Restoring Activity of Milk Thistle (Silybum marianum L.) on Serum Biochemical Parameters, Oxidative Status, Immunity, and Performance in Poultry and Other Animal Species, Poisoned by Mycotoxins: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Research Methodology
3. Results from Databases
3.1. Protective Effects of SIL Supplementation in Poultry against MyT Anatomopathological and Cyto-Histological Modification
3.2. SIL Effects on Serum-Biochemical Parameters on MyT-Poisoned Poultry
3.3. Influence of SIL on Serum and Tissues Antioxidant Parameters in MyT-Poisoned Poultry Species
3.4. Influence of SIL on Immunological Parameters in MyT-Poisoned Poultry Species
3.5. Influence of SIL on Performance and Products Quality Parameters in MyT-Poisoned Poultry Species
3.6. Influence of SIL on MyT-Poisoned Livestock
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitt, J.I. Improving Public Health through Mycotoxin Control; International Agency for Research on Cancer: Lyon, France, 2012; ISBN 978-92-832-2214-9. [Google Scholar]
- Filazi, A.; Yurdakok-Dikmen, B.; Kuzukiran, O.; Sireli, U.T. Mycotoxins in Poultry. In Poultry Science; Manafi, M., Ed.; InTech: Singapore, 2017; ISBN 978-953-51-2945-5. [Google Scholar]
- Battilani, P.; Palumbo, R.; Giorni, P.; Dall’Asta, C.; Dellafiora, L.; Gkrillas, A.; Toscano, P.; Crisci, A.; Brera, C.; De Santis, B.; et al. Mycotoxin Mixtures in Food and Feed: Holistic, Innovative, Flexible Risk Assessment Modelling Approach. EFS3 2020, 17, 1757E. [Google Scholar] [CrossRef] [Green Version]
- Jamil, M.; Khatoon, A.; Saleemi, M.K.; Aleem, M.T.; Bhatti, S.A.; Abidin, Z.U.; Imran, M.; Naseem, M.N. Mycotoxins prevalence in poultry industry and its preventive strategies. Int. J. Vet. Sci. 2022, 2, 190–200. [Google Scholar]
- Dutta, T.K.; Das, P. Isolation of Aflatoxigenic Strains of Aspergillus and Detection of Aflatoxin B1 from Feeds in India. Mycopathologia 2022, 151, 29–33. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Statement on the Establishment of Guidelines for the Assessment of Additives from the Functional Group ‘substances for Reduction of the Contamination of Feed by Mycotoxins. EFSA J. 2010, 8, 1693. [Google Scholar] [CrossRef]
- Ayofemi Olalekan Adeyeye, S. Aflatoxigenic Fungi and Mycotoxins in Food: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Bertero, A.; Fossati, P.; Tedesco, D.E.A.; Caloni, F. Beauvericin and Enniatins: In Vitro Intestinal Effects. Toxins 2020, 12, 686. [Google Scholar] [CrossRef] [PubMed]
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Zavadil, J.; Gunter, M.J.; De Saeger, S.; De Boevre, M.; et al. Mycotoxin Exposure and Human Cancer Risk: A Systematic Review of Epidemiological Studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Agents Classified by the IARC Monographs. IARC Monogr. 2022, 1–132. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 7 September 2022).
- Rawal, S.; Kim, J.E.; Coulombe, R. Aflatoxin B1 in Poultry: Toxicology, Metabolism and Prevention. Res. Vet. Sci. 2010, 89, 325–331. [Google Scholar] [CrossRef]
- Hanvi, D.M.; Lawson-Evi, P.; De Boevre, M.; Goto, C.E.; De Saeger, S.; Eklu-Gadegbeku, K. Natural Occurrence of Mycotoxins in Maize and Sorghum in Togo. Mycotoxin Res. 2019, 35, 321–327. [Google Scholar] [CrossRef]
- Monson, M.; Coulombe, R.; Reed, K. Aflatoxicosis: Lessons from Toxicity and Responses to Aflatoxin B1 in Poultry. Agriculture 2015, 5, 742–777. [Google Scholar] [CrossRef] [Green Version]
- Fink-Gremmels, J. Natural and Industrial Contaminants in Animal Feeds: Emerging Substances. Annu. Rev. Food Sci. Technol. 2002, 1, 63–70. [Google Scholar]
- Sklan, D.; Klipper, E.; Friedman, A.; Shelly, M.; Makovsky, B. The Effect of Chronic Feeding of Diacetoxyscirpenol, T-2 Toxin, and Aflatoxin on Performance, Health, and Antibody Production in Chicks. JAPR 2001, 10, 79–85. [Google Scholar] [CrossRef]
- Alhidary, I.A.; Rehman, Z.; Khan, R.U.; Tahir, M. Anti-Aflatoxin Activities of Milk Thistle (Silybum marianum) in Broiler. World Poult. Sci. J. 2017, 73, 559–566. [Google Scholar] [CrossRef]
- Abidin, Z.; Khatoon, A.; Numan, M. Mycotoxins in Broilers: Pathological Alterations Induced by Aflatoxins and Ochratoxins, Diagnosis and Determination, Treatment and Control of Mycotoxicosis. World Poult. Sci. J. 2011, 67, 485–496. [Google Scholar] [CrossRef]
- Kumar, C.B.; Reddy, B.V.; Gloridoss, R.G.; Prabhu, T.; Suresh, B.; Kumar, S.N. Amelioration of Aflatoxicosis through a Bio-Technologically Derived Aflatoxin Degrading Commercial Product in Broilers. Pak. Vet. J. 2015, 35, 217–221. [Google Scholar]
- Sherif, K.; Hasan, R.; El-Gogary, M.; Ismail, R. Effectiveness of Some Feed Additives for Detoxification of Aflatoxin B1 in Laying Hens. J. Anim. Poult. Prod. 2018, 9, 345–356. [Google Scholar]
- Tahir, M.A.; Abbas, A.; Muneeb, M.; Bilal, R.M.; Hussain, K.; Abdel-Moneim, A.-M.E.; Farag, M.R.; Dhama, K.; Elnesr, S.S.; Alagawany, M. Ochratoxicosis in Poultry: Occurrence, Environmental Factors, Pathological Alterations and Amelioration Strategies. Worlds Poult. Sci. J. 2022, 78, 727–749. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [Green Version]
- Tsiouris, V.; Tassis, P.; Raj, J.; Mantzios, T.; Kiskinis, K.; Vasiljević, M.; Delić, N.; Petridou, E.; Brellou, G.D.; Polizopoulou, Z.; et al. Investigation of a Novel Multicomponent Mycotoxin Detoxifying Agent in Amelioration of Mycotoxicosis Induced by Aflatoxin-B1 and Ochratoxin A in Broiler Chicks. Toxins 2021, 13, 367. [Google Scholar] [CrossRef]
- Khoobani, M.; Hasheminezhad, S.-H.; Javandel, F.; Nosrati, M.; Seidavi, A.; Kadim, I.T.; Laudadio, V.; Tufarelli, V. Effects of Dietary Chicory (Chicorium intybus L.) and Probiotic Blend as Natural Feed Additives on Performance Traits, Blood Biochemistry, and Gut Microbiota of Broiler Chickens. Antibiotics 2019, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Varalakshmi, A.R.; Josephine, A.; Priya, R.K.; Revathi, K. Ameliorating the Effect of Mycotoxins in Poultry Feeds Using Plant Extracts. JPRI 2021, 33, 334–348. [Google Scholar] [CrossRef]
- European Pharmacopoeia. Milk Thistle Fruit, 9th ed.; Council Of Europe: Strasbourg, France, 1980. [Google Scholar]
- Karkanis, A.; Bilalis, D.; Efthimiadou, A. Cultivation of Milk Thistle (Silybum marianum L. Gaertn.), a Medicinal Weed. Ind. Crops Prod. 2011, 34, 825–830. [Google Scholar] [CrossRef]
- Saller, R.; Melzer, J.; Reichling, J.; Brignoli, R.; Meier, R. An Updated Systematic Review of the Pharmacology of Silymarin. Complement. Med. Res. 2007, 14, 70–80. [Google Scholar] [CrossRef]
- Ferenci, P. Silymarin in the Treatment of Liver Diseases: What Is the Clinical Evidence?: Silymarin in the Treatment of Liver Diseases. Clin. Liver Dis. 2016, 7, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, D.E.A.; Guerrini, A. Use of Milk Thistle in Farm and Companion Animals: A Review. Planta Med. 2022, 88, 1–24. [Google Scholar]
- Karimi, G.; Vahabzadeh, M.; Lari, P.; Rashedinia, M.; Moshiri, M. “Silymarin”, a Promising Pharmacological Agent for Treatment of Diseases. Iran J. Basic Med. Sci. 2011, 14, 308–317. [Google Scholar]
- Romanucci, V.; Di Fabio, G.; Zarrelli, A. A New Class of Synthetic Flavonolignan-Like Dimers: Still Few Molecules, but with Attractive Properties. Molecules 2018, 24, 108. [Google Scholar] [CrossRef] [Green Version]
- Adetuyi, B.O.; Omolabi, F.K.; Olajide, P.A.; Oloke, J.K. Pharmacological, Biochemical and Therapeutic Potential of Milk Thistle (Silymarin): A Review. WNOFNS 2021, 37, 75–9118. [Google Scholar]
- Bousserouel, S.; Bour, G.; Kauntz, H.; Gossé, F.; Marescaux, J.; Raul, F. Silibinin Inhibits Tumor Growth in a Murine Orthotopic Hepatocarcinoma Model and Activates the TRAIL Apoptotic Signaling Pathway. Anticancer Res. 2012, 32, 2455–2462. [Google Scholar]
- Pradhan, S.C.; Girish, C. Hepatoprotective Herbal Drug, Silymarin from Experimental Pharmacology to Clinical Medicine. Indian J. Med. Res. 2006, 124, 491–504. [Google Scholar]
- Juráňová, J.; Aury-Landas, J.; Boumediene, K.; Baugé, C.; Biedermann, D.; Ulrichová, J.; Franková, J. Modulation of Skin Inflammatory Response by Active Components of Silymarin. Molecules 2018, 24, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saller, R.; Brignoli, R.; Melzer, J.; Meier, R. An Updated Systematic Review with Meta-Analysis for the Clinical Evidence of Silymarin. Forsch Komplementärmed 2008, 15, 9–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaeil, N.; Anaraki, S.B.; Gharagozloo, M.; Moayedi, B. Silymarin Impacts on Immune System as an Immunomodulator: One Key for Many Locks. Int. Immunopharmacol. 2017, 50, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Jancova, P.; Anzenbacherova, E.; Papouskova, B.; Lemr, K.; Luzna, P.; Veinlichova, A.; Anzenbacher, P.; Simanek, V. Silybin is metabolized by cytochrome P450 2C8 in vitro. Drug Metab. Dispos. 2007, 35, 2035–2039. [Google Scholar] [CrossRef] [Green Version]
- Baer-Dubowska, W.; Szaefer, H.; Krajka-Kuzniak, V. Inhibition of murine hepatic cytochrome P450 activities by natural and synthetic phenolic compounds. Xenobiotica 1998, 28, 735–743. [Google Scholar] [CrossRef]
- Tedesco, D.; Steidler, S.; Galletti, S.; Tameni, M.; Sonzogni, O.; Ravarotto, L. Efficacy of Silymarin-Phospholipid Complex in Reducing the Toxicity of Aflatoxin B1 in Broiler Chicks. Poult. Sci. 2004, 83, 1839–1843. [Google Scholar] [CrossRef]
- Girolami, F.; Barbarossa, A.; Badino, P.; Ghadiri, S.; Cavallini, D.; Zaghini, A.; Nebbia, C. Effects of Turmeric Powder on Aflatoxin M1 and Aflatoxicol Excretion in Milk from Dairy Cows Exposed to Aflatoxin B1 at the EU Maximum Tolerable Levels. Toxins 2022, 14, 430. [Google Scholar] [CrossRef]
- Campos, R.; Garrido, A.; Guerra, R.; Valenzuela, A. Silybin Dihemisuccinate Protects Against Glutathione Depletion and Lipid Peroxidation Induced by Acetaminophen on Rat Liver. Planta Med. 1989, 55, 417–419. [Google Scholar] [CrossRef]
- Fani-Makki, O.; Omidi, A. In Vitro Assessment of Milk Thistle Seeds as a Natural Anti-Aflatoxin B1. Acta Vet Eurasia 2020, 44, 1–5. [Google Scholar] [CrossRef]
- Chand, N.; Muhammad, D.; Durrani, F.R.; Qureshi, M.S.; Ullah, S.S. Protective Effects of Milk Thistle (Silybum marianum) against Aflatoxin B1 in Broiler Chicks. Asian Australas. J. Anim. Sci. 2011, 24, 1011–1018. [Google Scholar] [CrossRef]
- Muhammad, D.; Chand, N.; Khan, S.; Sultan, A.; Mushtaq, M. Hepatoprotective Role of Milk Thistle (Silybum marianum) in Meat Type Chicken Fed Aflatoxin B1 Contaminated Feed. Pak. Vet. J. 2012, 32, 443–446. [Google Scholar]
- Jahanian, E.; Mahdavi, A.H.; Asgary, S.; Jahanian, R. Effects of Dietary Inclusion of Silymarin on Performance, Intestinal Morphology and Ileal Bacterial Count in Aflatoxin-Challenged Broiler Chicks. J. Anim. Physiol. Anim. Nutr. 2017, 101, e43–e54. [Google Scholar] [CrossRef]
- Stoev, S.D.; Mircheva, T.; Denev, S.; Chobanova, S.; Ivanov, V. The Protective Effect of Silymarin against Ochratoxin A Induced Histopathological and Biochemical Changes in Chicks. J. Adv. Vet. Res. 2021, 11, 1–8. [Google Scholar]
- Armanini, E.H.; Boiago, M.M.; Cécere, B.G.d.O.; Oliveira, P.V.; Teixeira, C.J.S.; Strapazzon, J.V.; Bottari, N.B.; Silva, A.D.; Fracasso, M.; Vendruscolo, R.G.; et al. Protective Effects of Silymarin in Broiler Feed Contaminated by Mycotoxins: Growth Performance, Meat Antioxidant Status, and Fatty Acid Profiles. Trop. Anim. Health Prod. 2021, 53, 442. [Google Scholar] [CrossRef] [PubMed]
- Fani Makki, O.; Afzali, N.; Omidi, A. Effect of Milk Thistle on the Immune System, Intestinal related variables, appearance and Mortality of Broilers Contaminated with Aflatoxin B1. J. Her. Drug. 2013, 1, 33–38. [Google Scholar]
- Hasheminejad, S.A.; Fani Makki, O.; Ansari Nik, H.; Ebrahimzadeh, A. The Effects of Aflatoxin B1 and Silymarin-Containing Milk Thistle Seeds on Ileal Morphology and Digestibility in Broiler Chickens. Vet. Sci. Develop. 2015, 5, 6017. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, F.; Tian, J.; Guo, X.; An, R. Protective Effects of Compound Ammonium Glycyrrhizin, L-arginine, Silymarin and Glucurolactone against Liver Damage Induced by Ochratoxin A in Primary Chicken Hepatocytes. Mol. Med. Rep. 2018, 18, 2551–2560. [Google Scholar] [CrossRef] [Green Version]
- Amiridumari, H.; Sarir, H.; Afzali, N.; Fani-Makki, O. Effects of milk thistle seed against aflatoxin B1 in broiler model. J. Res. Med. Sci. 2013, 18, 786–790. [Google Scholar]
- Makki, O.F.; Omidi, A.; Afzali, N.; Sarir, H.; Frouzanmehr, M. Efficacy of Silybum marianum Seeds in Ameliorating the Toxic Effects of Aflatoxin B1 in Broilers. IJT 2014, 8, 977–982. [Google Scholar]
- Raei, H.; Najafi, R.; Torshizi, M.A.K.; Froushani, S.M.A.; Joogh, F.A.G. The Effect of Silybum marianu Seed, Thymus vulgaris, and Rosmarinus officinalis Powders in Alleviating the Risks of Aflatoxin B1 in Young Broiler Chicks. Ann. Anim. Sci. 2022, 22, 173–187. [Google Scholar] [CrossRef]
- Feshanghchi, M.; Baghban-Kanani, P.; Kashefi-Motlagh, B.; Adib, F.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Zangeronimo, M.G.; Swelum, A.A.; et al. Milk Thistle (Silybum marianum), Marine Algae (Spirulina platensis) and Toxin Binder Powders in the Diets of Broiler Chickens Exposed to Aflatoxin-B1: Growth Performance, Humoral Immune Response and Cecal Microbiota. Agriculture 2022, 12, 805. [Google Scholar] [CrossRef]
- Afshin, M.; Afzali, N.; Mojtahedi, M.; Mohammadi, A. Effects of milk thistle seeds, whole plant and extract on performance, carcass characteristics and some blood parameters of broiler chickens fed with aflatoxin B1 contaminated diet. J. Anim. Prod. 2017, 19, 2. [Google Scholar]
- Malekinejad, P.; Afzali, N.; Mohammadi, A.; Sarir, H. Protective Effects of Milk Thistle (Silybum marianum) Seeds and Sodium Bentonite in Ameliorating the Toxic Effects of Aflatoxin B1 in Broiler Chicks. Arch. Med. Lab. Sci. 2015, 1, 67–73. [Google Scholar]
- Denev, S.; Sotirov, L.; Chobanova, S.; Koynarski, T.; Ivanov, V.; Bozakova, N.; Stoev, S. Effect of Silymarin and Ochratoxin A on Humoral Natural Immunity of Broiler Chickens. J. Cent. Eur. Agric. 2020, 21, 492–498. [Google Scholar] [CrossRef]
- Bendowski, W.; Michalczuk, M.; Józwik, A.; Kareem, K.Y.; Łozicki, A.; Karwacki, J.; Bien, D. Using Milk Thistle (Silybum marianum) Extract to Improve the Welfare, Growth Performance and Meat Quality of Broiler Chicken. Animals 2022, 12, 1085. [Google Scholar] [CrossRef]
- Egresi, A.; Süle, K.; Szentmihályi, K.; Blázovics, A.; Fehér, E.; Hagymási, K.; Fébel, H. Impact of Milk Thistle (Silybum marianum) on the Mycotoxin Caused Redox-Homeostasis Imbalance of Ducks Liver. Toxicon 2020, 187, 181–187. [Google Scholar] [CrossRef]
- El-Sheshtawy, S.M.; El-Zoghby, A.F.; Shawky, N.A.; Samak, D.H. Aflatoxicosis in Pekin Duckling and the Effects of Treatments with Lycopene and Silymarin. Vet. World 2021, 14, 788–793. [Google Scholar] [CrossRef]
- Sakamoto, M.I.; Murakami, A.E.; Fernandes, A.M.; Ospina-Rojas, I.C.; Nunes, K.C.; Hirata, A.K. Performance and Serum Biochemical Profile of Japanese Quail Supplemented with Silymarin and Contaminated with Aflatoxin B1. Poult. Sci. 2018, 97, 159–166. [Google Scholar] [CrossRef]
- Khaleghipour, B.; Khosravinia, H.; Toghiyani, M.; Azarfar, A. Effects of Silymarin on Productive Performance, Liver Function and Serum Biochemical Profile in Broiler Japanese Quail Challenged with Dietary Aflatoxins. Ital. J. Anim. Sci. 2019, 18, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Youssef, S.F.; Sayed-ElAhl, R.M.H.; Mohamed, M.H.A.; El-Gabry, H.E.; Abd El-Halim, H.A.H.; Eshera, A.A. Supplementing Growing Quail Diets with Silymarin and Curcumin to Improve Productive Performance and Antioxidant Status and Alleviate Aflatoxin B1 Adverse Effects during the Summer Season. Egypt. J. Agric. Res. 2022, 100, 529–539. [Google Scholar] [CrossRef]
- Grizzle, J.; Hadley, T.L.; Rotstein, D.S.; Perrin, S.L.; Gerhardt, L.E.; Beam, J.D.; Saxton, A.M.; Jones, M.P.; Daniel, G.B. Effects of Dietary Milk Thistle on Blood Parameters, Liver Pathology, and Hepatobiliary Scintigraphy in White Carneaux Pigeons (Columba livia) Challenged with B1 Aflatoxin. J. Avian Med. Surg. 2009, 23, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Naseer, O.; Khan, J.A.; Khan, M.S.; Omer, M.O.; Chishti, G.A.; Sohail, M.L.; Saleem, M.U. Comparative Efficacy of Silymarin and Choline Chloride (Liver Tonics) in Preventing the Effects of Aflatoxin B1 in Bovine Calves. Pol. J. Vet. Sci. 2016, 19, 545–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedesco, D.; Tameni, M.; Steidler, S.; Galletti, S.; Pierro, F.D. Effect of Silymarin and Its Phospholipid Complex against AFM1 Excretion in an Organic Dairy Herd. Milchwissenschaft 2003, 58, 416–419. [Google Scholar]
- Marietto-Gonçalves, G.A.; Brito, M.B.; Fiorentin, E.L.; Tonin, A.A. Silymarin and Methionine Application on Treatment of Liver Chronic Diseases by Aflatoxicosis in Rabbit (Oryctolagus cuniculi)—Case Report. Comp. Clin. Pathol. 2017, 26, 719–722. [Google Scholar] [CrossRef]
- Koynarski, V.; Stoev, S.; Grozeva, N.; Mirtcheva, T.; Daskalov, H.; Mitev, J.; Mantle, P. Experimental Coccidiosis Provoked by Eimeria acervulina in Chicks Simultaneously Fed on Ochratoxin A Contaminated Diet. Res. Vet. Sci. 2007, 82, 225–231. [Google Scholar] [CrossRef]
- Gabal, M.A.; Azzam, A.H. Interaction of Aflatoxin in the Feed and Immunization against Selected Infectious Diseases in Poultry. II. Effect on One-day-old Layer Chicks Simultaneously Vaccinated against Newcastle Disease, Infectious Bronchitis and Infectious Bursal Disease. Avian Pathol. 1998, 27, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Corrier, D.E. Mycotoxicosis: Mechanism of immunosuppression. Vet. Immunol. Immunopathol. 1991, 30, 73–87. [Google Scholar] [CrossRef]
- Stewart, R.G.; Skeeles, J.K.; Wyatt, R.D.; Brown, J.; Page, R.K.; Russell, I.D.; Lukert, P.D. The Effect of Aflatoxin on Complement Activity in Broiler Chickens. Poult. Sci. 1985, 64, 616–619. [Google Scholar] [CrossRef]
- Zahoorul-Hassan; Zargham Khan, M.; Kashif Saleemi, M.; Khan, A.; Javed, I.; Hussain, A. Immunological Status of White Leghorn Chicks Hatched from Eggs Inoculated with Ochratoxin A (OTA). J. Immunotoxicol 2011, 8, 204–209. [Google Scholar] [CrossRef]
- Valtchev, I.; Koynarski, T.; Sotirov, L.; Nikolov, Y.; Petkov, P. Effect of Aflatoxin B1 on Moulard Duck’s Natural Immunity. Pak. Vet. J. 2015, 35, 67–70. [Google Scholar]
- Khatoon, A.; Zargham Khan, M.; Khan, A.; Saleemi, M.K.; Javed, I. Amelioration of Ochratoxin A-Induced Immunotoxic Effects by Silymarin and Vitamin E in White Leghorn Cockerels. J. Immunotoxicol. 2013, 10, 25–31. [Google Scholar] [CrossRef] [PubMed]
Animal | MT (Type and Dose) | My (Type, Dose, and Route) | Exposure (Time) | Effects | Reference |
---|---|---|---|---|---|
Broiler (14-day-old) | SIL-Indena 1 (phytosome complex of SIL+phospholipids in a molar ratio of 1:2): 600 mg/kg-BW via gavage | AFB1: 0.8 mg/kg/diet | 35 days | Performance AFB1: <*BW and FI. No difference in FCR in all groups. SIL group >**BW and FI. Biochemical parameters AFB1 group: <ALT. AFB1 + SIL group: no difference in ALT activity. Histopatology/organ lesions No change in liver weights in all groups. In AFB1-treated animals, the liver showed multifocal portal infiltration (mononucleates, granulocytes, and eosinophils) diffused in the parenchyma (portal areas), and necrosis. AFB1 + SIL group: <severe lesions. | [40] |
in vitro model of the stomach and intestinal tracts of chickens (Erlenmeyer flask) | Esterified MT seed 3: 125–250 mg | AFB1 (from A. flavus colture): 250–500 μg/kg | 37 °C for 3 h | Percentage of absorption ratio of AFB1 by MT seed at pH 4.5 to 6.5 Compared to respective positive control: At 250 µg/kg AFB1 only as a control: 0 At 500 µg/kg AFB1 only as a control: 0 At 125 mg of MT + 250 µg/kg AFB1: 30.14 ± 3.24 At 125 mg of MT+500 µg/kg AFB1: 26.15 ± 2.48 At 250 mg of MT + 250 µg/kg AFB1: 48.91 ± 3.69 At 250 mg of MT + 500 µg/kg AFB1: 41.39 ± 4.36 | [43] |
Broiler (1-day-old) | MT seed powder (MT): 10 g/kg/diet vs. TB (Mycoad): 3 g/kg/diet | Direct inoculation of A. flavus culture AFB1 producer in feed: 80–520 μg/kg/diet | 5 weeks | Performance In control and MyT + MT group: >BW. BWG did not differ between the group treated with MT or TB. MT group: >BWG, water intake; <FCR. MyT + MT group: <FCR. Immunological parameters MyT group: <ND, IB, IBD antibody titers. MyT + MT group: >ND, IB, IBD antibody titers compared also to MyT + TB group. Histopatology/organ lesions MyT group: <thymus and bursa weight but no differences in other groups. MyT + MT group: weight of bursa restored and high weight of spleen compared to other groups. | [44] |
Broiler (1-day-old) | MT dried seed: 10 g/kg/diet vs. TB (Mycoad): 3 g/kg/diet | AFB1 (from A. flavus colture): 80 µg/kg/diet (for 1 week) and 520 µg/kg/diet (for 4 weeks) | 5 weeks | Performance AFB1 group: <BWG, FI, and FCR. MT + AFB1: >BWG, and FI. In all treatment groups: >FCR. MT + AFB1 group: better FCR compared to the others and control group. Biochemical parameters AFB1 group: <total protein; >ALP, ALT, AST. MT and TB group: <ALP, ALT, AST; >total protein. Histopatology/organ lesions AFB1 group: pale, enlarged (swollen), yellow friable livers with pinpoint hemorrhages, swollen kidneys, and atrophy of the bursa and thymus. MT + AFB1 group: <lesions induced by AFB1. TB group: no appreciable modifications in the lesions. | [45] |
Broiler (7-day-old, male Ross 308) | SIL: 50–1000 ppm/kg/diet | AFB1 (from A. parasiticus): 0.5–2 ppm/kg/diet | 42 days | Performance AFB1 group: <DFI, DWG, and >FCR. SIL + AFB1 group: >DFI, DWG, and <FCR. Histopatology/organ lesions AFB1 group: >heart weight. AFB1 (2 ppm) group: <in villi height, VH:CD, villi surface area, apparent villi absorptive area, and muscular diameter in jejunal sections. AFB1 + SIL group: any influence on organs weight. SIL (500 ppm) + AFB1 group: <crypt depth and goblet cell count; >villi height and width, VH:CD, villi surface area, apparent villi absorptive area, and muscular diameter. SIL (1000 ppm) + AFB1 (0.5 ppm) group: mitigated the depressed villi height, and VH:CD. Meat/carcass characteristics AFB1 group: <carcass yield AFB1 + SIL group: >carcass yield. Microbiota AFB1 group: >E. coli, Salmonella, Klebsiella count. SIL (500 ppm) group: <E. coli, Salmonella, Klebsiella count, and total negative bacteria. SIL (1000 ppm) + AFB1 (0.5 ppm) group: <count of negative bacteria. | [46] |
Broiler (11-day-old, male Ross 308) | SIL (purity 60%): 1%/kg/diet | OTA (from A. ochraceus culture): 3 mg/kg/diet | 32 days (broiler age 42 days) | Biochemical parameters OTA group: >glucose, uric acid, AST, and ALT. SIL group: <glucose, uric acid, AST, and ALT. SIL + OTA group: <AST, ALT. Organ lesions Only in the OTA group: small hemorrhages on the epicardium and duodenal mucosa, catarrhal enteritis. Kidneys and liver: congestion and enlargement. OTA + SIL group: no macroscopic lesions observed. Histopathology Compared to the OTA group in the OTA + SIL group: slight congestion of peritubular capillaries focal granular degeneration in the epithelial cells of convoluted tubules in kidneys, and depletion cells in the intestinal mucosa. In the liver, less cloudy swelling and granular or vacuolar degeneration of hepatocytes. | [47] |
Broiler (1-day-old, Cobb 500) | Commercial SIL (SIL 84.16%): 100 mg/kg/diet | AFB (from A. flavus culture): 0.05 ppm/kg/diet + FUM (from F. verticillioides culture): 20 ppm/kg/diet | 41 days | Performance MyT group: <WG, <FI, and >FCR. These effects were reduced by SIL. Biochemical parameters MyT group: >ALT, AST, uric acid. MyT + SIL group: <ALT activity. Histopatology/organ lesions No histological lesions in the liver and intestines of chickens in any group, but in the SIL group: >villus height and crypt depth. Meat/carcass characteristics In SIL + MyT group: <water cooking loss; >PUFA content (the same in SIL group). | [48] |
Broiler (1-day-old, Ross 308) | MT seed: 0.5–1%/kg/diet | AFB1: 250-500 ppb/kg/diet | 35 days | Performance AFB1 (250–500 ppb) group: <BW; >aggressive behavior, and disarray wings. Immunity After SRBC injection: no changes in antibody titer (NDV and AI) in any MT treatment group, but decreased in only AFB1 group. Histopatology/organ lesions AFB1 (500 ppb) group: <intestine length of the ileum and duodenum plus jejunum. AFB1 (250–500 ppb) + MT (0.5–1%): >intestine length of duodenum plus jejunum. | [49] |
Broiler (1-day-old, Ross 308) | MT seed: 5–10 g/kg/diet | AFB1 (from A. flavus colture): 250–500 ppb/kg/diet | 35 days | Digestibility of nutrients AFB1 (500 ppb) group: <ileal digestibility of dry matter, Ca, crude protein, and apparent digestible energy. MT (5–10 g) group: >digestibility of crude protein and Ca, AFB1 (250–500 ppb) + MT (5–10 g) group: no differences in Ca and crude protein digestibility. Histopatology/organ lesions AFB1 (500 ppb) group: <villus length, villus width, and VL/CD. AFB1 (250–500 ppb) + MT (5–10 g) group: no differences. | [50] |
in vitro primary chicken hepatocytes | SIL 0.1–1–10 μg/mL | OTA:1 μg/mL | 24 h At 37 °C | Cells response to OTA OTA: hepatocellular injury and >ALT, AST, MDA, mRNA expression of apoptosis-associated genes, and apoptosis rate; <SOD, and GSH levels. SIL treatment response SIL (0.1–1 μg/mL) + OTA: >cell variability, SOD, GSH (at 10 μg/mL SIL: <cell variability), ALT (no changes for AST activity); <MDA, mRNA expression of apoptosis-associated genes, and apoptosis rate. | [51] |
Broiler (1-day-old, male Ross 308) | MT seed: 0–0.5–1%/kg/diet | AFB1 (from A. flavus colture): 250–500 ppb/kg/diet | 21 days | Biochemical parameters AFB1 (250-500 ppb) group: <glucose, Ca, HDL, creatinine; >AST, ALT. MT (0.5–1%)+AFB1 (500 ppb) group: >glucose; <AST, and creatinine. MT (1%) + AFB1 (250–500 ppb) group: >HDL. | [52] |
Broiler (1-day-old, male Ross 308) | MT seed: 0.5–1%/kg/diet | AFB1: 250–500 ppb/kg/diet | 5 weeks | Biochemical parameters AFB1 (500 ppb) group: <albumin, direct bilirubin, Ca, and P; >uric acid, glucose, total bilirubin, ALT, AST, and γ-GT. MT (0.5–1%) + AFB1 group: <uric acid, glucose, AST, and γ-GT. | [53] |
Broiler (1-day-old, male, Ross 308) | MT seed: 10 g/kg/diet | AFB1 (from A. flavus colture): 2 mg/kg/diet + E. coli challenge | 21 days | Performance (before and after the challenge) AFB1 group: no difference in BWG and FI compared to other groups. MT + AFB1 group: <FCR, only from 0 to 7 days. Biochemical parameters (before and after the challenge) AFB1 group: <Ca and HDL; >ALT, AST. AFB1 + MT group: >Ca; <ALT, AST. Redox parameters (before and after the challenge) AFB1 group: >MDA in muscle. AFB1 + MT: <MDA in muscle. Immune system responses (before and after the challenge) No differences after the challenge. | [54] |
Broiler (1-day-old, male Ross 308) | MTPowder 2: 10 g/kg/diet vs. TB (Toxofix-Arka): 1 g/kg/diet vs. Spirulina platensis (SP) 10 g/kg/diet | AFB1 (from an A. parasiticus culture): 0.6 mg/kg/diet | 42 days | Performance AFB1 group: <BW, and FI; >FCR. AFB1 + MT, AFB1 + TB, and AFB1 + SP group: >BWG, FI, but not in FCR. Biochemical parameters AFB1 group: >AST, and ALT. AFB1 + MT, AFB1 + TB, and AFB1 + SP group: <AST and ALT. Immunity AFB1 + MT group: <response to antibody titers against SRBC, and IgT titers compared to other groups. Microbiota AFB1 + MT, AFB1 + TB, and AFB1 + SP group: low Coliforms count. | [55] |
Broiler (1-day-old, Ross 308) | MT seed powder: 0.5%/kg/diet plant powder: 1%/kg/diet extract: 600–1000 mg/kg/diet | AFB1: 500 ppb/kg/diet | 35 days | Performance AFB1 group: <BWG; >FCR, and ALT. MT (1%) powder + AFB1 group: >BW; <FCR. MT seed powder (0.5%), plant powder (1%), and MT (1000 mg/kg) plant extract + AFB1 group: <ALT. | [56] |
Broiler (1-day-old, male Ross 308) | MT seed: 0.5% vs. TB (Sodium Bentonite): 0.5% | AFB1: 500 ppm/kg/diet | 4 weeks | Biochemical parameters AFB1 group: <albumin. AFB1 + TB group: >albumin. AFB1 + TB + MT: >albumin; <AST. MT + AFB1: <AST, ALT and LDH. | [57] |
Broiler (1-day-old, male Ross 308) | SIL (purity 60%): 1% kg/diet | OTA (from A. ochraceus culture): 3 mg/kg/diet | 42 days | Biochemical parameters OTA group: <lysozyme and beta-lysine concentration. SIL + OTA group: lysozyme concentrations, and beta-lysine activity not restored. | [58] |
White Leghorn cockerel (1-day-old) | SIL 10 g/kg/diet + Vit. E: 200 mg/kg/diet | OTA (from A. Ochraceus culture): 1–2 mg/kg/diet | 42 days | Immunity Antibody titers against SRBC injection OTA (2 mg) + SIL: <titers. IgG titers in OTA (2 mg) + Vit. E, OTA (2 mg) + SIL, and OTA (2 mg) + Vit. E + SIL group: significant differences. At 14 days post-p.i. OTA alone (1 mg), OTA (2 mg) + Vit. E, OTA (2 mg) + SIL, and OTA (2 mg) + Vit. E + SIL group: <total Ig titers. OTA (1–2 mg), OTA (2 mg) + Vit. E, OTA (2 mg) + SIL, and OTA (2 mg) + SIL + Vit. E group: <titers. | [59] |
Poultry Species | MT (Type and Dose) | MyT (Type, Dose, and Route) | Exposure (Time) | Effects | Reference |
---|---|---|---|---|---|
Duck | MT seed (Safimpex, commercial product): 0.50%/kg/diet | DON: 4.9 mg/kg/diet + ZEA: 0.66 mg/kg/diet | 47 days | Histopatology/organ lesions | [60] |
MyT group: **>grade vacuolar degeneration of hepatocytes cytoplasm, necrosis, and cell deaths of the mononuclear phagocyte system. Focal lymphocytic and histiocytic interstitial infiltrates and mild interstitial fibrosis. | |||||
MT + MyT group: <*vacuolar degeneration of hepatocytes. | |||||
Redox parameters | |||||
MyT group: <MDA, diene conjugate, and free sulfhydryl. | |||||
MT + MyT group: >DC, MDA, and free sulfhydryl. | |||||
Trace elements | |||||
In MT + MyT and MyT group: >Al, Ca, Cu, Fe; <Mn, P, Zn, S content. | |||||
Anas platyrhynchos domesticus (Pekin duckling, 1-day-old) | SIL 80%: 600 mg/kg-BW vs. Lycopene (LyC) 20 mg (LYC-O-MATO commercial product): 100 mg/kg/diet | AFs: 30 ppb/kg/diet (naturally contaminated) | 24 days (2 weeks AFs exposure + 10 days of aflatoxicosis treatment) | Biochemical parameters | [61] |
AFs group: >ALT, AST, γ-GT, ALP, creatinine; <total protein, and albumin. | |||||
SIL + AFs group: <ALT, AST, γ-GT, ALP, and creatinine; >total protein and albumin. | |||||
Redox parameters | |||||
AFs group: >MDA; <TOAC, GST, and catalase activity. | |||||
SIL + AFs group: <MDA; >TOAC, GST, and catalase activity. | |||||
Coturnix coturnix japonica (Japanase quail, 12 week-old) | SIL 84.91%: 500 g/ton/diet vs. Beta-glucans, extracted from Saccharomyces cerevisiae yeast: 1 kg/ton/diet | AFB1 (from A. parasiticus culture) 1: 1500 μg/kg/diet | 60 days | Performance | [62] |
AFB1 group: <FI. | |||||
AFB1 + SIL group: >0.58% eggs produced. | |||||
Biochemical parameters | |||||
AFB1 group: >AST, GGT, CK levels. | |||||
SIL + AFB1 group: <GGT. | |||||
Coturnix coturnix japonica (7-day-old, broiler Japanese quail) | SIL: 1000–2000 mg/kg/diet | AFs 2: 2.2 mg/kg/diet | 35 days | Performance | [63] |
AFs group: <FI, DWG, >mortality. | |||||
SIL (1000–2000 mg/kg) + AFs group: >BWG; <FCR. | |||||
Biochemical parameters | |||||
AFs group: >ALT, ALP, uric acid; <total protein, creatinine, and Ca. | |||||
SIL (2000 mg/kg) + AFs group: <ALT, AST, ALP, and glucose; >P. | |||||
Coturnix coturnix japonica (1-day-old) | SIL: 250–500 mg/kg/diet | AFB1: 19 ppb/kg/diet (naturally contaminated) | 35 days | Performance | [64] |
AFB1 + SIL (250–500 mg/kg) group: >BWG, BW but no in FI and FCR. | |||||
Biochemical parameters | |||||
AFB1 + SIL (250–500 mg/kg) group: no differences in total plasma proteins, albumins, and globulins; <AST. | |||||
Antioxidant parameters | |||||
AFB1 + SIL (500 mg/kg) group: >TAOC and GSH-Px; <MDA in liver tissue. | |||||
Carcass characteristics | |||||
AFB1 + SIL group: <AFs residues in tissues. | |||||
Columba livia White Carneaux pigeon (12 months of age) | SIL 80%: 10–100 mg/kg-BW | AFB1: 3 mg/kg-BW by gavage for 2 consecutive days | Diet for 21 days and then continue until the end of the experiment (day 60) | Histopatology/organ lesions | [65] |
AFB1 group: >hepatic inflammation and necrosis, biliary-duct hyperplasia, and lymphocyte infiltration. | |||||
SIL group: the liver injury was not significantly affected by SIL treatment. | |||||
Biochemical parameters | |||||
SIL (10 mg/kg) + AFB1 group: <ALT, CPK, LDH, creatinine. |
Categories and Specie | MT (Type and Dose) | MyT (Type, Dose, and Route) | Exposure (Time) | Effects | Reference |
---|---|---|---|---|---|
Ruminant: Calve (6–12 month of age) | SIL: 600 mg/kg-BW + choline chloride 500 mg/kg orally for 7 days | AFB1: 1.0 mg/kg-BW for 10 days, daily, through gelatinized capsules. | 10 days | Performance | [66] |
AFB1: <*FI, ADWG | |||||
AFB1 + SIL: >**FI, ADWG better than AFB1 + choline. | |||||
Biochemical parameters | |||||
AFB1: <blood cell count; >AST, ALP, BUN, and creatinine. | |||||
AFB1 + SIL: >blood cell count; <AST, ALP, BUN, and creatinine better than choline treated group. | |||||
Ruminant: dairy cow (Italian Friesian) | SIL (76% Indena standardized extract) 1: 10 g/day/cow + SIL + phytosome (molar ratio 1:2): 30 g/day/cow via oral drench | AFB1 (feed naturally contaminated): 0.80 ± 0.2 µg/kg (1st treatment) AFB1 (feed naturally contaminated): 0.44 ± 0.3 µg/kg (2nd treatment). | 1st treatment: SIL for 9 days 2nd treatment: SIL+ phytosome for 17 days | AFM1 milk excretion (1st treatment) | [67] |
For the whole period: <AFM1 (in particular on day 3 of the treatment). | |||||
AFM1 milk excretion (2nd treatment) | |||||
AFM1: <(constant) from day 0 to 17 (in particular at day 11) in treated animals. | |||||
Oryctolagus cuniculi (pet rabbit, clinical case of AFB intoxication) | SIL: 50 mg/kg/orally + Epocler: 1 mL/q (choline) | AFB1: 300 mg/kg/feed (naturally contaminated) | 12–24 h | Clinical evidence of AFB1 intoxication | [68] |
ascites (with sterile exudate); >AST and ALT. | |||||
WBC in normal value, but macrocytic RBC was evidenced. | |||||
Clinical evidence after SIL treatment | |||||
restores hepatic activity at normal parameters. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrini, A.; Tedesco, D.E.A. Restoring Activity of Milk Thistle (Silybum marianum L.) on Serum Biochemical Parameters, Oxidative Status, Immunity, and Performance in Poultry and Other Animal Species, Poisoned by Mycotoxins: A Review. Animals 2023, 13, 330. https://doi.org/10.3390/ani13030330
Guerrini A, Tedesco DEA. Restoring Activity of Milk Thistle (Silybum marianum L.) on Serum Biochemical Parameters, Oxidative Status, Immunity, and Performance in Poultry and Other Animal Species, Poisoned by Mycotoxins: A Review. Animals. 2023; 13(3):330. https://doi.org/10.3390/ani13030330
Chicago/Turabian StyleGuerrini, Alessandro, and Doriana Eurosia Angela Tedesco. 2023. "Restoring Activity of Milk Thistle (Silybum marianum L.) on Serum Biochemical Parameters, Oxidative Status, Immunity, and Performance in Poultry and Other Animal Species, Poisoned by Mycotoxins: A Review" Animals 13, no. 3: 330. https://doi.org/10.3390/ani13030330
APA StyleGuerrini, A., & Tedesco, D. E. A. (2023). Restoring Activity of Milk Thistle (Silybum marianum L.) on Serum Biochemical Parameters, Oxidative Status, Immunity, and Performance in Poultry and Other Animal Species, Poisoned by Mycotoxins: A Review. Animals, 13(3), 330. https://doi.org/10.3390/ani13030330