Polymorphism within IGFBP Genes Affects the Acidity, Colour, and Shear Force of Rabbit Meat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Review
2.2. Animals
2.3. Carcass Traits
2.4. Colour and pH Measurement
2.5. Texture Analysis
2.6. Blood Collection and DNA Extraction
2.7. Primer Design and Sequencing
2.8. SNPs Analysis
2.9. Statistical Analysis
2.10. Bioinformatics Analysis
3. Results
3.1. SNPs Identifications
3.2. Association Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Sabrout, K.; Aggag, S.; de Souza, J.B.F., Jr. Some recent applications of rabbit biotechnology—A review. Anim. Biotechnol. 2020, 31, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Helal, M.; Hany, N.; Maged, M.; Abdelaziz, M.; Osama, N.; Younan, Y.W.; Ismail, Y.; Abdelrahman, R.; Ragab, M. Candidate genes for marker-assisted selection for growth, carcass and meat quality traits in rabbits. Anim. Biotechnol. 2021, 33, 1691–1710. [Google Scholar] [CrossRef] [PubMed]
- Blasco, A.; Nagy, I.; Hernández, P. Genetics of growth, carcass and meat quality in rabbits. Meat Sci. 2018, 145, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Grigoletto, L.; Ferraz, J.B.S.; Oliveira, H.R.; Eler, J.P.; Bussiman, F.O.; Abreu Silva, B.C.; Baldi, F.; Brito, L.F. Genetic Architecture of Carcass and Meat Quality Traits in Montana Tropical® Composite Beef Cattle. Front. Genet. 2020, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Weller, J.I.; Ezra, E.; Ron, M. Invited review: A perspective on the future of genomic selection in dairy cattle. J. Dairy Sci. 2017, 100, 8633–8644. [Google Scholar] [CrossRef] [PubMed]
- Ballan, M.; Bovo, S.; Schiavo, G.; Schiavitto, M.; Negrini, R.; Fontanesi, L. Genomic diversity and signatures of selection in meat and fancy rabbit breeds based on high-density marker data. Genet. Sel. Evol. 2022, 54, 3. [Google Scholar] [CrossRef] [PubMed]
- Fatima, N.; Jia, L.; Liu, B.; Li, L.; Bai, L.; Wang, W.; Zhao, S.; Wang, R.; Liu, E. A homozygous missense mutation in the fibroblast growth factor 5 gene is associated with the long-hair trait in Angora rabbits. BMC Genom. 2023, 24, 298. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Szendro, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Sánchez, J.P.; Legarra, A.; Velasco-Galilea, M.; Piles, J.; Sánchez, A.; Rafel, O.; González-Rodríguez, O.; Ballester, M. Genome-wide association study for feed efficiency in collective cage-raised rabbits under full and restricted feeding. Anim. Genet. 2020, 51, 799–810. [Google Scholar] [CrossRef]
- Sosa-Madrid, B.; Hernández, P.; Blasco, A.; Haley, C.S.; Fontanesi, L.; Santacreu, M.A.; Pena, R.N.; Navarro, P.; Ibáñez-Escriche, N. Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Anim. Genet. 2020, 51, 58–69. [Google Scholar] [CrossRef]
- Sosa-Madrid, B.; Varona, L.; Blasco, A.; Hernández, P.; Casto-Rebollo, C.; Ibáñez-Escriche, N. The effect of divergent selection for intramuscular fat on the domestic rabbit genome. Animal 2020, 14, 2225–2235. [Google Scholar] [CrossRef]
- Yang, X.; Deng, F.; Wu, Z.; Chen, S.-Y.; Shi, Y.; Jia, X.; Hu, S.; Wang, J.; Cao, W.; Lai, S.-J. A Genome-Wide Association Study Identifying Genetic Variants Associated with Growth, Carcass and Meat Quality Traits in Rabbits. Animals 2020, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Mancin, E.; Sosa-Madrid, B.S.; Blasco, A.; Ibáñez-Escriche, N. Genotype Imputation to Improve the Cost-Efficiency of Genomic Selection in Rabbits. Animals 2021, 11, 803. [Google Scholar] [CrossRef] [PubMed]
- Migdał, Ł.; Kozioł, K.; Migdał, W.; Pałka, S.; Kmiecik, M.; Migdał, A.; Bieniek, J. Rabbits breeding in Poland—Possibility of implementation of marker assisted selection (MAS) in breeding. In Proceedings of the 11th International Symposium—Modern Trends in Livestock Production, Belgrade, Serbia, 11–13 October 2017; Petrović Milan, M., Ed.; Institute for Animal Husbandry: Belgrade, Serbia, 2017; pp. 346–355, ISBN 978-86-82431-73-2. [Google Scholar]
- Migdał, Ł.; Pałka, S.; Kmiecik, M.; Derewicka, O. Association of polymorphisms in the GH and GHR genes with growth and carcass traits in rabbits (Oryctolagus cuniculus). Czech J. Anim. Sci. 2019, 64, 255–264. [Google Scholar] [CrossRef]
- Zhang, W.X.; Zhang, G.W.; Peng, J.; Lai, S.J. The polymorphism of GHR gene associated with the growth and carcass traits in three rabbit breeds. In Proceedings of the 10th World Rabbit Congress, Sharm El-Sheikh, Egypt, 3–6 September 2012; pp. 75–78. [Google Scholar]
- Fontanesi, L.; Dall’Olio, S.; Spaccapaniccia, E.; Scotti, E.; Fornasini, D.; Frabetti, A.; Russo, V. A single nucleotide polymorphism in the rabbit growth hormone (GH1) gene is associated with market weight in a commercial rabbit population. Livest. Sci. 2012, 147, 84–88. [Google Scholar] [CrossRef]
- Fontanesi, L.; Scotti, E.; Cisarova, K.; Di Battista, P.; Dall’olio, S.; Fornasini, D.; Frabetti, A. A missense mutation in the rabbit melanocortin 4 receptor (MC4R) gene is associated with finishing weight in a meat rabbit line. Anim. Biotechnol. 2013, 24, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Sternstein, I.; Reissmann, M.; Maj, D.; Bieniek, J.; Brockmann, G.A. A new single nucleotide polymorphism in the rabbit (Oryctolagus cuniculus) myostatin (MSTN) gene is associated with carcass composition traits. Anim. Genet. 2014, 45, 596–599. [Google Scholar] [CrossRef]
- Schiaffino, S.; Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models. Skelet. Muscle 2011, 1, 4. [Google Scholar] [CrossRef]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- SAS. SAS/STAT 13.2 User’s Guide; SAS Institute Inc.: Tokyo, Japan, 2014; Available online: https://support.sas.com/en/software/sas-stat-support.html#documentation (accessed on 22 October 2021).
- Mi, H.; Muruganujan, A.; Thomas, P.D. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013, 41, D377–D387. [Google Scholar] [CrossRef] [PubMed]
- Bovo, S.; Schiavo, G.; Utzeri, V.J.; Ribani, A.; Schiavitto, M.; Buttazzoni, L.; Negrini, R.; Fontanesi, L. A genome-wide association study for the number of teats in European rabbits (Oryctolagus cuniculus) identifies several candidate genes affecting this trait. Anim. Genet. 2021, 52, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Bielański, P.; Kowalska, D.; Wrzecionowska, M. Conservation programme for the native polish breed of Popielno White rabbits. In Proceedings of the 10th World Rabbit Congress, Sharm El-Sheikh, Egypt, 3–6 September 2012; pp. 119–122. [Google Scholar]
- Zhang, J.; Chai, J.; Luo, Z.; He, H.; Chen, L.; Liu, X.; Zhou, Q. Meat and nutritional quality comparison of purebred and crossbred pigs. Anim. Sci. J. 2018, 89, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Van Laack, R.; Kauffman, R.; Greaser, M. Determinants of ultimate pH of meat. In Proceedings of the 47th International Congress of Meat Science and Technology, Krakow, Poland, 26–31 August 2001; pp. 22–26. [Google Scholar]
- Paci, G.; Cecchi, F.; Preziuso, G.; Ciampolini, R.; D’Agata, M. Carcass traits and meat quality of two different rabbit genotypes. Ital. J. Anim. Sci. 2012, 11, 249–252. [Google Scholar] [CrossRef]
- Chodová, D.; Tůmová, E.; Martinec, M.; Bízková, Z.; Skřivanová, V.; Volek, Z.; Zita, L. Effect of housing system and genotype on rabbit meat quality. Czech J. Anim. Sci. 2014, 59, 190–199. [Google Scholar] [CrossRef]
- Hulot, F.; Ouhayoun, J. Muscular pH and related traits in rabbits: A review. World Rabbit Sci. 1999, 7, 15–36. [Google Scholar] [CrossRef]
- Pla, M.; Guerrero, L.; Guardia, D.; Oliver, M.A.; Blasco, A. Carcass characteristics and meat quality of rabbit lines selected for different objectives: I. Between lines comparison. Livest. Prod. Sci. 1998, 54, 115–123. [Google Scholar] [CrossRef]
- Kowalska, D.; Gugołek, A.; Bielański, P. Effect of stress on rabbit meat quality. Ann. Anim. Sci. 2011, 11, 465–475. [Google Scholar]
- Rejduch, B.; Oczkowicz, M.; Piestrzyńska-Kajtoch, A.; Piórkowska, K.; Witoń, M.; Rogoz, M.; Różycki, M. Expression of IGFBP-3 and IGFBP-5 genes in muscles of pigs representing five different breeds. J. Anim. Feed Sci. 2010, 19, 554–563. [Google Scholar] [CrossRef]
- D’Eath, R.B.; Turner, S.P.; Kurt, E.; Evans, G.; Thölking, L.; Looft, H.; Wimmers, K.; Murani, E.; Klont, R.; Foury, A.; et al. Pigs’ aggressive temperament affects pre-slaughter mixing aggression, stress and meat quality. Animal 2010, 4, 604–616. [Google Scholar] [CrossRef]
- Guerrero, L.; Gou, P.; Arnau, J. The influence of meat pH on mechanical and sensory textural properties of dry-cured ham. Meat Sci. 1999, 52, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ouyang, K.; Shangguan, X.; Xu, M. Association of Porcine IGF Binding Protein-5 Gene with Meat Quality. Biochem. Genet. 2010, 48, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, L.; Xie, X.; Wu, Z.; Xiong, X.; Zhang, Z.; Yang, J.; Xiao, S.; Zhou, M.; Ma, J.; et al. Muscle glycogen level and occurrence of acid meat in commercial hybrid pigs are regulated by two low-frequency causal variants with large effects and multiple common variants with small effects. Genet. Sel. Evol. 2019, 51, 46. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, G.; Elzo, M.A.; Yan, L.; Chen, S.; Jia, X.; Lai, S. A novel single nucleotide polymorphism of the POU1F1 gene associated with meat quality traits in rabbits. Ann. Anim. Sci. 2015, 15, 611–620. [Google Scholar] [CrossRef]
- Wang, J.; Elzo, M.A.; Yan, L.; Chen, S.; Jia, X.; Zhang, M.; Lai, S. A single nucleotide polymorphism in CAST gene is associated with meat quality traits in rabbits. Anim. Sci. Pap. Rep. 2016, 34, 269–278. [Google Scholar]
- Dalle Zotte, A. Perception of rabbit meat quality and major factors influencing the rabbit carcass and meat quality. Livest. Prod. Sci. 2002, 75, 11–32. [Google Scholar] [CrossRef]
- Bonamigo, A.; Duarte, C.; Winck, C.A.; Sehnem, S. Production of rabbit meat in Brazil as sustainable alternative food. Rev. Em Agronegocio E Meio Ambiente 2017, 10, 1247–1270. [Google Scholar] [CrossRef]
- Maj, D.; Bieniek, J.; Sternstein, I.; Weglarz, A.; Zapletal, P. Effect of genotype and sex on meat colour changes in rabbit. Arch. Tier. 2012, 55, 385–390. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y.; Elzo, M.A.; Jia, X.; Chen, S.; Lai, S. Comparison of Carcass and Meat Quality Traits among Three Rabbit Breeds. Korean J. Food Sci. Anim. Resour. 2016, 36, 84–89. [Google Scholar] [CrossRef]
- Altmann, B.A.; Trinks, A.; Mörlein, D. Consumer preferences for the color of unprocessed animal foods. J. Food Sci. 2023, 88, 909–925. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Castellani, C.; Bernardini, M. Nutritional quality of rabbit meat asaffected by cooking procedure and dietary vitamin E. J. Food Sci. 2001, 66, 1047–1051. [Google Scholar] [CrossRef]
- Kozioł, K.; Pałka, S.; Migdał, Ł.; Derwicka, O.; Kmiecik, M.; Maj, D.; Bieniek, J. Analiza tekstury mięsa królików w zależności od sposobu obróbki termicznej. Rocz. Nauk. Pol. Tow. Zootech. 2016, 12, 25–32. (In Polish) [Google Scholar]
- Pałka, S.; Siudak, Z.; Migdał, Ł.; Kmiecik, M. Comparison of shear force and texture profile analysis of raw, boiled and roasted rabbit meat. Rocz. Nauk. Pol. Tow. Zootech. 2018, 45, 187–193. [Google Scholar]
- Składanowska-Baryza, J.; Ludwiczak, A.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.; Bykowska, M.; Stanisz, M. The effect of transport on the quality of rabbit meat. Anim. Sci. J. 2018, 89, 713–721. [Google Scholar] [CrossRef]
Primer Pair (Gene) | Forward and Reverse (5′->3′) | bp | Ta | Method |
---|---|---|---|---|
g.4988G>A (IGFBP1) | F: GAAAAGCGGGTTCAGAGAGG R: AAGGGCAAGAGACAGTGAGC | 150 | 65 | PCR-RFLP for BccI G-150 bp, A-101 + 49 bp |
g.3431insAC (IGFBP1) | F: CAAATGCCACCAGCATTTTA R: TGTGTTCTGAGGATAAATACACCA | 97 | 60 | PCR-HRM |
g.41592248A>C (IGFBP4) | F: GTTCCTGCCAGAGTGAGCTG R: CTGCTTGGGGTGGAAGTTG | 128 | 65 | PCR-RFLP for BccI A-93 + 35 bp, C-128 bp |
g.41594308T>C (IGFBP4) | F:TCTGAATTCATTCCTCTATCTACCC R: GGTCAATACATGTTTTCAGATGG | 58 | 62 | PCR-HRM |
g.158093018A>T (IGFBP5) | F: GATTGGTCGGGGAGAGAAAG R: CTTTTCGGAGGAATGGAATG | 148 | 60 | PCR-RFLP for BfaI A-148 bp, T-117 + 31 bp |
Polymorphism | Breed | Allele | Genotypes | p-Value 4 | MAF 5 | H 6 | He 7 | PIC 8 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
g.4988G>A (IGFBP1) | G | A | GG | GA | AA | ||||||
TW 1 | 78.46 2 | 21.54 | 59.23 (77) 3 | 38.46 (50) | 2.31 (3) | 0.11 | 0.21 | 0.5 | 0.34 | 0.39 | |
FG | 50 | 50 | - | 100 (40) | - | - | |||||
PW | 92.25 | 7.75 | 84.51 (60) | 15.49 (11) | - | 0.47 | 0.07 | 0.26 | 0.14 | 0.23 | |
NZWxFG | 93.78 | 6.22 | 87.56 (197) | 12.44 (28) | - | 0.33 | 0.06 | 0.22 | 0.12 | 0.19 | |
g.3431insAC (IGFBP1) | G | GAC | GG | G/GAC | GAC/GAC | ||||||
TW | 59.62 | 40.38 | 36.15 (47) | 46.92 (61) | 16.92 (22) | 0.77 | 0.4 | 0.62 | 0.48 | 0.54 | |
FG | 82.5 | 17.5 | 72.5 (29) | 20 (8) | 7.5(3) | 0.051 | 0.17 | 0.43 | 0.29 | 0.38 | |
PW | 93.66 | 6.34 | 87.32 (62) | 12.68 (9) | - | 0.56 | 0.06 | 0.22 | 0.12 | 0.2 | |
NZWxFG | 72 | 28 | 49.78 (112) | 44.44 (100) | 5.78 (13) | 0.12 | 0.28 | 0.55 | 0.4 | 0.45 | |
g.41594308T>C (IGFBP4) | T | C | TT | TC | CC | ||||||
TW | 71,15 | 28,85 | 48.46 (63) | 45.38 (59) | 6.15 (8) | 0,22 | 0.28 | 0.56 | 0.41 | 0.46 | |
FG | 77.5 | 22.5 | 55.0 (22) | 45.0 (18) | - | 0.06 | 0.22 | 0.5 | 0,35 | 0.37 | |
PW | 63.4 | 36.6 | 45.07 (32) | 36.62 (26) | 18.31 (13) | 0.21 | 0.36 | 0.63 | 0.46 | 0.55 | |
NZWxFG | 60.89 | 39.11 | 40.89 (92) | 40 (90) | 19.11 (43) | 0.06 | 0.39 | 0.55 | 0.48 | 0.45 | |
g.41592248A>C (IGFBP4) | A | C | AA | AC | CC | ||||||
TW | 72.4 | 27.6 | 47.2 (59) | 50.4 (63) | 2.4 (3) | 0.96 | 0.27 | 0.52 | 0.4 | 0.41 | |
FG | 100 | - | 100 (40) | - | - | ||||||
PW | 97.89 | 2.11 | 97.89 (68) | 4.23 (3) | - | 0.85 | 0.02 | 0.08 | 0.04 | 0.08 | |
NZWxFG | 93.78 | 6.22 | 87.56 (197) | 12.44 (28) | - | 0.33 | 0.06 | 0.22 | 0.12 | 0.19 | |
g.158093018A>T (IGFBP5) | A | T | AA | AT | TT | ||||||
TW | 86.54 | 13.46 | 73.08(95) | 26.92(35) | - | 0.076 | 0.13 | 0.39 | 0.23 | 0.32 | |
FG | 100 | - | 40 | - | - | - | |||||
PW | 100 | - | 71 | - | - | - | |||||
NZWxFG | 89.56 | 10.44 | 79.11(178) | 20.99(47) | - | 0.08 | 0.1 | 0.33 | 0.19 | 0.28 |
Traits 3 | TW 1 | NZWxFG | PW | FG | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Means | SD 2 | Means | SD | p-Value | Means | SD | Means | SD | p-Value | Means | SD | Means | SD | p-Value | Means | SD | Means | SD | p-Value | |
g.3431insAC | ||||||||||||||||||||
GG | G/GAC | GG | G/GAC | GG | G/GAC | GG | G/GAC | |||||||||||||
IB | 43 a | 2 | 36 b | 1 | 0.0025 | 42 | 1 | 42 | 1 | 0.5479 | 35 | 1 | 42 | 1 | 0.2810 | 45 | 2 | 50 | 4 | 0.4808 |
g.41594308T>C | ||||||||||||||||||||
TT | TC | TT | TC | TT | TC | TT | TC | |||||||||||||
HCW | 1498 | 39 | 1456 | 24 | 0.6225 | 1420 | 30 | 1357 | 28 | 0.2894 | 1512 a | 26 | 1322 b | 33 | 0.0028 | 1657 | 79 | 1791 | 86 | 0.3085 |
Traits | TW 1 | NZWxFG | PW | FG | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Means | SD 2 | Means | SD | p-Value | Means | SD | Means | SD | p-Value | Means | SD | Means | SD | p-Value | Means | SD | Means | SD | p-Value | |
g.3431insAC | ||||||||||||||||||||
GG | G/GAC | GG | G/GAC | GG | G/GAC | GG | G/GAC | |||||||||||||
b*45bf | 1.01 | 0.29 | 1.10 | 0.29 | 0.0887 | 0.99 | 0.14 | 1.04 | 0.14 | 0.2184 | 0.45 | 0.24 | 0.57 | 0.43 | 0.9651 | 1.14 a | 0.23 | −0.50 b | 0.63 | 0.0001 |
g.41594308T>C | ||||||||||||||||||||
TT | TC | TT | TC | TT | TC | TT | TC | |||||||||||||
pH24 ll | 5.75 | 0.03 | 5.83 | 0.04 | 0.5787 | 5.66 a | 0.02 | 5.60 b | 0.02 | 0.0011 | 5.84 | 0.04 | 5.82 | 0.05 | 0.1901 | 5.98 | 0.07 | 5.89 | 0.06 | 0.7830 |
g.41592248A>C | ||||||||||||||||||||
AA | AC | AA | AC | AA | AC | AA | AC | |||||||||||||
a*45bf | 4.28 a | 0.26 | 2.93 b | 0.13 | 0.0029 | 11.24 | 0.19 | 11.25 | 0.12 | 0.8620 | 3.05 | 0.15 | 2.25 | 0.27 | 0.6495 | 3.55 | 0.22 | - | - | - |
L*24 ll | 54.51 | 0.48 | 56.38 | 0.34 | 0.2106 | 57.26 a | 0.31 | 56.16 b | 0.21 | 0.003 | 56.55 | 0.30 | 55.06 | 0.88 | 0.0237 | 59.12 | 0.58 | - | - | - |
SF ll | 1.90 | 0.11 | 2.01 | 0.09 | 0.0167 | 4.26 | 0.15 | 3.65 | 0.10 | 0.0026 | 1.73 | 0.07 | 1.89 | 0.16 | 0.4846 | 2.13 | 0.08 | - | - | - |
g.158093018A>T | ||||||||||||||||||||
AA | AT | AA | AT | AA | AT | AA | AT | |||||||||||||
a*45 bf | 2.97 a | 0.17 | 4.14 b | 0.24 | 0.0010 | 11.74 | 0.29 | 11.09 | 0.11 | 0.0654 | 2.94 | 0.14 | - 3 | - | - | 3.55 | 0.22 | - | - | - |
pH24 bf | 5.80 a | 0.02 | 6.11 b | 0.06 | <0.0001 | 5.64 a | 0.03 | 5.77 b | 0.02 | 0.003 | 5.97 | 0.03 | - | - | - | 6.08 | 0.02 | - | - | - |
pH24 ll | 5.72 a | 0.03 | 5.91 b | 0.03 | 0.0025 | 5.52 a | 0.04 | 5.62 b | 0.01 | 0.0011 | 5.81 | 0.03 | - | - | - | 6.01 | 0.04 | - | - | - |
SFll | 2.25 a | 0.10 | 1.74 b | 0.08 | 0.0005 | 3.30 | 0.21 | 3.95 | 0.10 | 0.0192 | 1.77 | 0.07 | - | - | - | 2.13 | 0.08 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migdał, Ł.; Migdał, A.; Pałka, S.; Kmiecik, M.; Otwinowska-Mindur, A.; Semik-Gurgul, E.; Bieniek, J. Polymorphism within IGFBP Genes Affects the Acidity, Colour, and Shear Force of Rabbit Meat. Animals 2023, 13, 3743. https://doi.org/10.3390/ani13233743
Migdał Ł, Migdał A, Pałka S, Kmiecik M, Otwinowska-Mindur A, Semik-Gurgul E, Bieniek J. Polymorphism within IGFBP Genes Affects the Acidity, Colour, and Shear Force of Rabbit Meat. Animals. 2023; 13(23):3743. https://doi.org/10.3390/ani13233743
Chicago/Turabian StyleMigdał, Łukasz, Anna Migdał, Sylwia Pałka, Michał Kmiecik, Agnieszka Otwinowska-Mindur, Ewelina Semik-Gurgul, and Józef Bieniek. 2023. "Polymorphism within IGFBP Genes Affects the Acidity, Colour, and Shear Force of Rabbit Meat" Animals 13, no. 23: 3743. https://doi.org/10.3390/ani13233743
APA StyleMigdał, Ł., Migdał, A., Pałka, S., Kmiecik, M., Otwinowska-Mindur, A., Semik-Gurgul, E., & Bieniek, J. (2023). Polymorphism within IGFBP Genes Affects the Acidity, Colour, and Shear Force of Rabbit Meat. Animals, 13(23), 3743. https://doi.org/10.3390/ani13233743