replacer: Can we reduce disease hazard, ameliorate disease severity, and improve performance in preweaned dairy calves? J. Dairy Sci. 2021, 104, 7168–7176. [Google Scholar] [CrossRef] [PubMed]
- Conboy, M.H.; Winder, C.B.; Medrano-Galarza, C.; LeBlanc, S.J.; Haley, D.B.; Costa, J.H.C.; Steele, M.A.; Renaud, D.L. Associations between feeding behaviors collected from an automated milk feeder and disease in group-housed dairy calves in Ontario: A cross-sectional study. J. Dairy Sci. 2021, 104, 10183–10193. [Google Scholar] [CrossRef] [PubMed]
- Conboy, M.H.; Winder, C.B.; Cantor, M.C.; Costa, J.H.C.; Steele, M.A.; Medrano-Galarza, C.; von Konigslow, T.E.; Kerr, A.; Renaud, D.L. Associations between Feeding Behaviors Collected from an Automated Milk Feeder and Neonatal Calf Diarrhea in Group Housed Dairy Calves: A Case-Control Study. Animals 2022, 12, 170. [Google Scholar] [CrossRef]
- Sharpe, K.T.; Heins, B.J. Growth, health, and economics of dairy calves fed organic milk replacer or organic whole milk in an automated feeding system. JDS Commun. 2021, 2, 319–323. [Google Scholar] [CrossRef]
- Carslake, C.; Occhiuto, F.; Vázquez-Diosdado, J.A.; Kaler, J. Indication of a personality trait in dairy calves and its link to weight gain through automatically collected feeding behaviours. Sci. Rep. 2022, 12, 19425. [Google Scholar] [CrossRef] [PubMed]
- Giannetto, C.; Cerutti, R.D.; Scaglione, M.C.; Arfuso, F.; Pennisi, M.; Giudice, E.; Piccione, G.; Zumbo, A. Real-Time Measurement of the Daily Total Locomotor Behavior in Calves Reared in an Intensive Management System for the Possible Application in Precision Livestock Farming. Vet. Sci. 2023, 10, 64. [Google Scholar] [CrossRef]
- Riaboff, L.; Shalloo, L.; Smeaton, A.F.; Couvreur, S.; Madouasse, A.; Keane, M.T. Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Comput. Electron. Agric. 2022, 192, 106610. [Google Scholar] [CrossRef]
- Koelsch, R.K.; Aneshansley, D.J.; Butler, W.R. Analysis of Activity Measurement for Accurate Oestrus Detection in Dairy Cattle. J. Agric. Eng. Res. 1994, 58, 107–114. [Google Scholar] [CrossRef]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Trogh, J.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Calving and estrus detection in dairy cattle using a combination of indoor localization and accelerometer sensors. Comput. Electron. Agric. 2020, 168, 105153. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Riaboff, L.; Couvreur, S.; Madouasse, A.; Roig-Pons, M.; Aubin, S.; Massabie, P.; Chauvin, A.; Bédère, N.; Plantier, G. Use of Predicted Behavior from Accelerometer Data Combined with GPS Data to Explore the Relationship between Dairy Cow Behavior and Pasture Characteristics. Sensors 2020, 20, 4741. [Google Scholar] [CrossRef]
- Chapa, J.M.; Maschat, K.; Iwersen, M.; Baumgartner, J.; Drillich, M. Accelerometer systems as tools for health and welfare assessment in cattle and pigs—A review. Behav. Process. 2020, 181, 104262. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.M.; Heins, B.J.; O’Brien, B.; McDonagh, A.; Lidauer, L.; Kickinger, F. Validation of an ear tag–based accelerometer system for detecting grazing behavior of dairy cows. J. Dairy Sci. 2020, 103, 3529–3544. [Google Scholar] [CrossRef]
- de Passillé, A.M.; Jensen, M.B.; Chapinal, N.; Rushen, J. Technical note: Use of accelerometers to describe gait patterns in dairy calves. J. Dairy Sci. 2010, 93, 3287–3293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonk, S.; Burfeind, O.; Suthar, V.S.; Heuwieser, W. Technical note: Evaluation of data loggers for measuring lying behavior in dairy calves. J. Dairy Sci. 2013, 96, 3265–3271. [Google Scholar] [CrossRef] [Green Version]
- Swartz, T.H.; Findlay, A.N.; Petersson-Wolfe, C.S. Short communication: Automated detection of behavioral changes from respiratory disease in pre-weaned calves. J. Dairy Sci. 2017, 100, 9273–9278. [Google Scholar] [CrossRef] [PubMed]
- Swartz, T.H.; Schramm, H.H.; Petersson-Wolfe, C.S. Short Communication: Association between neonatal calf diarrhea and lying behaviors. Vet. Anim. Sci. 2020, 9, 100111. [Google Scholar] [CrossRef]
- Hixson, C.L.; Krawczel, P.D.; Caldwell, J.M.; Miller-Cushon, E.K. Behavioral changes in group-housed dairy calves infected with Mannheimia haemolytica. J. Dairy Sci. 2018, 101, 10351–10360. [Google Scholar] [CrossRef] [Green Version]
- Roland, L.; Schweinzer, V.; Kanz, P.; Sattlecker, G.; Kickinger, F.; Lidauer, L.; Berger, A.; Auer, W.; Mayer, J.; Sturm, V.; et al. Technical note: Evaluation of a triaxial accelerometer for monitoring selected behaviors in dairy calves. J. Dairy Sci. 2018, 101, 10421–10427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studds, M.J.; Deikun, L.L.; Sorter, D.E.; Pempek, J.A.; Proudfoot, K.L. Short communication: The effect of diarrhea and navel inflammation on the lying behavior of veal calves. J. Dairy Sci. 2018, 101, 11251–11255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belaid, M.A.; Rodríguez-Prado, M.; Rodríguez-Prado, D.V.; Chevaux, E.; Calsamiglia, S. Using behavior as an early predictor of sickness in veal calves. J. Dairy Sci. 2020, 103, 1874–1883. [Google Scholar] [CrossRef] [PubMed]
- Finney, G.; Gordon, A.; Scoley, G.; Morrison, S.J. Validating the IceRobotics IceQube tri-axial accelerometer for measuring daily lying duration in dairy calves. Livest. Sci. 2018, 214, 83–87. [Google Scholar] [CrossRef]
- Ahloy-Dallaire, J.; Espinosa, J.; Mason, G. Play and optimal welfare: Does play indicate the presence of positive affective states? Behav. Process. 2018, 156, 3–15. [Google Scholar] [CrossRef]
- Luu, J.; Johnsen, J.F.; de Passillé, A.M.; Rushen, J. Which measures of acceleration best estimate the duration of locomotor play by dairy calves? Appl. Anim. Behav. Sci. 2013, 148, 21–27. [Google Scholar] [CrossRef]
- Größbacher, V.; Bučková, K.; Lawrence, A.B.; Špinka, M.; Winckler, C. Discriminating spontaneous locomotor play of dairy calves using accelerometers. J. Dairy Sci. 2020, 103, 1866–1873. [Google Scholar] [CrossRef]
- Größbacher, V.; Lawrence, A.B.; Winckler, C.; Špinka, M. Negative play contagion in calves. Sci. Rep. 2020, 10, 21699. [Google Scholar] [CrossRef]
- Gardaloud, N.R.; Guse, C.; Lidauer, L.; Steininger, A.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Iwersen, M.; Drillich, M.; Klein-Jöbstl, D. Early Detection of Respiratory Diseases in Calves by Use of an Ear-Attached Accelerometer. Animals 2022, 12, 1093. [Google Scholar] [CrossRef]
- Goharshahi, M.; Azizzadeh, M.; Lidauer, L.; Steininger, A.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Klein-Jöbstl, D.; Drillich, M.; Iwersen, M. Monitoring selected behaviors of calves by use of an ear-attached accelerometer for detecting early indicators of diarrhea. J. Dairy Sci. 2021, 104, 6013–6019. [Google Scholar] [CrossRef]
- Duthie, C.A.; Bowen, J.M.; Bell, D.J.; Miller, G.A.; Mason, C.; Haskell, M.J. Feeding behaviour and activity as early indicators of disease in pre-weaned dairy calves. Animal 2021, 15, 100150. [Google Scholar] [CrossRef]
- Reynolds, M.A.; Borchers, M.R.; Davidson, J.A.; Bradley, C.M.; Bewley, J.M. Technical note: An evaluation of technology-recorded rumination and feeding behaviors in dairy heifers. J. Dairy Sci. 2019, 102, 6555–6558. [Google Scholar] [CrossRef]
- Byrd, C.J.; Craig, B.A.; Eicher, S.D.; Radcliffe, J.S.; Lay, D.C. Short communication: Assessment of disbudding pain in dairy calves using nonlinear measures of heart rate variability. J. Dairy Sci. 2019, 102, 8410–8416. [Google Scholar] [CrossRef]
- Reedman, C.N.; Duffield, T.F.; DeVries, T.J.; Lissemore, K.D.; Karrow, N.A.; Li, Z.; Winder, C.B. Randomized control trial assessing the efficacy of pain control strategies for caustic paste disbudding in dairy calves younger than 9 days of age. J. Dairy Sci. 2020, 103, 7339–7350. [Google Scholar] [CrossRef] [PubMed]
- Nordi, W.M.; Marti, S.; Gellatly, D.; Meléndez, D.M.; González, L.A.; McAllister, T.A.; Fierheller, E.E.; Caulkett, N.A.; Janzen, E.; Schwartzkopf-Genswein, K.S. Effect of preemptive flunixin meglumine and lidocaine on behavioral and physiological indicators of pain post-band and knife castration in 6-mo-old beef calves. Livest. Sci. 2019, 230, 103838. [Google Scholar] [CrossRef]
- Röder, M.; Heuwieser, W.; Borchardt, S.; Plenio, J.L.; Palme, R.; Sutter, F. The effect of transdermal flunixin meglumine on blood cortisol levels in dairy calves after cautery disbudding with local anesthesia. J. Dairy Sci. 2022, 105, 3468–3476. [Google Scholar] [CrossRef]
- Heinrich, A.; Duffield, T.F.; Lissemore, K.D.; Millman, S.T. The effect of meloxicam on behavior and pain sensitivity of dairy calves following cautery dehorning with a local anesthetic. J. Dairy Sci. 2010, 93, 2450–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coetzee, J.F.; Mosher, R.A.; KuKanich, B.; Gehring, R.; Robert, B.; Reinbold, J.B.; White, B.J. Pharmacokinetics and effect of intravenous meloxicam in weaned Holstein calves following scoop dehorning without local anesthesia. BMC Vet. Res. 2012, 8, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currah, J.M.; Hendrick, S.H.; Stookey, J.M. The behavioral assessment and alleviation of pain associated with castration in beef calves treated with flunixin meglumine and caudal lidocaine epidural anesthesia with epinephrine. Can. Vet. J. 2009, 50, 375–382. [Google Scholar]
- Olson, M.E.; Ralston, B.; Burwash, L.; Matheson-Bird, H.; Allan, N.D. Efficacy of oral meloxicam suspension for prevention of pain and inflammation following band and surgical castration in calves. BMC Vet. Res. 2016, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Marti, S.; Meléndez, D.M.; Pajor, E.A.; Moya, D.; Heuston, C.E.M.; Gellatly, D.; Janzen, E.D.; Schwartzkopf-Genswein, K.S. Effect of band and knife castration of beef calves on welfare indicators of pain at three relevant industry ages: II. Chronic pain. J. Anim. Sci. 2017, 95, 4367–4380. [Google Scholar] [CrossRef]
- Rekant, S.I.; Lyons, M.A.; Pacheco, J.M.; Arzt, J.; Rodriguez, L.L. Veterinary applications of infrared thermography. Am. J. Vet. Res. 2016, 77, 98–107. [Google Scholar] [CrossRef]
- Stewart, M.; Webster, J.R.; Schaefer, A.L.; Cook, N.J.; Scott, S.L. Infrared thermography as a non-invasive tool to study animal welfare. Anim. Welf. 2005, 14, 319–325. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Pereira, A.M.F.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical applications and factors involved in validating thermal windows used in infrared thermography in cattle and river Buffalo to assess health and productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef] [PubMed]
- Scoley, G.E.; Gordon, A.W.; Morrison, S.J. Use of thermal imaging in dairy calves: Exploring the repeatability and accuracy of measures taken from different anatomical regions. Transl. Anim. Sci. 2019, 3, 564–576. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.; Stafford, K.J.; Dowling, S.K.; Schaefer, A.L.; Webster, J.R. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol. Behav. 2008, 93, 789–797. [Google Scholar] [CrossRef]
- Schaefer, A.L.; Cook, N.J.; Bench, C.; Chabot, J.B.; Colyn, J.; Liu, T.; Okine, E.K.; Stewart, M.; Webster, J.R. The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Res. Vet. Sci. 2012, 93, 928–935. [Google Scholar] [CrossRef]
- Lowe, G.; McCane, B.; Sutherland, M.; Waas, J.; Schaefer, A.; Cox, N.; Stewart, M. Automated Collection and Analysis of Infrared Thermograms for Measuring Eye and Cheek Temperatures in Calves. Animals 2020, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.C.D.; Passini, R.; do Nascimento, K.F.M. Thermography and physiology of stress in dairy calves in outdoor holding pens covered with geosynthetics. Rev. Bras. Eng. Agrícola Ambient. 2021, 25, 787–793. [Google Scholar] [CrossRef]
- Schaefer, A.L.; Cook, N.; Tessaro, S.V.; Deregt, D.; Desroches, G.; Dubeski, P.L.; Tong, A.K.W.; Godson, D.L. Early detection and prediction of infection using infrared thermography. Can. J. Anim. Sci. 2004, 84, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, A.L.; Cook, N.J.; Church, J.S.; Basarab, J.; Perry, B.; Miller, C.; Tong, A.K.W. The use of infrared thermography as an early indicator of bovine respiratory disease complex in calves. Res. Vet. Sci. 2007, 83, 376–384. [Google Scholar] [CrossRef]
- Schaefer, A.; Perry, B.; Cook, N.; Miller, C.; Church, J.; Tong, A.; Stenzler, A. Infrared detection and nitric oxide treatment of bovine respiratory disease (BRD). Online J. Vet. Res. 2006, 10, 7–16. [Google Scholar]
- Wisnieski, L.; Amrine, D.E.; Renter, D.G. Predictive modeling of bovine respiratory disease outcomes in feedlot cattle: A narrative review. Livest. Sci. 2021, 251, 104666. [Google Scholar] [CrossRef]
- Lowe, G.; Sutherland, M.; Waas, J.; Schaefer, A.; Cox, N.; Stewart, M. Infrared thermography—A non-invasive method of measuring respiration rate in calves. Animals 2019, 9, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steerforth, D.-D.; Van Winden, S. Development of clinical sign-based scoring system for assessment of omphalitis in neonatal calves. Vet. Rec. 2018, 182, 549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, A.L.; Timms, L.L.; Stalder, K.J.; Tyler, H.D. Short communication: The effect of 4 antiseptic compounds on umbilical cord healing and infection rates in the first 24 hours in dairy calves from a commercial herd. J. Dairy Sci. 2015, 98, 5726–5728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, D.J.; Macrae, A.I.; Mitchell, M.A.; Mason, C.S.; Jennings, A.; Haskell, M.J. Comparison of thermal imaging and rectal temperature in the diagnosis of pyrexia in pre-weaned calves using on farm conditions. Res. Vet. Sci. 2020, 131, 259–265. [Google Scholar] [CrossRef]
- Cossa, S.; Calcante, A.; Oberti, R.; Sandrucci, A. Monitoring Calf Body Temperature by Infrared Thermography: Preliminary Assessment of Environmental Effects. In Proceedings of the 24th Congress of Animal Science and Production Association, Padua, Italy, 21–24 September 2021; Volume 20, p. 168. [Google Scholar]
- Cantor, M.C.; Goetz, H.M.; Beattie, K.; Renaud, D.L. Evaluation of an infrared thermography camera for measuring body temperature in dairy calves. JDS Commun. 2022, 3, 357–361. [Google Scholar] [CrossRef]
- Woodrum Setser, M.M.; Cantor, M.C.; Costa, J.H.C. A comprehensive evaluation of microchips to measure temperature in dairy calves. J. Dairy Sci. 2020, 103, 9290–9300. [Google Scholar] [CrossRef]
- Diniz Neto, H.C.; Lombardi, M.C.; Campos, M.M.; Lage, A.P.; Silva, R.O.S.; Dorneles, E.M.S.; Lage, C.F.A.; Carvalho, W.A.; Machado, F.S.; Pereira, L.G.R.; et al. Effects of vaccination against brucellosis and clostridia on the intake, performance, feeding behavior, blood parameters, and immune responses of dairy heifers calves. J. Anim. Sci. 2021, 99, skab107. [Google Scholar] [CrossRef]
- Winder, C.B.; Miltenburg, C.L.; Sargeant, J.M.; LeBlanc, S.J.; Haley, D.B.; Lissemore, K.D.; Godkin, M.A.; Duffield, T.F. Effects of local anesthetic or systemic analgesia on pain associated with cautery disbudding in calves: A systematic review and meta-analysis. J. Dairy Sci. 2018, 101, 5411–5427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, M.A.; Worth, G.M.; Dowling, S.K.; Lowe, G.L.; Cave, V.M.; Stewart, M. Evaluation of infrared thermography as a noninvasive method of measuring the autonomic nervous response in sheep. PLoS ONE 2020, 15, e0233558. [Google Scholar] [CrossRef] [PubMed]
- Tschoner, T. Methods for pain assessment in calves and their use for the evaluation of pain during different procedures—A review. Animals 2021, 11, 1235. [Google Scholar] [CrossRef]
- Kleinhenz, M.D.; Van Engen, N.K.; Gorden, P.J.; Ji, J.; Walsh, P.; Coetzee, J.F. Effects of transdermal flunixin meglumine on pain biomarkers at dehorning in calves. J. Anim. Sci. 2017, 95, 1993–2000. [Google Scholar] [CrossRef] [PubMed]
- Scherf, L.; Kretschmann, J.; Fischer, M.; Mielenz, N.; Möbius, G.; Getto, S.; Kaiser, M.; Müller, H.; Bittner, L.; Baumgartner, W.; et al. Thermographic monitoring of skin surface temperature associated with hot-iron disbudding in calves. Schweiz Arch Tierheilkd 2020, 162, 174–184. [Google Scholar] [CrossRef]
- Kleinhenz, M.D.; Curtis, A.K.; Weeder, M.M.; Johnson, B.T.; Springfield, D.; Lou, M.; Viscardi, A.V.; Coetzee, J.F. Evaluation of a carbon dioxide laser scalpel for disbudding Holstein calves: A pilot study. JDS Commun. 2021, 2, 223–226. [Google Scholar] [CrossRef]
- Martin, M.S.; Kleinhenz, M.D.; Viscardi, A.V.; Curtis, A.K.; Johnson, B.T.; Montgomery, S.R.; Lou, M.E.; Coetzee, J.F. Effect of bupivacaine liposome suspension administered as a cornual nerve block on indicators of pain and distress during and after cautery dehorning in dairy calves. J. Dairy Sci. 2022, 105, 1603–1617. [Google Scholar] [CrossRef]
- Adcock, S.J.J.; Tucker, C.B. The effect of disbudding age on healing and pain sensitivity in dairy calves. J. Dairy Sci. 2018, 101, 10361–10373. [Google Scholar] [CrossRef]
- Stewart, M. Non-Invasive Measurement of Stress and Pain in Cattle Using Infrared Thermography. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2008. [Google Scholar]
- Stewart, M.; Verkerk, G.A.; Stafford, K.J.; Schaefer, A.L.; Webster, J.R. Noninvasive assessment of autonomic activity for evaluation of pain in calves, using surgical castration as a model. J. Dairy Sci. 2010, 93, 3602–3609. [Google Scholar] [CrossRef] [Green Version]
- Kleinhenz, M.D.; Van Engen, N.K.; Smith, J.S.; Gorden, P.J.; Ji, J.; Wang, C.; Perkins, S.C.B.; Coetzee, J.F. The impact of transdermal flunixin meglumine on biomarkers of pain in calves when administered at the time of surgical castration without local anesthesia. Livest. Sci. 2018, 212, 1–6. [Google Scholar] [CrossRef]
- Adcock, S.J.J.; Tucker, C.B. Buffering lidocaine heightens aversion to cornual nerve injections in dairy calves. J. Dairy Sci. 2022, 105, 4490–4497. [Google Scholar] [CrossRef] [PubMed]
- Bergamasco, L.; Edwards-Callaway, L.N.; Bello, N.M.; Mijares, S.H.; Cull, C.A.; Rugan, S.; Mosher, R.A.; Gehring, R.; Coetzee, J.F. Unmitigated surgical castration in calves of different ages: Cortisol concentrations, heart rate variability, and infrared thermography findings. Animals 2021, 11, 2719. [Google Scholar] [CrossRef] [PubMed]
- Karlen, K.J.; Baier, F.S.; Odegard, S.L.; Baumann, R.M.; Coetzee, J.F.; Kehoe, S.I.; Vogel, K.D. Efficacy of oral meloxicam as primary pain mitigation following caustic paste disbudding of three day old Holstein calves. Transl. Anim. Sci. 2021, 5, txz151. [Google Scholar] [CrossRef]
- O’Mahony, N.; Campbell, S.; Carvalho, A.; Krpalkova, L.; Riordan, D.; Walsh, J. 3D Vision for Precision Dairy Farming. IFAC-PapersOnLine 2019, 52, 312–317. [Google Scholar] [CrossRef]
- Silva, S.R.; Araujo, J.P.; Guedes, C.; Silva, F.; Almeida, M.; Cerqueira, J.L. Precision technologies to address dairy cattle welfare: Focus on lameness, mastitis and body condition. Animals 2021, 11, 2253. [Google Scholar] [CrossRef]
- Song, X.; Schutte, J.; van der Tol, P.; van Halsema, F.; Groot Koer-kamp, P. Body Measurements of Dairy Calf Using a 3-D Camera in an Automatic Feeding System. In Proceedings of the International Conference of Agricultural Engineering, Zurich, Switzerland, 6–10 July 2014; pp. 1–8. [Google Scholar]
- Yamashita, A.; Ohkawa, T.; Oyama, K.; Ohta, C.; Niside, R.; Honda, T. Calf Weight Estimation with Stereo Camera Using Three-Dimensional Successive Cylindrical Model. J. Inst. Ind. Appl. Eng. 2018, 6, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.H.; Kim, C.; Ko, Y.G.; Kim, Y.H. Estimation of Body Weight for Korean Cattle Using Three-Dimensional Image. J. Biosyst. Eng. 2020, 45, 325–332. [Google Scholar] [CrossRef]
- Guo, Y.; He, D.; Chai, L. A Machine Vision-Based Method for Monitoring Scene-Interactive Behaviors of Dairy Calf. Animals 2020, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Von Borell, E.; Langbein, J.; Després, G.; Hansen, S.; Leterrier, C. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—A review. Physiol. Behav. 2007, 92, 293–316. [Google Scholar] [CrossRef]
- Lv, J.; Zhao, X.W.; Su, H.; Wang, Z.P.; Wang, C.; Li, J.H.; Li, X.; Zhang, R.X.; Bao, J. Effects of group size on the behaviour, heart rate, immunity, and growth of Holstein dairy calves. Appl. Anim. Behav. Sci. 2021, 241, 105378. [Google Scholar] [CrossRef]
- Mohr, E.; Langbein, J.; Nürnberg, G. Heart rate variability: A noninvasive approach to measure stress in calves and cows. Physiol. Behav. 2002, 75, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.; Wilson, M.T.; Schaefer, A.L.; Huddart, F.; Sutherland, M.A. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare. J. Dairy Sci. 2017, 100, 3893–3901. [Google Scholar] [CrossRef] [PubMed]
- Lürzel, S.; Münsch, C.; Windschnurer, I.; Futschik, A.; Palme, R.; Waiblinger, S. The influence of gentle interactions on avoidance distance towards humans, weight gain and physiological parameters in group-housed dairy calves. Appl. Anim. Behav. Sci. 2015, 172, 9–16. [Google Scholar] [CrossRef]
- Stewart, M.; Shepherd, H.M.; Webster, J.R.; Waas, J.R.; McLeay, L.M.; Schütz, K.E. Effect of previous handling experiences on responses of dairy calves to routine husbandry procedures. Animal 2013, 7, 828–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clapp, J.B.; Croarkin, S.; Dolphin, C.; Lyons, S.K. Heart rate variability: A biomarker of dairy calf welfare. Anim. Prod. Sci. 2015, 55, 1289–1294. [Google Scholar] [CrossRef]
- Lv, J.; Li, J.; Wang, C.; Zhao, P.; Bi, Y.; Zhang, X.; Yi, R.; Li, X.; Bao, J. Positive or negative emotion induced by feeding success or failure can affect behaviors, heart rate and immunity of suckling calves. Physiol. Behav. 2018, 196, 185–189. [Google Scholar] [CrossRef]
- Kayser, W.C.; Carstens, G.E.; Washburn, K.E.; Welsh, T.H.; Lawhon, S.D.; Reddy, S.M.; Pinchak, W.E.; Chevaux, E.; Skidmore, A.L. Effects of combined viral-bacterial challenge with or without supplementation of Saccharomyces cerevisiae boulardii strain CNCM I-1079 on immune upregulation and DMI in beef heifers. J. Anim. Sci. 2019, 97, 1171–1184. [Google Scholar] [CrossRef]
- Knauer, W.A.; Godden, S.M.; McDonald, N. Technical note: Preliminary evaluation of an automated indwelling rumen temperature bolus measurement system to detect pyrexia in preweaned dairy calves. J. Dairy Sci. 2016, 99, 9925–9930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ipema, A.H.; Goense, D.; Hogewerf, P.H.; Houwers, H.W.J.; van Roest, H. Pilot study to monitor body temperature of dairy cows with a rumen bolus. Comput. Electron. Agric. 2008, 64, 49–52. [Google Scholar] [CrossRef]
- Sato, S.; Mizuguchi, H.; Ito, K.; Ikuta, K.; Kimura, A.; Okada, K. Technical note: Development and testing of a radio transmission pH measurement system for continuous monitoring of ruminal pH in cows. Prev. Vet. Med. 2012, 103, 274–279. [Google Scholar] [CrossRef]
- Kim, Y.H.; Toji, N.; Kizaki, K.; Kushibiki, S.; Ichijo, T.; Sato, S. Effects of dietary forage and calf starter on ruminal pH and transcriptomic adaptation of the rumen epithelium in Holstein calves during the weaning transition. Physiol. Genom. 2016, 48, 803–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Niekerk, J.K.; Middeldorp, M.; Guan, L.L.; Steele, M.A. Preweaning to postweaning rumen papillae structural growth, ruminal fermentation characteristics, and acute-phase proteins in calves. J. Dairy Sci. 2021, 104, 3632–3645. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, D.J.; Samuelson, K.L.; Jennings, J.S.; Richeson, J.T. Oral hydration therapy with water and bovine respiratory disease incidence affects rumination behavior, rumen pH, and rumen temperature in high-risk, newly received beef calves. J. Anim. Sci. 2019, 97, 2015–2024. [Google Scholar] [CrossRef]
- Leu, S.T.; Quiring, K.; Leggett, K.E.A.; Griffith, S.C. Consistent behavioural responses to heatwaves provide body condition benefits in rangeland sheep. Appl. Anim. Behav. Sci. 2021, 234, 105204. [Google Scholar] [CrossRef]
- Lazarus, D.D.; Opperman, P.A.; Sirdar, M.M.; Wolf, T.E.; van Wyk, I.; Rikhotso, O.B.; Fosgate, G.T. Improving foot-and-mouth disease control through the evaluation of goat movement patterns within the FMD protection zone of South Africa. Small Rumin. Res. 2021, 201, 106448. [Google Scholar] [CrossRef]
- Shepley, E.; Lensink, J.; Vasseur, E. Cow in Motion: A review of the impact of housing systems on movement opportunity of dairy cows and implications on locomotor activity. Appl. Anim. Behav. Sci. 2020, 230, 105026. [Google Scholar] [CrossRef]
- Alawneh, J.; Barreto, M.; Bome, K.; Soust, M. Description of behavioral patterns displayed by a recently weaned cohort of healthy dairy calves. Animals 2020, 10, 2452. [Google Scholar] [CrossRef]
- Occhiuto, F.; Vázquez-Diosdado, J.A.; Carslake, C.; Kaler, J. Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors. R. Soc. Open Sci. 2022, 9, 212019. [Google Scholar] [CrossRef]
- Pearson, C.; Filippi, P.; Lush, L.; González, L.A. Automated behavioural monitoring allows assessment of the relationships between cow and calf behaviour and calves’ survivability and performance. Appl. Anim. Behav. Sci. 2021, 245, 105493. [Google Scholar] [CrossRef]
- Grandin, T. Cattle vocalizations are associated with handling and equipment problems at beef slaughter plants. Appl. Anim. Behav. Sci. 2001, 71, 191–201. [Google Scholar] [CrossRef]
- Manteuffel, G.; Puppe, B.; Schön, P.C. Vocalization of farm animals as a measure of welfare. Appl. Anim. Behav. Sci. 2004, 88, 163–182. [Google Scholar] [CrossRef]
- Prunier, A.; Mounier, L.; Le Neindre, P.; Leterrier, C.; Mormède, P.; Paulmier, V.; Prunet, P.; Terlouw, C.; Guatteo, R. Identifying and monitoring pain in farm animals: A review. Animal 2013, 7, 998–1010. [Google Scholar] [CrossRef] [Green Version]
- Caray, D.; de Boyer des Roches, A.; Frouja, S.; Andanson, S.; Veissier, I. Hot-iron disbudding: Stress responses and behavior of 1- and 4-week-old calves receiving anti-inflammatory analgesia without or with sedation using xylazine. Livest. Sci. 2015, 179, 22–28. [Google Scholar] [CrossRef]
- Vandermeulen, J.; Bahr, C.; Johnston, D.; Earley, B.; Tullo, E.; Fontana, I.; Guarino, M.; Exadaktylos, V.; Berckmans, D. Early recognition of bovine respiratory disease in calves using automated continuous monitoring of cough sounds. Comput. Electron. Agric. 2016, 129, 15–26. [Google Scholar] [CrossRef]
- Rushen, J.; Wright, R.; Johnsen, J.F.; Mejdell, C.M.; de Passillé, A.M. Reduced locomotor play behaviour of dairy calves following separation from the mother reflects their response to reduced energy intake. Appl. Anim. Behav. Sci. 2016, 177, 6–11. [Google Scholar] [CrossRef]
- Schnaider, M.; Heidemann, M.; Silva, A.; Taconeli, C.; Molento, C. Vocalization and other behaviors as indicators of emotional valence: The case of cow-calf separation and reunion in beef cattle. J. Vet. Behav. 2021, in press. [Google Scholar] [CrossRef]
- Bishop, J.C.; Falzon, G.; Trotter, M.; Kwan, P.; Meek, P.D. Sound Analysis and Detection, and the Potential for Precision Livestock Farming—A Sheep Vocalisation Case Study. In Proceedings of the 1st Asian-Australiasian Conference on Precision Pastures and Livestock Farming, Hamilton, New Zealand, 16–18 October 2017; p. 4. [Google Scholar]
- Silveira, L.; Antunes, L.; Silva, S.; Ferreira, D.; Soares, S.; Pinto, M.; Lebre, P.; Dionísio, I.; Serralheiro, P. Reparação do nervo laríngeo recorrente—Estudo experimental Repair of the recurrent laryngeal nerve: Experimental study. Rev. Port. Cir. 2020, 46, 19–31. [Google Scholar]
- Pond, R.L.; Darre, M.J.; Scheifele, P.M.; Browning, D.G. Characterization of equine vocalization. J. Vet. Behav. Clin. Appl. Res. 2010, 5, 7–12. [Google Scholar] [CrossRef]
- Herbst, C.T.; Nishimura, T.; Garcia, M.; Migimatsu, K.; Tokuda, I.T. Effect of Ventricular Folds on Vocalization Fundamental Frequency in Domestic Pigs (Sus scrofa domesticus). J. Voice 2021, 35, 805.e1–805.e15. [Google Scholar] [CrossRef]
- Fontana, I.; Tullo, E.; Scrase, A.; Butterworth, A. Vocalisation sound pattern identification in young broiler chickens. Animal 2016, 10, 1567–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, A.C.; Lidfors, L.M.; Lomax, S.; Favaro, L.; Clark, C.E.F. Vocal production in postpartum dairy cows: Temporal organization and association with maternal and stress behaviors. J. Dairy Sci. 2021, 104, 826–838. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.J.; Weary, D.M.; Appleby, M.C. Newborn and 5-week-old calves vocalize in response to milk deprivation. Appl. Anim. Behav. Sci. 2001, 74, 165–173. [Google Scholar] [CrossRef]
- Lowie, T.; Van Leenen, K.; Jourquin, S.; Pas, M.L.; Bokma, J.; Pardon, B. Differences in the association of cough and other clinical signs with ultrasonographic lung consolidation in dairy, veal, and beef calves. J. Dairy Sci. 2022, 105, 6111–6124. [Google Scholar] [CrossRef]
- Ferrari, S.; Piccinini, R.; Silva, M.; Exadaktylos, V.; Berckmans, D.; Guarino, M. Cough sound description in relation to respiratory diseases in dairy calves. Prev. Vet. Med. 2010, 96, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, L.; Berckmans, D.; Youssef, A.; Berckmans, D.; van Waterschoot, T.; Johnston, D.; Ferguson, N.; Earley, B.; Fontana, I.; Tullo, E.; et al. Automatic cough detection for bovine respiratory disease in a calf house. Biosyst. Eng. 2018, 173, 45–56. [Google Scholar] [CrossRef]
- Burfeind, O.; Schirmann, K.; von Keyserlingk, M.A.G.; Veira, D.M.; Weary, D.M.; Heuwieser, W. Technical note: Evaluation of a system for monitoring rumination in heifers and calves. J. Dairy Sci. 2011, 94, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Lopreiato, V.; Minuti, A.; Piccioli-Cappelli, F.; Vailati-Riboni, M.; Britti, D.; Trevisi, E.; Morittu, V.M. Daily rumination pattern recorded by an automatic rumination-monitoring system in pre-weaned calves fed whole bulk milk and ad libitum calf starter. Livest. Sci. 2018, 212, 127–130. [Google Scholar] [CrossRef]
- Rodrigues, J.P.P.; Pereira, L.G.R.; do Carmo Diniz Neto, H.; Lombardi, M.C.; de Assis Lage, C.F.; Coelho, S.G.; Sacramento, J.P.; Machado, F.S.; Tomich, T.R.; Maurício, R.M.; et al. Technical note: Evaluation of an automatic system for monitoring rumination time in weaning calves. Livest. Sci. 2019, 219, 86–90. [Google Scholar] [CrossRef]
- Byskov, M.V.; Schulze, A.K.S.; Weisbjerg, M.R.; Markussen, B.; Nørgaard, P. Recording rumination time by a rumination monitoring system in Jersey heifers fed grass/clover silage and hay at three feeding levels. J. Anim. Sci. 2014, 92, 1110–1118. [Google Scholar] [CrossRef] [Green Version]
- Lopreiato, V.; Vailati-Riboni, M.; Morittu, V.M.; Britti, D.; Piccioli-Cappelli, F.; Trevisi, E.; Minuti, A. Post-weaning rumen fermentation of Simmental calves in response to weaning age and relationship with rumination time measured by the Hr-Tag rumination-monitoring system. Livest. Sci. 2020, 232, 103918. [Google Scholar] [CrossRef]
- Theurer, M.E.; White, B.J.; Coetzee, J.F.; Edwards, L.N.; Mosher, R.A.; Cull, C.A. Assessment of behavioral changes associated with oral meloxicam administration at time of dehorning in calves using a remote triangulation device and accelerometers. BMC Vet. Res. 2012, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantor, M.C.; Pertuisel, C.H.; Costa, J.H.C. Technical note: Estimating body weight of dairy calves with a partial-weight scale attached to an automated milk feeder. J. Dairy Sci. 2020, 103, 1914–1919. [Google Scholar] [CrossRef] [PubMed]
- Cantor, M.C.; Costa, J.H.C. Daily behavioral measures recorded by precision technology devices may indicate bovine respiratory disease status in preweaned dairy calves. J. Dairy Sci. 2022, 105, 6070–6082. [Google Scholar] [CrossRef]
- Bowen, J.M.; Haskell, M.J.; Miller, G.A.; Mason, C.S.; Bell, D.J.; Duthie, C.A. Early prediction of respiratory disease in preweaning dairy calves using feeding and activity behaviors. J. Dairy Sci. 2021, 104, 12009–12018. [Google Scholar] [CrossRef]
- He, Y.; Deng, B.; Wang, H.; Cheng, L.; Zhou, K.; Cai, S.; Ciampa, F. Infrared machine vision and infrared thermography with deep learning: A review. Infrared Phys. Technol. 2021, 116, 103754. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; McGraw-Hill Science/Engineering/Math: New York, NY, USA, 1997; ISBN 0-07-042807-07. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2010; ISBN 9780262043793. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- El Naqa, I.; Murphy, M.J. What is machine learning. In Machine Learning in Radiation Oncology; Springer: Cham, Switzerland, 2015; pp. 3–11. [Google Scholar]
- Katamreddy, S.; Riordan, D.; Doody, P. Artificial Calf Weaning Strategies and the Role of Machine Learning: A Review. In Proceedings of the 2017 28th Irish Signals and Systems Conference (ISSC), Killarney, Ireland, 20–21 June 2017; pp. 1–6. [Google Scholar]
- Lokhorst, C.; De Mol, R.M.; Kamphuis, C. Invited review: Big Data in precision dairy farming. Animal 2019, 13, 1519–1528. [Google Scholar] [CrossRef] [Green Version]
- Machado, G.; Mendoza, M.R.; Corbellini, L.G. What variables are important in predicting bovine viral diarrhea virus? A random forest approach. Vet. Res. 2015, 46, 85. [Google Scholar] [CrossRef] [Green Version]
- Valletta, J.J.; Torney, C.; Kings, M.; Thornton, A.; Madden, J. Applications of machine learning in animal behaviour studies. Anim. Behav. 2017, 124, 203–220. [Google Scholar] [CrossRef]
- Qiao, Y.; Guo, Y.; Yu, K.; He, D. C3D-ConvLSTM based cow behaviour classification using video data for precision livestock farming. Comput. Electron. Agric. 2022, 193, 106650. [Google Scholar] [CrossRef]
- Ma, T.; Villot, C.; Renaud, D.; Skidmore, A.; Chevaux, E.; Steele, M.; Guan, L.L. Linking perturbations to temporal changes in diversity, stability, and compositions of neonatal calf gut microbiota: Prediction of diarrhea. ISME J. 2020, 14, 2223–2235. [Google Scholar] [CrossRef]
- Sadeghi, M.; Banakar, A.; Khazaee, M.; Soleimani, M. An Intelligent Procedure for the Detection and Classification of Chickens Infected by Clostridium Perfringens Based on their Vocalization. Rev. Bras. Ciência Avícola 2015, 17, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Denholm, S.J.; Brand, W.; Mitchell, A.P.; Wells, A.T.; Krzyzelewski, T.; Smith, S.L.; Wall, E.; Coffey, M.P. Predicting bovine tuberculosis status of dairy cows from mid-infrared spectral data of milk using deep learning. J. Dairy Sci. 2020, 103, 9355–9367. [Google Scholar] [CrossRef]
- Neethirajan, S. The role of sensors, big data and machine learning in modern animal farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Carslake, C.; Vázquez-Diosdado, J.A.; Kaler, J. Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving beyond Classification in Precision Livestock. Sensors 2020, 21, 88. [Google Scholar] [CrossRef] [PubMed]
- Nir, O.; Parmet, Y.; Werner, D.; Adin, G.; Halachmi, I. 3D Computer-vision system for automatically estimating heifer height and body mass. Biosyst. Eng. 2018, 173, 4–10. [Google Scholar] [CrossRef]
- Weales, D.; Moussa, M.; Tarry, C. A robust machine vision system for body measurements of beef calves. Smart Agric. Technol. 2021, 1, 100024. [Google Scholar] [CrossRef]
- Teixeira, V.A.; Lana, A.M.Q.; Bresolin, T.; Tomich, T.R.; Souza, G.M.; Furlong, J.; Rodrigues, J.P.P.; Coelho, S.G.; Gonçalves, L.C.; Silveira, J.A.G.; et al. Using rumination and activity data for early detection of anaplasmosis disease in dairy heifer calves. J. Dairy Sci. 2022, 105, 4421–4433. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, F.G.; Conceição, C.; Pereira, A.M.F.; Cerqueira, J.L.; Silva, S.R. Literature Review on Technological Applications to Monitor and Evaluate Calves’ Health and Welfare. Animals 2023, 13, 1148. https://doi.org/10.3390/ani13071148
Silva FG, Conceição C, Pereira AMF, Cerqueira JL, Silva SR. Literature Review on Technological Applications to Monitor and Evaluate Calves’ Health and Welfare. Animals. 2023; 13(7):1148. https://doi.org/10.3390/ani13071148
Chicago/Turabian StyleSilva, Flávio G., Cristina Conceição, Alfredo M. F. Pereira, Joaquim L. Cerqueira, and Severiano R. Silva. 2023. "Literature Review on Technological Applications to Monitor and Evaluate Calves’ Health and Welfare" Animals 13, no. 7: 1148. https://doi.org/10.3390/ani13071148
APA StyleSilva, F. G., Conceição, C., Pereira, A. M. F., Cerqueira, J. L., & Silva, S. R. (2023). Literature Review on Technological Applications to Monitor and Evaluate Calves’ Health and Welfare. Animals, 13(7), 1148. https://doi.org/10.3390/ani13071148