Acupoint Catgut Embedding Improves Lipid Metabolism in Exercise-Induced Fatigue Rats via the PPAR Signaling Pathway
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Experimental Groupings
2.3. Fatigue Model
2.4. Catgut Embedding Acupoint Treatment
2.5. Blood Sample
2.6. Tissue Samples
2.7. Gene Analysis
2.8. RNA-Seq Analysis
2.9. Mass Spectrometry Metabolomics
2.10. High-Performance Liquid Chromatography and High-Resolution Tandem Mass Spectrometry
2.11. Data Analysis
2.12. Blood Biochemical Indexes and Detection of Arachidonic Acid and Free Fatty Acids
2.13. Real-Time Quantitative PCR (RT-qPCR)
3. Results
3.1. Genes Altered by Exercise-Induced Fatigue and Treatment
3.2. Metabolites Altered by Exercise-Induced Fatigue and Treatment
3.3. TG, TC, LDH, HDL, ALT, AST, GLU, Arachidonic Acid, and Free Fatty Acid in the Blood Altered by Exercise-Induced Fatigue and Treatment
3.4. Effect of Acupoint Catgut Embedding on the PPAR Signaling Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finsterer, J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord. 2012, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Parry-Billings, M.; Blomstrand, E.; McAndrew, N.; Newsholme, E.A. A communicational link between skeletal muscle, brain, and cells of the immune system. Int. J. Sports Med. 1990, 11 (Suppl. S2), S122–S128. [Google Scholar] [CrossRef]
- Raizel, R.; Leite, J.S.; Hypólito, T.M.; Coqueiro, A.Y.; Newsholme, P.; Cruzat, V.F.; Tirapegui, J. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. Br. J. Nutr. 2016, 116, 470–479. [Google Scholar] [CrossRef]
- Leite, J.S.; Raizel, R.; Hypólito, T.M.; Rosa, T.D.; Cruzat, V.F.; Tirapegui, J. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise. Appl. Physiol. Nutr. Metab. 2016, 41, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef]
- Su, C. The Study on Anti-Fatigue Capsule of Ojtpa; Beijing University of Technology: Beijing, China, 2011. [Google Scholar]
- Yeh, T.S.; Chuang, H.L.; Huang, W.C.; Chen, Y.M.; Huang, C.C.; Hsu, M.C. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules 2014, 19, 2793–2807. [Google Scholar] [CrossRef]
- Bell, A.E.; Falconi, A. Acupuncture for the Treatment of Sports Injuries in an Austere Environment. Curr. Sports Med. Rep. 2016, 15, 111–115. [Google Scholar] [CrossRef]
- Chu, Y.; Zhao, Y.; Hu, S.; Wang, Q.; Semeah, L.M.; Jia, H.; Lv, T.; Li, X.; Wang, R. Immediate Effect of Local Vibration Therapy for Sport-induced Fatigue Based on Traditional Chinese Medicine’s Holistic Theory. J. Multidiscip. Healthc. 2020, 13, 1993–2001. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Zhao, J.; Yuan, Y.; Wang, J. Research status of the effect mechanism on catgut-point embedding therapy. Zhongguo Zhen Jiu 2017, 37, 1251–1254. (In Chinese) [Google Scholar]
- Yan, R.; Liu, X.; Bai, J.; Yu, J.; Gu, J. Influence of catgut implantation at acupoints on leptin and insulin resistance in simple obesity rats. J Tradit. Chin. Med. 2012, 32, 477–481. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Guo, Y.; Ji, X.; Wang, S. Effect of electro-acupuncture at Zusanli acupoint on postoperative T cell immune function in rats. Nan Fang Yi Ke Da Xue Xue Bao 2018, 38, 1384–1388. (In Chinese) [Google Scholar] [PubMed]
- Jiang, Q.; Mo, Y.; Jin, D.; Jin, W.; Pan, Y.; Wang, Y.; Du, W.; Wang, J. Effect of acupoint stimulation on the quality of recovery in patients with radical thyroidectomy under the concept of enhanced recovery after surgery: A randomized controlled trial. Zhongguo Zhen Jiu 2019, 39, 1289–1293. [Google Scholar] [PubMed]
- Ma, L. Study of Clinical Observation and Experiments on Chronic Atrophic Gastritis by Acupoint Catgut Embedding; Guangzhou University of Chinese Medicine: Guangzhou, China, 2017. [Google Scholar]
- Davis, J.M.; Bailey, S.P. Possible mechanisms of central nervous system fatigue during exercise. Med. Sci. Sports Exerc. 1997, 29, 45–57. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. Laboratory Animal Management Regulations; The State Council of the People’s Republic of China: Beijing, China, 1988; pp. 823–827. [Google Scholar]
- Shi, X.; Zong, A.; Tao, J.; Wang, L. Opinions on Guiding Opinions on the Kindness of Laboratory Animals. J. China Med. Univ. 2007, 4, 493. [Google Scholar]
- Zhu, H. The Effect of Point Emnedding Threapy on the Endurance of Competitive Horse Racing Model (Rat); Inner Mongolia Agricultural University: Hohhot, China, 2016. [Google Scholar]
- Luo, Y.; Zheng, J.; Xin, R. Comparative Acupuncture and Moxibustion. Version 2; China Agriculture Press: Beijing, China, 2017. [Google Scholar]
- GB/T21709.10-2008; National Standards of the People’s Republic of China: Standardized Manipulations of Acupuncture and Moxibustion—Part 10: Thread-Embedding Therapy. Standards Press of China: Beijing, China, 2008.
- Falcon, A.; Doege, H.; Fluitt, A.; Tsang, B.; Watson, N.; Kay, M.A.; Stahl, A. FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E384–E393. [Google Scholar] [CrossRef]
- Wang, G.; Bonkovsky, H.L.; de Lemos, A.; Burczynski, F.J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res. 2015, 56, 2238–2247. [Google Scholar] [CrossRef]
- Wulff, A.B.; Nordestgaard, B.G.; Tybjærg-Hansen, A. APOC3 Loss-of-Function Mutations, Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and Cardiovascular Risk: Mediation- and Meta-Analyses of 137 895 Individuals. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 660–668. [Google Scholar] [CrossRef]
- Young, S.G.; Zechner, R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 2013, 27, 459–484. [Google Scholar] [CrossRef]
- Kanaley, J.A.; Mottram, C.D.; Scanlon, P.D.; Jensen, M.D. Fatty acid kinetic responses to running above or below lactate threshold. J. Appl. Physiol. 1995, 79, 439–447. [Google Scholar] [CrossRef]
- Klein, S.; Peters, E.J.; Holland, O.B.; Wolfe, R.R. Effect of short- and long-term beta-adrenergic blockade on lipolysis during fasting in humans. Am. J. Physiol. 1989, 257 Pt 1, E65–E73. [Google Scholar] [CrossRef]
- Ranallo, R.F.; Rhodes, E.C. Lipid metabolism during exercise. Sport. Med. 1998, 26, 29–42. [Google Scholar] [CrossRef]
- Emed, L.G.; Passaglia, D.G.; Guerios, S.T.; João, P.G.; Moser, A.I.; Abdalla, D.S.; Guarita-Souza, L.C.; Mikilita, E.S.; Baena, C.P.; da Costa, A.B.; et al. Acute modification in plasma lipid levels in ultramarathon runners. J. Sports Sci. 2016, 34, 1657–1661. [Google Scholar] [CrossRef]
- Suarsana, I.N.; Utama, I.H.; Kardena, I.M. Tempe extract reduces cell damage in the liver and kidneys after intensive physical exercise in rats. Vet. World 2020, 13, 1510–1516. [Google Scholar] [CrossRef]
- Martin, W.H., III; Dalsky, G.P.; Hurley, B.F.; Matthews, D.E.; Bier, D.M.; Hagberg, J.M.; Rogers, M.A.; King, D.S.; Holloszy, J.O. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am. J. Physiol. 1993, 265 Pt 1, E708–E714. [Google Scholar] [CrossRef]
- Miller, H.I.; Issekutz, B.; Rodahl, K.; Paul, P. Effect of lacid on plasma free fatty acids in pancreatectomized dogs. Am. J. Physiol. 1964, 207, 1226–1230. [Google Scholar] [CrossRef] [PubMed]
- Giordano, R.M.; Newman, J.W.; Pedersen, T.L.; Ramos, M.I.; Stebbins, C.L. Effects of dynamic exercise on plasma arachidonic acid epoxides and diols in human volunteers. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 471–479. [Google Scholar] [CrossRef]
- Ostrowski, K.; Rohde, T.; Asp, S.; Schjerling, P.; Pedersen, B.K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol. 1999, 515 Pt 1, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Cherubini, A.; Bandinelli, S.; Bartali, B.; Corsi, A.; Lauretani, F.; Martin, A.; Andres-Lacueva, C.; Senin, U.; Guralnik, J.M. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J. Clin. Endocrinol. Metab. 2006, 91, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Han, T.K. Effects Ala54Thr polymorphism of FABP2 on obesity index and biochemical variable in response to a aerobic exercise training. J. Exerc. Nutr. Biochem. 2013, 17, 209–217. [Google Scholar] [CrossRef]
- Black, P.N.; Ahowesso, C.; Montefusco, D.; Saini, N.; DiRusso, C.C. Fatty Acid Transport Proteins: Targeting FATP2 as a Gatekeeper Involved in the Transport of Exogenous Fatty Acids. MedChemComm 2016, 7, 612–622. [Google Scholar] [CrossRef]
- Moya, M.; Benet, M.; Guzmán, C.; Tolosa, L.; García-Monzón, C.; Pareja, E.; Castell, J.V.; Jover, R. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver. PLoS ONE 2017, 7, e30014. [Google Scholar] [CrossRef] [PubMed]
- Sorof, S. Modulation of mitogenesis by liver fatty acid binding protein. Cancer Metastasis Rev. 1994, 13, 317–336. [Google Scholar] [CrossRef]
- Tsai, I.T.; Wu, C.C.; Hung, W.C.; Lee, T.L.; Hsuan, C.F.; Wei, C.T.; Lu, Y.-C.; Yu, T.H.; Chung, F.-M.; Lee, Y.-J.; et al. FABP1 and FABP2 as markers of diabetic nephropathy. Int. J. Med. Sci. 2020, 17, 2338. [Google Scholar] [CrossRef] [PubMed]
- Pi, H.; Liu, M.; Xi, Y.; Chen, M.; Tian, L.; Xie, J.; Chen, M.; Wang, Z.; Yang, M.; Yu, Z.; et al. Long-term exercise prevents hepatic steatosis: A novel role of FABP1 in regulation of autophagy-lysosomal machinery. FASEB J. 2019, 33, 11870–11883. [Google Scholar] [CrossRef]
- Berbée, J.F.; Van Der Hoogt, C.C.; Sundararaman, D.; Havekes, L.M.; Rensen, P.C. Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL. J. Lipid Res. 2005, 46, 297–306. [Google Scholar] [CrossRef]
- Larsson, M.; Vorrsjö, E.; Talmud, P.; Lookene, A.; Olivecrona, G. Apolipoproteins C-I and C-III inhibit lipoprotein lipase activity by displacement of the enzyme from lipid droplets. J. Biol. Chem. 2013, 288, 33997. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.S.; McConathy, W.J.; Kloer, H.U.; Alaupovic, P. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J. Clin. Investig. 1985, 75, 384–390. [Google Scholar] [CrossRef]
Time/min | Liquid B Composition in the Mobile Phase |
---|---|
0–0.5 min | 5 B% |
0.6–7 min | 5–100% B |
7–8 min | 100% B |
8–8.1 min | 100–5% B |
8.1–10 min | 5% B |
Primer Name | Forward (5′–3′) | Reverse (5′–3′) |
---|---|---|
ENSRNOG00000017828 | TGTGCCAGGACAACATCATTAGC | TAGCCGTGGTCGTCTGCGTAC |
ENSRNOG00000000239 | AGATGAACAGAAACCAACCC | AGTCCACCCATTTCAGCACAGTTC |
ENSRNOG00000050647 | CAGGTGAACTACAAGGGCGAGAAC | AGTAGGCGGGCACGGTGATC |
ENSRNOG00000021027 | CACCGCTTCTCAGAGGAGGAATTG | TCGACCTCTTGGCTGCTTCATTG |
ENSRNOG00000016275 | GTCAGATTGGCAGGGATCAGCAG | ATATCAGTCCAGCGAGGCAGAGG |
ENSRNOG00000047503 | TACTGGAGCAAGTTCACTGATAAG | GGAGGCAGCAGGATAGATGG |
Slc27a2 | TACTGGAGCAAGTTCACTGATAAG | GTAGCAGAGACTTGGCACGGATG |
Fabp1 | CCAGAAAGGGAAGGACATCAAGGG | TGGTCTCCAGTTCGCACTCCTC |
Apoc3 | GCCCTGAGGACCAACTAACAACAC | TTCGGAGGCAGCAGGATAGATGG |
Lpl | GATTTACACGGAGGTGGACATCGG | ACCAGTCTGACCAGCGGAAGTAG |
β-Actin | CTGAGAGGGAAATCGTGCGTGAC | AGGAAGAGGATGCGGCAGTGG |
Pathway ID | Pathway Name |
---|---|
map01210 | 2-Oxocarboxylic acid metabolism |
map00140 | Steroid hormone biosynthesis |
map01523 | Antifolate resistance |
map04913 | Ovarian steroidogenesis |
map05200 | Pathways in cancer |
map05215 | Prostate cancer |
map04726 | Serotonergic synapse |
map00590 | Arachidonic acid metabolism |
map03320 | PPAR signaling pathway |
map00061 | Fatty acid biosynthesis |
map00071 | Fatty acid degradation |
map01040 | Biosynthesis of unsaturated fatty acids |
map00591 | Linoleic acid metabolism |
Pathway ID | Pathway Name |
---|---|
map00140 | Steroid hormone biosynthesis |
map01523 | Antifolate resistance |
map05200 | Pathways in cancer |
map04726 | Serotonergic synapse |
map00590 | Arachidonic acid metabolism |
map03320 | PPAR signaling pathway |
map00591 | Linoleic acid metabolism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Shi, X.; Gao, Z.; Li, R.; Tian, J.; Cao, X.; Yang, B.; Zhao, S.; Yang, Y. Acupoint Catgut Embedding Improves Lipid Metabolism in Exercise-Induced Fatigue Rats via the PPAR Signaling Pathway. Animals 2023, 13, 558. https://doi.org/10.3390/ani13040558
Song Y, Shi X, Gao Z, Li R, Tian J, Cao X, Yang B, Zhao S, Yang Y. Acupoint Catgut Embedding Improves Lipid Metabolism in Exercise-Induced Fatigue Rats via the PPAR Signaling Pathway. Animals. 2023; 13(4):558. https://doi.org/10.3390/ani13040558
Chicago/Turabian StyleSong, Yue, Xiaoyu Shi, Zhenzhen Gao, Ran Li, Jiamin Tian, Xiaodong Cao, Bin Yang, Shihua Zhao, and Ying Yang. 2023. "Acupoint Catgut Embedding Improves Lipid Metabolism in Exercise-Induced Fatigue Rats via the PPAR Signaling Pathway" Animals 13, no. 4: 558. https://doi.org/10.3390/ani13040558
APA StyleSong, Y., Shi, X., Gao, Z., Li, R., Tian, J., Cao, X., Yang, B., Zhao, S., & Yang, Y. (2023). Acupoint Catgut Embedding Improves Lipid Metabolism in Exercise-Induced Fatigue Rats via the PPAR Signaling Pathway. Animals, 13(4), 558. https://doi.org/10.3390/ani13040558