Temporal Activity Patterns of Sympatric Species in the Temperate Coniferous Forests of the Eastern Qinghai-Tibet Plateau
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Daily Activity Rhythms of the Eight Dominant Species
3.2. Daily Activity Patterns during the Warm Season and Cold Seasons of the Year
3.3. Diel Temporal Overlaps of the Dominant Species
4. Discussion
4.1. Daily Activity Rhythms of Dominant Species
4.2. Daily Activity Patterns during the Warm Season and Cold Season of the Year
4.3. Activity Overlap of the Dominant Species
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Information on Camera Sites on the Eastern Qinghai-Tibet Plateau
Site ID | Site Name | Elevation | Reserve Part |
---|---|---|---|
A01 | F22 | 2800 | inside |
A02 | Ftouling | 2843 | inside |
A03 | qingyatou | 2924 | inside |
A04 | shuihutan | 2749 | inside |
A05 | B39 | 2873 | inside |
A06 | heiniuheliang | 2904 | inside |
A07 | taihuangpoliang | 3103 | inside |
A08 | yayatan | 3120 | inside |
A09 | xuegouliang | 3106 | inside |
A10 | tushanliang | 3146 | inside |
A11 | gangouliang | 2967 | inside |
A12 | gonggouwan | 2736 | inside |
A13 | dahegou | 2802 | inside |
A14 | mamianzui | 2595 | inside |
A15 | shiwaliang | 3059 | inside |
A16 | macheshanliang | 3168 | inside |
A17 | macheshanliang2 | 3391 | inside |
A18 | macheshan3 | 3468 | inside |
A19 | gangouliangwai | 2821 | inside |
A20 | sxiantou | 2953 | inside |
B01 | shanzhuangliang | 2384 | inside |
B02 | majuanliang | 2550 | inside |
B03 | majuangouli | 2441 | inside |
B04 | majuangouzhong | 2350 | inside |
B05 | donggoutan | 2457 | inside |
B06 | daochaxia | 2583 | inside |
B07 | daochashang | 2592 | inside |
B08 | jishanliang | 2570 | inside |
B09 | baogoukou | 2589 | inside |
B10 | zhuojitan | 2148 | inside |
B11 | shagugoukou | 2132 | inside |
B12 | zuguchuanshalukou | 2097 | inside |
B13 | shelugou | 2423 | inside |
B14 | gabodanwan | 2299 | inside |
B15 | gougushan | 2399 | inside |
B16 | anzanggou | 2192 | inside |
B17 | maoergou | 2251 | inside |
B18 | wowode | 2324 | inside |
B19 | gulonggou | 2148 | inside |
B20 | yazakan | 2093 | inside |
C01 | heihegou01 | 2825 | out |
C02 | heihegou02 | 2782 | out |
C03 | heihegou03 | 2735 | out |
C04 | heihegou04 | 2653 | out |
C05 | heihegou05 | 2704 | out |
C06 | heihegou06 | 2603 | out |
C07 | heihegou07 | 2503 | out |
C08 | xialijiatieqiao | 2378 | out |
C09 | taihe09 | 2394 | out |
C10 | taihe10 | 2367 | out |
C11 | taihe11 | 3144 | out |
C12 | taihe12 | 3106 | out |
C13 | taihe13 | 3012 | out |
C14 | taihe14 | 2899 | out |
C15 | taihe15 | 2815 | out |
C16 | taihe16 | 2696 | out |
C17 | taihe17 | 2806 | out |
C18 | taihe18 | 2500 | out |
C19 | taihe19 | 2527 | out |
C20 | taihe20 | 2498 | out |
References
- Hardin, G. The Competitive Exclusion Principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, J.; Votier, S.C.; Aguzzi, J.; Chiesa, J.J.; Forero, M.G.; Phillips, R.A. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 2013, 8, e62897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borregaard, M.K.; Hendrichsen, D.K.; Nachman, G. Spatial Distribution Patterns; Oxford Elsevier: Oxford, UK, 2008. [Google Scholar]
- Monterroso, P.; Alves, P.C.; Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: Implications for species coexistence. Behav. Ecol. Sociobiol. 2014, 68, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Harmsen, B.J.; Foster, R.J.; Silver, S.C.; Ostro, L.E.T.; Doncaster, C.P. Jaguar and puma activity patterns in relation to their main prey. Mamm. Biol. 2011, 76, 320–324. [Google Scholar] [CrossRef]
- Ramesh, T.; Kalle, R.; Sankar, K.; Qureshi, Q.; Bennett, N. Spatio-temporal partitioning among large carnivores in relation to major prey species in relation to major prey species in Western Ghats. J. Zool. 2012, 287, 269–275. [Google Scholar] [CrossRef]
- Viviano, A.; Mori, E.; Fattorini, N.; Mazza, G.; Lazzeri, L.; Panichi, A.; Strianese, L.; Mohamed, W.F. Spatiotemporal Overlap between the European Brown Hare and Its Potential Predators and Competitors. Animals 2021, 11, 562. [Google Scholar] [CrossRef]
- Cremonesi, G.; Bisi, F.; Gaffi, L.; Zaw, T.; Naing, H.; Moe, K.; Aung, Z.; Gagliardi, A.; Wauters, L.A.; Preatoni, D.G.; et al. Evaluation of Human Disturbance on the Activity of Medium–Large Mammals in Myanmar Tropical Forests. Forests 2021, 12, 290. [Google Scholar] [CrossRef]
- Andersen, G.E.; Johnson, C.N.; Jones, M.E. Space use and temporal partitioning of sympatric Tasmanian devils and spotted-tailed quolls. Austral Ecol. 2020, 45, 355–365. [Google Scholar] [CrossRef]
- Hughesdon, P.J. The struggle for existence. Nature 1927, 120, 878–879. [Google Scholar] [CrossRef]
- Zhou, Q.; Wei, H.; Tang, H.; Huang, Z.; Krzton, A.; Huang, C. Niche separation of sympatric macaques, Macaca assamensis and M. mulatta, in limestone habitats of Nonggang, China. Primates 2014, 55, 125–137. [Google Scholar] [CrossRef]
- Finke, D.L.; Snyder, W.E. Niche partitioning increases resource exploitation by diverse communities. Science 2008, 321, 1488–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, T.; Uchida, K.; Matsuura, Y.; Takahashi, H.; Yoshida, T.; Kaji, K.; Koizumi, I. Seasonal and Diel Activity Patterns of Eight Sympatric Mammals in Northern Japan Revealed by an Intensive Camera-Trap Survey. PLoS ONE 2016, 11, e0163602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, G.S.; Coelho, I.P.; Bastazini, V.A.; Cordeiro, J.L.; de Oliveira, L.F. Implications of climatic seasonality on activity patterns and resource use by sympatric peccaries in northern Pantanal. Int. J. Biometeorol. 2016, 60, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Puls, S.; Teichman, K.J.; Jansen, C.; O’Riain, M.J.; Cristescu, B. Activity patterns of leopards (Panthera pardus) and temporal overlap with their prey in an arid depredation hotspot of southern Africa. J. Arid. Environ. 2021, 187, 104430. [Google Scholar] [CrossRef]
- Linkie, M.; Ridout, M.S. Assessing tiger–prey interactions in Sumatran rainforests. J. Zool. 2011, 284, 224–229. [Google Scholar] [CrossRef]
- Sunarto, S.; Kelly, M.J.; Parakkasi, K.; Hutajulu, M.B. Cat coexistence in central Sumatra: Ecological characteristics, spatial and temporal overlap, and implications for management. J. Zool. 2015, 296, 104–115. [Google Scholar] [CrossRef]
- Hearn, A.J.; Cushman, S.A.; Ross, J.; Goossens, B.; Hunter, L.T.B.; Macdonald, D.W. Spatio-temporal ecology of sympatric felids on Borneo. Evidence for resource partitioning? PLoS ONE 2018, 13, e0200828. [Google Scholar] [CrossRef]
- Lear, K.O.; Whitney, N.M.; Morris, J.J.; Gleiss, A.C. Temporal niche partitioning as a novel mechanism promoting co-existence of sympatric predators in marine systems. Proc. Biol. Sci. 2021, 288, 20210816. [Google Scholar] [CrossRef]
- Li, J.; Xue, Y.; Liao, M.; Dong, W.; Wu, B.; Li, D. Temporal and Spatial Activity Patterns of Sympatric Wild Ungulates in Qinling Mountains, China. Animals 2022, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; An, B.; Chen, L.; Sun, Z.; Mao, R.; Zhao, C.; Zhang, L. Camera Trapping Reveals Spatiotemporal Partitioning Patterns and Conservation Implications for Two Sympatric Pheasant Species in the Qilian Mountains, Northwestern China. Animals 2022, 12, 1657. [Google Scholar] [CrossRef]
- Ridout, M.S.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- O’Brien, T.G.; Kinnaird, M.F.; Wibisono, H.T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 2003, 6, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Mori, E.; Menchetti, M. Living with roommates in a shared den: Spatial and temporal segregation among semifossorial mammals. Behav. Process. 2019, 164, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Duan, F.; Li, S. Promoting diversity inventory and monitoring of birds through the camera-trapping network in China: Status, challenges and future outlook. Biodivers. Sci. 2017, 25, 1114–1122. [Google Scholar] [CrossRef] [Green Version]
- Wix, N.; Reich, M. Time-triggered camera traps versus line transects–advantages and limitations of multi-method studies for bird surveys. Bird Study 2019, 66, 207–223. [Google Scholar] [CrossRef]
- Kuhnen, V.V.; De Lima, R.E.M.; Santos, J.F.; Machado Filho, L.C.P. Habitat use and circadian pattern of Solitary TinamouTinamus solitariusin a southern Brazilian Atlantic rainforest. Bird Conserv. Int. 2012, 23, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.J.; Farris, Z.J.; Karpanty, S.; Kelly, M.J.; Miles, K.A.; Ratelolahy, F.; Rahariniaina, R.P.; Golden, C.D. Using camera traps to examine distribution and occupancy trends of ground-dwelling rainforest birds in north-eastern Madagascar. Bird Conserv. Int. 2017, 28, 567–580. [Google Scholar] [CrossRef]
- O’Connell, A.F.; Nichols, J.D.; Karanth, K.U. Camera Traps in Animal Ecology; Springer Science: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Lijun, C.; Zufei, S.; Zhishu, X. Application of camera-trapping data to study daily activity patterns of Galliformes in Guangdong Chebaling National Nature Reserve. Biodivers. Sci. 2019, 27, 266–272. [Google Scholar] [CrossRef]
- Schoener, T.W. Resource partitioning in ecological communities. Science 1974, 185, 27–39. [Google Scholar] [CrossRef]
- Di Bitetti, M.S.; De Angelo, C.D.; Di Blanco, Y.E.; Paviolo, A. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 2010, 36, 403–412. [Google Scholar] [CrossRef]
- Kronfeld-Schor, N.; Dayan, T. Partitioning of Time as an Ecological Resource. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 153–181. [Google Scholar] [CrossRef] [Green Version]
- Downes, S. Trading Heat and Food for Safety: Costs of Predator Avoidance in a Lizard. Ecology 2001, 82, 2870–2881. [Google Scholar] [CrossRef]
- Gálvez, N.; Meniconi, P.; Infante, J.; Bonacic, C.; Reyna, R. Response of mesocarnivores to anthropogenic landscape intensification: Activity patterns and guild temporal interactions. J. Mammal. 2021, 102, 1149–1164. [Google Scholar] [CrossRef]
- Frey, S.; Fisher, J.T.; Burton, A.C.; Volpe, J.P.; Rowcliffe, M. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 2017, 3, 123–132. [Google Scholar] [CrossRef]
- Yuehua, S.; Yun, F.; Klaus, S.; Martens, J.; Scherzinger, W.; Swenson, J.E. Nature of The Lianhuashan Natural Reserve; Liaoning Science and Technology Press: Shenyang, China, 2008. [Google Scholar]
- Ahumada, J.A.; Hurtado, J.; Lizcano, D. Monitoring the status and trends of tropical forest terrestrial vertebrate communities from camera trap data: A tool for conservation. PLoS ONE 2013, 8, e73707. [Google Scholar] [CrossRef] [Green Version]
- Meek, P.D.; Ballard, G.; Claridge, A.; Kays, R.; Moseby, K.; O’Brien, T.; O’Connell, A.; Sanderson, J.; Swann, D.E.; Tobler, M.; et al. Recommended guiding principles for reporting on camera trapping research. Biodivers. Conserv. 2014, 23, 2321–2343. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Chen, X.; Gao, Y.; Mi, J. GLC_FCS30-2020: Global Land Cover with Fine Classification System at 30 m in 2020(v1.2). 2020, 13, pp. 2753–2776. Available online: https://essd.copernicus.org/articles/13/2753/2021/ (accessed on 2 March 2023).
- Ogurtsov, S.S.; Zheltukhin, A.S.; Kotlov, I.P. Daily activity patterns of large and medium-sized mammals based on camera traps data in the Central Forest Nature Reserve, Valdai Upland, Russia. Nat. Conserv. Res. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- van Schaik, C.P.; Griffiths, M. Activity Periods of Indonesian Rain Forest Mammals. Biotropica 1996, 28, 105–112. [Google Scholar] [CrossRef]
- Gómez, H.; Wallace, R.B.; Ayala, G.; Tejada, R. Dry season activity periods of some Amazonian mammals. Stud. Neotrop. Fauna Environ. 2005, 40, 91–95. [Google Scholar] [CrossRef]
- Nouvellet, P.; Rasmussen, G.S.A.; Macdonald, D.W.; Courchamp, F.; Braae, A. Noisy clocks and silent sunrises: Measurement methods of daily activity pattern. J. Zool. 2011, 286, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Meredith, M.; Ridout, M. Overlap: Estimates of Coefficient of Overlapping for Animal Activity Patterns. 2014. Available online: https://CRAN.R-project.org/package=overlap (accessed on 7 May 2021).
- Rowcliffe, M. Animal Activity Statistics. 2023. Available online: https://cran.r-project.org/web/packages/activity/index.html (accessed on 2 March 2023).
- Zar, J.H. Biostatistical Analysis; Jersey, N., Ed.; Pearson Prentice Hall: Englewood Cliffs, NJ, USA, 2009. [Google Scholar]
- Lund, U.; Agostinelli, C.; Arai, H.; Gagliardi, A.; García-Portugués, E.; Giunchi, D.; Irisson, J.-O.; Pocernich, M.; Rotolo, F. Circular Statistics, R package Version 0.4–93; 2022. Available online: https://cran.r-project.org/package=circular (accessed on 26 April 2022).
- Romero-Muñoz, A.; Maffei, L.; Cuéllar, E.; Noss, A.J. Temporal separation between jaguar and puma in the dry forests of southern Bolivia. J. Trop. Ecol. 2010, 26, 303–311. [Google Scholar] [CrossRef]
- Hernández-SaintMartín, A.D.; Rosas-Rosas, O.C.; Palacio-Núñez, J.; Tarango-Arámbula, L.A.; Clemente-Sánchez, F.; Hoogesteijn, A.L. Activity Patterns of Jaguar, Puma and Their Potential Prey in San Luis Potosi, Mexico. Acta Zool. Ógica Mex. (N.S.) 2013, 29, 520–533. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 June 2021).
- Nakabayashi, M.; Kanamori, T.; Matsukawa, A.; Tangah, J.; Tuuga, A.; Malim, P.T.; Bernard, H.; Ahmad, A.H.; Matsuda, I.; Hanya, G. Temporal activity patterns suggesting niche partitioning of sympatric carnivores in Borneo, Malaysia. Sci. Rep. 2021, 11, 19819. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Liu, F.; Li, D.; Chen, Z.; Chen, P. Spatial-Temporal Patterns of Sympatric Asiatic Black Bears (Ursus thibetanus) and Brown Bears (Ursus arctos) in Northeastern China. Animals 2022, 12, 1262. [Google Scholar] [CrossRef]
- Doherty, T.S.; Hays, G.C.; Driscoll, D.A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 2021, 5, 513–519. [Google Scholar] [CrossRef]
- Searle, C.E.; Smit, J.B.; Cusack, J.J.; Strampelli, P.; Grau, A.; Mkuburo, L.; Macdonald, D.W.; Loveridge, A.J.; Dickman, A.J. Temporal partitioning and spatiotemporal avoidance among large carnivores in a human-impacted African landscape. PLoS ONE 2021, 16, e0256876. [Google Scholar] [CrossRef]
- Linnell, J.D.C.; Strand, O. Interference interactions, co-existence and conservation of mammalian carnivores. Divers. Distrib. 2000, 6, 169–176. [Google Scholar] [CrossRef]
- Marinho, P.H.; Fonseca, C.R.; Sarmento, P.; Fonseca, C.; Venticinque, E.M. Temporal niche overlap among mesocarnivores in a Caatinga dry forest. Eur. J. Wildl. Res. 2020, 66, 34. [Google Scholar] [CrossRef]
- Bogdan, V.; Junek, T.; Junkova Vymyslicka, P. Temporal overlaps of feral cats with prey and competitors in primary and human-altered habitats on Bohol Island, Philippines. PeerJ 2016, 4, e2288. [Google Scholar] [CrossRef] [Green Version]
- O’Kane, C.A.J.; Macdonald, D.W. Seasonal influences on ungulate movement within a fenced South African reserve. J. Trop. Ecol. 2018, 34, 200–203. [Google Scholar] [CrossRef]
Species | RAI | Dawn (05:00–07:00) | Day (07:00–17:00) | Dusk (17:00–19:00) | Night (19:00–05:00) |
---|---|---|---|---|---|
Eastern Roe Deer | 6.87 | 8.68 | 43.35 | 11.76 | 36.22 |
Blue Eared Pheasant | 1.03 | 0.70 | 69.63 | 18.69 | 10.98 |
Tolai Hare | 0.54 | 9.02 | 30.83 | 14.29 | 45.86 |
Common Pheasant | 0.42 | 4.52 | 58.06 | 24.52 | 12.90 |
Wild Boar | 0.37 | 9.78 | 39.13 | 9.78 | 41.30 |
Asian Badger | 0.35 | 11.49 | 41.38 | 8.62 | 38.51 |
Blood Pheasant | 0.32 | 4.08 | 80.95 | 11.56 | 3.40 |
Red Fox | 0.3 | 8.78 | 42.57 | 8.11 | 40.54 |
Eastern Roe Deer | Eastern Roe Deer | ||||||
Blue Eared Pheasant | 0.67 (0.64–0.7) | Blue Eared Pheasant | |||||
Tolai Hare | 0.89 (0.84–0.93) | 0.58 (0.53–0.63) | Tolai Hare | ||||
Common Pheasant | 0.68 (0.62–0.74) | 0.91 (0.85–0.95) | 0.60 (0.53–0.68) | Common Pheasant | |||
Wild Boar | 0.87 (0.8–0.92) | 0.62 (0.55–0.69) | 0.87 (0.8–0.93) | 0.65 (0.57–0.73) | Wild Boar | ||
Asian Badger | 0.90 (0.85–0.94) | 0.62 (0.55–0.69) | 0.87 (0.8–0.93) | 0.65 (0.57–0.73) | 0.86 (0.78–0.93) | Asian Badger | |
Blood Pheasant | 0.63 (0.57–0.68) | 0.86 (0.79–0.92) | 0.53 (0.46–0.6) | 0.80 (0.7–0.88) | 0.58 (0.5–0.66) | 0.59 (0.51–0.67) | Blood Pheasant |
Red Fox | 0.91 (0.86–0.95) | 0.63 (0.56–0.71) | 0.89 (0.82–0.94) | 0.66 (0.57–0.74) | 0.90 (0.83–0.95) | 0.95 (0.92–0.98) | 0.60 (0.52–0.68) |
Warm Season | Cold Season | ||||||
---|---|---|---|---|---|---|---|
Species1 | Species2 | Dhat4 | CI | p | Dhat4 | CI | p |
Blue Eared Pheasant | Wild Boar | 0.48 | 0.37–0.59 | 0 | 0.76 | 0.67–0.84 | 0 |
Blue Eared Pheasant | Asian Badger | 0.66 | 0.59–0.75 | 0 | 0.49 | 0.31–0.67 | 0 |
Blue Eared Pheasant | Red Fox | 0.63 | 0.48–0.74 | 0 | 0.61 | 0.49–0.72 | 0 |
Wild Boar | Blood Pheasant | 0.45 | 0.36–0.58 | 0 | 0.71 | 0.61–0.8 | 0 |
Wild Boar | Common Pheasant | 0.54 | 0.44–0.65 | 0 | 0.73 | 0.59–0.84 | 0 |
Blood Pheasant | Asian Badger | 0.64 | 0.53–0.71 | 0 | 0.44 | 0.28–0.56 | 0 |
Blood Pheasant | Red Fox | 0.6 | 0.48–0.68 | 0 | 0.53 | 0.38–0.66 | 0 |
Tolai Hare | Red Fox | 0.81 | 0.7–0.9 | 0.03 | 0.76 | 0.63–0.85 | 0.01 |
Common Pheasant | Asian Badger | 0.61 | 0.49–0.72 | 0 | 0.49 | 0.31–0.67 | 0 |
Common Pheasant | Red Fox | 0.59 | 0.48–0.71 | 0 | 0.59 | 0.45–0.72 | 0 |
Warm Season | Cold Season | ||||||
---|---|---|---|---|---|---|---|
Species1 | Species2 | Dhat4 | CI | p | Dhat4 | CI | p |
Eastern Roe Deer | Blue Eared Pheasant | 0.64 | 0.58–0.69 | 0 | 0.71 | 0.67–0.75 | 0 |
Eastern Roe Deer | Wild Boar | 0.82 | 0.72–0.9 | 0.04 | 0.86 | 0.77–0.92 | 0.31 |
Eastern Roe Deer | Tolai Hare | 0.89 | 0.82–0.95 | 0.34 | 0.72 | 0.62–0.78 | 0 |
Eastern Roe Deer | Asian Badger | 0.85 | 0.77–0.9 | 0.01 | 0.77 | 0.64–0.87 | 0.24 |
Blue Eared Pheasant | Blood Pheasant | 0.73 | 0.62–0.85 | 0 | 0.87 | 0.78–0.93 | 0.24 |
Blue Eared Pheasant | Tolai Hare | 0.64 | 0.56–0.73 | 0 | 0.46 | 0.36–0.54 | 0 |
Blue Eared Pheasant | Common Pheasant | 0.8 | 0.68–0.89 | 0.06 | 0.88 | 0.79–0.94 | 0.24 |
Wild Boar | Tolai Hare | 0.75 | 0.63–0.86 | 0 | 0.67 | 0.54–0.78 | 0 |
Wild Boar | Asian Badger | 0.78 | 0.67–0.87 | 0 | 0.72 | 0.57–0.85 | 0.02 |
Wild Boar | Red Fox | 0.75 | 0.6–0.85 | 0.01 | 0.76 | 0.63–0.86 | 0 |
Blood Pheasant | Tolai Hare | 0.66 | 0.54–0.76 | 0 | 0.39 | 0.3–0.47 | 0 |
Blood Pheasant | Common Pheasant | 0.58 | 0.43–0.73 | 0 | 0.86 | 0.78–0.92 | 0.22 |
Tolai Hare | Common Pheasant | 0.6 | 0.46–0.74 | 0 | 0.48 | 0.38–0.57 | 0 |
Tolai Hare | Asian Badger | 0.87 | 0.79–0.93 | 0.17 | 0.8 | 0.59–0.91 | 0.17 |
Asian Badger | Red Fox | 0.9 | 0.83–0.95 | 0.6 | 0.84 | 0.72–0.93 | 0.71 |
Inside | Outside | ||||||
---|---|---|---|---|---|---|---|
Species1 | Species2 | Dhat4 | CI | p | Dhat4 | CI | p |
Eastern Roe Deer | Blue Eared Pheasant | 0.65 | 0.61–0.68 | 0 | 0.7 | 0.56–0.8 | 0.01 |
Eastern Roe Deer | Wild Boar | 0.85 | 0.79–0.91 | 0 | 0.78 | 0.63–0.89 | 0.13 |
Eastern Roe Deer | Asian Badger | 0.86 | 0.77–0.92 | 0.02 | 0.89 | 0.81–0.94 | 1 |
Blue Eared Pheasant | Wild Boar | 0.54 | 0.45–0.6 | 0 | 0.8 | 0.67–0.91 | 0.42 |
Blue Eared Pheasant | Asian Badger | 0.58 | 0.48–0.67 | 0 | 0.66 | 0.53–0.8 | 0.01 |
Wild Boar | Asian Badger | 0.82 | 0.74–0.9 | 0.03 | 0.8 | 0.67–0.91 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Fang, Y.; Li, X.; Song, K.; Xie, W.; Bu, C.; Sun, Y. Temporal Activity Patterns of Sympatric Species in the Temperate Coniferous Forests of the Eastern Qinghai-Tibet Plateau. Animals 2023, 13, 1129. https://doi.org/10.3390/ani13071129
Jia J, Fang Y, Li X, Song K, Xie W, Bu C, Sun Y. Temporal Activity Patterns of Sympatric Species in the Temperate Coniferous Forests of the Eastern Qinghai-Tibet Plateau. Animals. 2023; 13(7):1129. https://doi.org/10.3390/ani13071129
Chicago/Turabian StyleJia, Jia, Yun Fang, Xinhai Li, Kai Song, Wendong Xie, Changli Bu, and Yuehua Sun. 2023. "Temporal Activity Patterns of Sympatric Species in the Temperate Coniferous Forests of the Eastern Qinghai-Tibet Plateau" Animals 13, no. 7: 1129. https://doi.org/10.3390/ani13071129
APA StyleJia, J., Fang, Y., Li, X., Song, K., Xie, W., Bu, C., & Sun, Y. (2023). Temporal Activity Patterns of Sympatric Species in the Temperate Coniferous Forests of the Eastern Qinghai-Tibet Plateau. Animals, 13(7), 1129. https://doi.org/10.3390/ani13071129