Evaluation on the Growth Performance, Nutrient Digestibility, Faecal Microbiota, Noxious Gas Emission, and Faecal Score on Weaning Pigs Supplement with and without Probiotics Complex Supplementation in Different Level of Zinc Oxide
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Source of Probiotics
2.2. Experimental Design, Animals and Housing
2.3. Growth Performance and Nutrient Digestibility
2.4. Statistical Analyses
3. Results
3.1. Growth Performance and Nutrient Digestibility
3.2. Fecal Microbiota and Fecal Gas Emissions
3.3. Fecal Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lalles, J.P.; Bosi, P.; Smidt, H.; Stokes, C.R. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc. 2007, 66, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Konstantinov, S.R.; Awati, A.A.; Williams, B.A.; Miller, B.G.; Jones, P.; Stokes, C.R.; Akkermans, A.D.L.; Smidt, H.; De Vos, W.M. Post-natal development of the porcine microbiota composition and activities. Environ. Microbiol. 2006, 8, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Yan, W.; Ma, Y.; Fang, J. The impact of probiotics on gut health via alternation of immune status of monogastric animals. Anim. Nutr. 2021, 7, 24–30. [Google Scholar] [CrossRef]
- Hötzel, M.J.; De Souza, G.P.; Dalla Costa, O.A.; Machado Filho, L.C.P. Disentangling the effects of weaning stressors on piglets’ behaviour and feed intake: Changing the housing and social environment. Appl. Anim. Behav. Sci. 2011, 135, 44–50. [Google Scholar] [CrossRef]
- Milani, N.C.; Sbardella, M.; Ikeda, N.Y.; Arno, A.; Mascarenhas, B.C.; Miyada, V.S. Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Anim. Feed Sci. Technol. 2017, 227, 13–23. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P. Efficacy of species-specific probiotic Pediococcus acidilactici FT28 on blood biochemical profile, carcass traits and physicochemical properties of meat in fattening pigs. Res. Vet. Sci. 2018, 117, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Do, K.H.; Byun, J.W.; Lee, W.K. Antimicrobial Resistance, Adhesin and Toxin Genes of Porcine Pathogenic Escherichia coli Following the Ban on Antibiotics as the Growth Promoters in Feed. Pak. Vet. J. 2021, 41, 519–523. [Google Scholar]
- Johanns, V.C.; Ghazisaeedi, F.; Epping, L.; Semmler, T.; Lübke-Becker, A.; Pfeifer, Y.; Bethe, A.; Eichhorn, I.; Merle, R.; Walther, B.; et al. Effects of a four-week high-dosage zinc oxide supplemented diet on commensal Escherichia coli of weaned pigs. Front. Microbiol. 2019, 10, 2734. [Google Scholar] [CrossRef] [Green Version]
- Sherif, A.H.; Abdelsalam, M.; Ali, N.G.; Mahrous, K.F. Zinc Oxide Nanoparticles Boost the Immune Responses in Oreochromis niloticus and Improve Disease Resistance to Aeromonas hydrophila Infection. Biol. Trace Elem. Res. 2022, 201, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Buff, C.E.; Bollinger, D.W.; Ellersieck, M.R.; Brommelsiek, W.A.; Veum, T.L. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. J. Anim. Sci. 2005, 83, 2380–2386. [Google Scholar] [CrossRef] [PubMed]
- Hölzel, C.S.; Müller, C.; Harms, K.S.; Mikolajewski, S.; Schäfer, S.; Schwaiger, K.; Bauer, J. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance. Environ. Res. 2012, 113, 21–27. [Google Scholar] [CrossRef]
- Bednorz, C.; Oelgeschläger, K.; Kinnemann, B.; Hartmann, S.; Neumann, K.; Pieper, R.; Bethe, A.; Semmler, T.; Tedin, K.; Schierack, P.; et al. The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. Int. J. Med. Microbiol. 2013, 303, 396–403. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1334/2003 of 25 July 2003 amending the conditions for authorisation of a number of additives in feedingstuffs belonging to the group of trace elements. Off. J. Eur. Union 2003, 187, 11. [Google Scholar]
- Starke, I.C.; Pieper, R.; Neumann, K.; Zentek, J.; Vahjen, W. The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiol. Ecol. 2014, 87, 416–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO—Food and Agriculture Organization of the United Nations. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; FAO: Rome, Italy, 2001. [Google Scholar]
- Dong, X.; Zhang, N.; Zhou, M.; Tu, Y.; Deng, K.; Diao, Q. Effects of dietary probiotics on growth performance, faecal microbiota and serum profiles in weaned piglets. Anim. Prod. Sci. 2014, 54, 616–621. [Google Scholar] [CrossRef]
- Jørgensen, J.N.; Laguna, J.S.; Millán, C.; Casabuena, O.; Gracia, M.I. Effects of a Bacillus-based probiotic and dietary energy content on the performance and nutrient digestibility of wean to finish pigs. Anim. Feed Sci. Technol. 2016, 221, 54–61. [Google Scholar] [CrossRef]
- Zhaxi, Y.; Meng, X.; Wang, W.; Wang, L.; He, Z.; Zhang, X.; Pu, W. Duan-nai-An, A Yeast probiotic, improves intestinal Mucosa integrity and immune function in Weaned piglets. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, B.; Li, T.; Kim, I.H. Effects of supplementing growing-finishing pig diets with Bacillus spp. probiotic on growth performance and meat-carcass grade qualitytraits. Rev. Bras. De Zootec. 2016, 45, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Lan, R.; Kim, I.H. Effects of Bacillus licheniformis and Bacillus subtilis complex on growth performance and faecal noxious gas emissions in growing-finishing pigs. J. Sci. Food Agric. 2019, 99, 1554–1560. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Ji, H.F.; Wang, S.X.; Liu, H.; Wang, J.; Wang, Y.M. In vitro characterisation of two Lactobacillus strains and evaluation of their suitability as probiotics for growing-finishing pigs. Anim. Prod. Sci. 2019, 59, 1537–1545. [Google Scholar] [CrossRef]
- Zhang, P.; Yan, T.; Wang, X.; Kuang, S.; Xiao, Y.; Lu, W.; Bi, D. Probiotic mixture ameliorates heat stress of laying hens by enhancing intestinal barrier function and improving gut microbiota. Ital. J. Anim. Sci. 2017, 16, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Devi, S.; Park, J.; Kim, I. Effects of complex probiotic supplementation in growing pig diets with and without palm kernel expellers on growth performance, nutrient digestibility, blood parameters, fecal microbial shedding and noxious gas emission. Anim. Sci. J. 2018, 89, 552–560. [Google Scholar] [CrossRef]
- Lan, R.; Tran, H.; Kim, I. Effects of probiotic supplementation in different nutrient density diets on growth performance, nutrient digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pig. J. Sci. Food Agric. 2017, 97, 1335–1341. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Research Council Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Williams, C.H.; David, D.J.; Iismaa, O. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci. 1962, 59, 381–385. [Google Scholar] [CrossRef]
- Sun, H.Y.; Kim, I.H. Effect of yeast culture (Saccharomyces cerevisiae) and garlic (Allium sativum) product mixture on growth performance, nutrient digestibility, faecal microflora, faecal noxious-gas emission and meat quality in finishing pigs. Anim. Prod. Sci. 2020, 60, 1911–1917. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janczyk, P.; Büsing, K.; Dobenecker, B.; Nöckler, K.; Zeyner, A. Effect of high dietary zinc oxide on the caecal and faecal short-chain fatty acids and tissue zinc and copper concentration in pigs is reversible after withdrawal of the high zinc oxide from the diet. J. Anim. Physiol. Anim. Nutr. 2015, 99, 13–22. [Google Scholar] [CrossRef]
- Sun, Y.B.; Xia, T.; Wu, H.; Zhang, W.J.; Zhu, Y.H.; Xue, J.X.; He, D.T.; Zhang, L.Y. Effects of nano zinc oxide as an alternative to pharmacological dose of zinc oxide on growth performance, diarrhea, immune responses, and intestinal microflora profile in weaned piglets. Anim. Feed Sci. Technol. 2019, 258, 114312. [Google Scholar] [CrossRef]
- Xiang, Q.; Wu, X.; Pan, Y.; Wang, L.; Cui, C.; Guo, Y.; Zhu, L.; Peng, J.; Wei, H. Early-Life Intervention Using Fecal Microbiota Combined with Probiotics Promotes Gut Microbiota Maturation, Regulates Immune System Development, and Alleviates Weaning Stress in Piglets. Int. J. Mol. Sci. 2020, 21, 503. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Tao, F.; Hu, Y.; Li, Z.; Zhang, Y.; Deng, B. Positive effects of a Clostridium butyricum-based compound probiotic on growth performance, immune responses, intestinal morphology, hypothalamic neurotransmitters, and colonic microbiota in weaned piglets. Food Funct. 2019, 10, 2926–2934. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xu, Z.; Yu, G.; Liu, W.; Zhou, Q.; Yang, D.; Li, J.; Zhang, Y.; Xue, C.; Cao, Y. A newly isolated Bacillus subtilis strain named WS-1 inhibited diarrhea and death caused by pathogenic Escherichia coli in newborn piglets. Front. Microbiol. 2019, 10, 1248. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, W.; Blaine, A.; Kane, S.T.; Zijlstra, R.T.; Gänzle, M.G. Impact of probiotic Lactobacillus sp. on autochthonous lactobacilli in weaned piglets. J. Appl. Microbiol. 2019, 126, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Satessa, G.D.; Kjeldsen, N.J.; Mansouryar, M.; Hansen, H.H.; Bache, J.K.; Nielsen, M.O. Effects of alternative feed additives to medicinal zinc oxide on productivity, diarrhoea incidence and gut development in weaned piglets. Animal 2020, 14, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Menegat, M.B.; DeRouchey, J.M.; Woodworth, J.C.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S. Effects of oral administration of Bacillus subtilis C-3102 to nursing piglets on preweaning growth performance, fecal consistency, and fecal microbes. J. Swine Health Prod. 2020, 28, 12–20. [Google Scholar]
- Nguyen, D.H.; Nyachoti, C.M.; Kim, I.H. Evaluation of effect of probiotics mixture supplementation on growth performance, nutrient digestibility, faecal bacterial enumeration, and noxious gas emission in weaning pigs. Ital. J. Anim. Sci. 2019, 18, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Min, Y.; Choi, Y.; Choe, J.; Kim, Y.; Jeong, Y.; Kim, D.; Kim, J.; Jung, H.; Song, M. Effects of dietary mixture of protease and probiotics on growth performance, blood constituents, and carcass characteristics of growing-finishing pigs. J. Anim. Sci. Technol. 2019, 61, 272. [Google Scholar] [CrossRef] [Green Version]
- Carlson, D.; Sehested, J.; Feng, Z.; Poulsen, H.D. Serosal zinc attenuate serotonin and vasoactive intestinal peptide induced secretion in piglet small intestinal epithelium in vitro. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 149, 51–58. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Kim, Y.M.; Lee, K.Y.; Kim, I.H. Use of protected zinc oxide in lower doses in weaned pigs in substitution for the conventional high dose zinc oxide. Anim. Feed Sci. Technol. 2018, 240, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Cho, J.H.; Chen, Y.J.; Yoo, J.S.; Huang, Y.; Kim, H.J.; Kim, I.H. The effect of probiotic BioPlus 2B® on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs. Livest. Sci. 2009, 120, 35–42. [Google Scholar] [CrossRef]
- Yu, H.F.; Wang, A.N.; Li, X.J.; Qiao, S.Y. Effect of viable Lactobacillus fermentum on the growth performance, nutrient digestibility and immunity of weaned pigs. J. Anim. Feed Sci. 2008, 17, 61. [Google Scholar] [CrossRef]
- O'Shea, C.J.; Sweeney, T.; Bahar, B.; Ryan, M.T.; Thornton, K.; O'Doherty, J.V. Indices of gastrointestinal fermentation and manure emissions of growing-finishing pigs as influenced through singular or combined consumption of Lactobacillus plantarum and inulin. J. Anim. Sci. 2012, 90, 3848–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, R.X.; Lee, S.I.; Kim, I.H. Effects of multistrain probiotics on growth performance, nutrient digestibility, blood profiles, faecal microbial shedding, faecal score and noxious gas emission in weaning pigs. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1130–1138. [Google Scholar] [CrossRef]
- Li, M.Z.; Huang, J.T.; Tsai, Y.H.; Mao, S.Y.; Fu, C.M.; Lien, T.F. Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Anim. Sci. J. 2016, 87, 1379–1385. [Google Scholar] [CrossRef]
- Yousefi, B.; Eslami, M.; Ghasemian, A.; Kokhaei, P.; Salek Farrokhi, A.; Darabi, N. Probiotics importance and their immunomodulatory properties. J. Cell. Physiol. 2019, 234, 8008–8018. [Google Scholar] [CrossRef] [PubMed]
- Oelschlaeger, T.A. Mechanisms of probiotic actions–a review. Int. J. Med. Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef]
- Metzler, B.; Bauer, E.; Mosenthin, R. Microflora management in the gastrointestinal tract of piglets. Asian Australas. J. Anim. Sci. 2005, 18, 1353–1362. [Google Scholar] [CrossRef]
- Hu, Y.; Dun, Y.; Li, S.; Zhao, S.; Peng, N.; Liang, Y. Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets. Asian Australas. J. Anim. Sci. 2014, 27, 1131. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Lee, S.I.; Kim, I.H. Inclusion of dietary multi-species probiotic on growth performance, nutrient digestibility, meat quality traits, faecal microbiota and diarrhoea score in growing–finishing pigs. Ital. J. Anim. Sci. 2018, 17, 100–106. [Google Scholar] [CrossRef]
- Ou, D.; Li, D.; Cao, Y.; Li, X.; Yin, J.; Qiao, S.; Wu, G. Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J. Nutr. Biochem. 2007, 18, 820–826. [Google Scholar] [CrossRef]
- Pan, L.; Zhao, P.F.; Ma, X.K.; Shang, Q.H.; Xu, Y.T.; Long, S.F.; Wu, Y.; Yuan, F.M.; Piao, X.S. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics. J. Anim. Sci. 2017, 95, 2627–2639. [Google Scholar]
- Lesschen, J.P.; Van den Berg, M.; Westhoek, H.J.; Witzke, H.P.; Oenema, O. Greenhouse gas emission profiles of European livestock sectors. Anim. Feed Sci. Technol. 2011, 166, 16–28. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Kim, I.H. Protected Organic Acids Improved Growth Performance, Nutrient Digestibility, and Decreased Gas Emission in Broilers. Animals 2020, 10, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.F.; Kim, I.H. Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult. Sci. 2014, 93, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Vahjen, W.; Pieper, R.; Zentek, J. Increased dietary zinc oxide changes the bacterial core and enterobacterial composition in the ileum of piglets. J. Anim. Sci. 2011, 89, 2430–2439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Phase1 | Phase2 | Phase3 | |||
---|---|---|---|---|---|---|
High ZnO | Low ZnO | High ZnO | Low ZnO | High ZnO | Low ZnO | |
Ingredients (%) | ||||||
Corn | 39.32 | 40.04 | 51.67 | 52.39 | 58.48 | 59.18 |
Soybean meal | 16.22 | 16.10 | 16.74 | 16.62 | 22.60 | 22.48 |
Fermented soybean meal | 5.00 | 5.00 | 4.00 | 4.00 | 3.00 | 3.00 |
Spray dried plasma protein | 6.00 | 6.00 | 3.00 | 3.00 | - | - |
Tallow | 2.82 | 2.56 | 2.82 | 2.56 | 2.77 | 2.53 |
Lactose | 12.88 | 12.88 | 7.78 | 7.78 | 3.18 | 3.18 |
Sugar | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Whey protein | 11.00 | 11.00 | 7.00 | 7.00 | 3.00 | 3.00 |
Monocalcium phosphate | 0.88 | 0.88 | 1.08 | 1.08 | 1.15 | 1.15 |
Limestone | 1.18 | 1.18 | 1.20 | 1.20 | 1.22 | 1.22 |
Salt | 0.20 | 0.20 | 0.10 | 0.10 | 0.10 | 0.10 |
Methionine (99%) | 0.20 | 0.20 | 0.15 | 0.15 | 0.08 | 0.08 |
Lysine | 0.49 | 0.49 | 0.65 | 0.65 | 0.61 | 0.61 |
Mineral mix 1 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Vitamin mix 2 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Choline (25%) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Zinc oxide (80%) | 0.38 | 0.04 | 0.38 | 0.04 | 0.38 | 0.04 |
Calculated value | ||||||
Crude protein, % | 20.00 | 20.00 | 18.00 | 18.00 | 18.00 | 18.00 |
Metabolizable energy, kcal/kg | 3450 | 3450 | 3400 | 3400 | 3350 | 3350 |
Calcium, % | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
Phosphorus, % | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
Lysine, % | 1.60 | 1.60 | 1.50 | 1.50 | 1.40 | 1.40 |
Methionine, % | 0.48 | 0.48 | 0.40 | 0.40 | 0.35 | 0.35 |
Fat, % | 4.52 | 4.28 | 4.91 | 4.67 | 5.14 | 4.93 |
Zinc oxide, ppm | 3053 | 333 | 3054 | 334 | 3057 | 337 |
Items | −Pro | +Pro | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|---|
High ZnO | Low ZnO | High ZnO | Low ZnO | Pro | ZnO | Pro × ZnO | ||
BW, kg | ||||||||
initial | 6.55 | 6.55 | 6.55 | 6.55 | 0.20 | 0.998 | 0.998 | 0.998 |
finish | 26.39 | 25.71 | 26.74 | 25.93 | 0.34 | 0.412 | 0.035 | 0.853 |
D 1–7 | ||||||||
ADG, g | 166 | 166 | 162 | 169 | 3.95 | 0.860 | 0.355 | 0.651 |
ADFI, g | 200 | 203 | 202 | 205 | 5.94 | 0.946 | 0.559 | 0.516 |
G: F | 0.911 | 0.893 | 0.891 | 0.903 | 0.01 | 0.535 | 0.772 | 0.540 |
D 8–21 | ||||||||
ADG, g | 410 | 400 | 417 | 396 | 7.56 | 0.859 | 0.046 | 0.483 |
ADFI, g | 473 | 484 | 490 | 479 | 8.60 | 0.708 | 0.250 | 0.592 |
G: F | 0.838 | 0.841 | 0.842 | 0.831 | 0.01 | 0.316 | 0.064 | 0.716 |
D 22–42 | ||||||||
ADG, g | 604 | 592 | 624 | 612 | 10.07 | 0.241 | 0.025 | 1.000 |
ADFI, g | 840 | 843 | 849 | 854 | 8.84 | 0.654 | 0.230 | 0.911 |
G: F | 0.719 | 0.703 | 0.735 | 0.717 | 0.01 | 0.219 | 0.184 | 0.940 |
Overall | ||||||||
ADG, g | 461 | 459 | 474 | 464 | 7.21 | 0.359 | 0.019 | 0.826 |
ADFI, g | 611 | 616 | 619 | 621 | 6.01 | 0.650 | 0.223 | 0.650 |
G: F | 0.756 | 0.745 | 0.763 | 0.748 | 0.01 | 0.189 | 0.072 | 0.911 |
Nutrient digestibility, % | ||||||||
Dry matter | 81.47 | 80.67 | 82.40 | 81.14 | 0.81 | 0.778 | 0.214 | 0.398 |
Nitrogen | 78.87 | 78.56 | 79.74 | 78.74 | 0.66 | 0.501 | 0.403 | 0.654 |
Gross energy | 79.69 | 79.27 | 80.66 | 79.43 | 0.65 | 0.396 | 0.220 | 0.543 |
Items | −Pro | +Pro | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|---|
High ZnO | Low ZnO | High ZnO | Low ZnO | Pro | ZnO | Pro × ZnO | ||
E. coli (log10CFU/g) | 6.26 | 6.20 | 6.13 | 6.16 | 0.04 | 0.054 | 0.765 | 0.326 |
Lactobacillus (log10CFU/g) | 9.15 | 9.17 | 9.24 | 9.23 | 0.04 | 0.099 | 0.917 | 0.808 |
Gas emission, ppm | ||||||||
NH3 | 1.4 | 1.9 | 1.0 | 1.6 | 0.7 | 0.650 | 0.472 | 0.933 |
H2S | 1.9 | 2.3 | 1.6 | 3.0 | 0.7 | 0.780 | 0.221 | 0.446 |
Methyl mercaptans | 2.3 | 4.9 | 1.6 | 3.5 | 1.1 | 0.352 | 0.061 | 0.758 |
CO2 | 700 | 875 | 450 | 725 | 258 | 0.424 | 0.370 | 0.840 |
Acetic acid | 0.5 | 0.9 | 0.2 | 0.7 | 0.2 | 0.259 | 0.072 | 0.956 |
Items | −Pro | +Pro | SEM 2 | p-Value 4 | ||||
---|---|---|---|---|---|---|---|---|
High ZnO | Low ZnO | High ZnO | Low ZnO | Pro | ZnO | Pro × ZnO | ||
D 7 3 | 3.61 | 3.66 | 3.59 | 3.61 | 0.06 | 0.543 | 0.516 | 0.760 |
D 21 3 | 3.43 | 3.45 | 3.39 | 3.46 | 0.11 | 0.922 | 0.704 | 0.819 |
D 42 3 | 3.21 | 3.25 | 3.21 | 3.27 | 0.07 | 0.908 | 0.543 | 0.908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yu, S.-J.; Kim, I.-H. Evaluation on the Growth Performance, Nutrient Digestibility, Faecal Microbiota, Noxious Gas Emission, and Faecal Score on Weaning Pigs Supplement with and without Probiotics Complex Supplementation in Different Level of Zinc Oxide. Animals 2023, 13, 381. https://doi.org/10.3390/ani13030381
Wang H, Yu S-J, Kim I-H. Evaluation on the Growth Performance, Nutrient Digestibility, Faecal Microbiota, Noxious Gas Emission, and Faecal Score on Weaning Pigs Supplement with and without Probiotics Complex Supplementation in Different Level of Zinc Oxide. Animals. 2023; 13(3):381. https://doi.org/10.3390/ani13030381
Chicago/Turabian StyleWang, Huan, Shi-Jun Yu, and In-Ho Kim. 2023. "Evaluation on the Growth Performance, Nutrient Digestibility, Faecal Microbiota, Noxious Gas Emission, and Faecal Score on Weaning Pigs Supplement with and without Probiotics Complex Supplementation in Different Level of Zinc Oxide" Animals 13, no. 3: 381. https://doi.org/10.3390/ani13030381
APA StyleWang, H., Yu, S.-J., & Kim, I.-H. (2023). Evaluation on the Growth Performance, Nutrient Digestibility, Faecal Microbiota, Noxious Gas Emission, and Faecal Score on Weaning Pigs Supplement with and without Probiotics Complex Supplementation in Different Level of Zinc Oxide. Animals, 13(3), 381. https://doi.org/10.3390/ani13030381