Euglena gracilis β-Glucans (1,3): Enriching Colostrum of Sow for Enhanced Piglet Immunity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Evaluations
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valeriano, V.D.V.; Balolong, M.P.; Kang, D.-K. Probiotic Roles of Lactobacillus Sp. in Swine: Insights from Gut Microbiota. J. Appl. Microbiol. 2017, 122, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of Phytogenic Products as Feed Additives for Swine and Poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef]
- Ferronato, G.; Prandini, A. Dietary Supplementation of Inorganic, Organic, and Fatty Acids in Pig: A Review. Animals 2020, 10, 1740. [Google Scholar] [CrossRef] [PubMed]
- Güths, M.F.; Siqueira, H.A.; Montes, J.H.; Moreira, F.; Rizzoto, G.; Peripolli, V.; Tutida, Y.H.; Lucia, T.; Irgang, R.; Kich, J.D.; et al. Removal or Substitution of in Feed Antimicrobials in Swine Production. Prev. Vet. Med. 2022, 205, 105696. [Google Scholar] [CrossRef] [PubMed]
- Akramienė, D.; Kondrotas, A.; Didžiapetrienė, J.; Kėvelaitis, E. Effects of ß-glucans on the immune system. Medicina 2007, 43, 597. [Google Scholar] [CrossRef] [PubMed]
- Free, S.J. Fungal Cell Wall Organization and Biosynthesis, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 81, ISBN 9780124076778. [Google Scholar]
- Kim, K.; Ehrlich, A.; Perng, V.; Chase, J.A.; Raybould, H.; Li, X.; Atwill, E.R.; Whelan, R.; Sokale, A.; Liu, Y. Algae-Derived β-Glucan Enhanced Gut Health and Immune Responses of Weaned Pigs Experimentally Infected with a Pathogenic E. coli. Anim. Feed. Sci. Technol. 2019, 248, 114–125. [Google Scholar] [CrossRef]
- De Marco Castro, E.; Calder, P.C.; Roche, H.M. β-1,3/1,6-Glucans and Immunity: State of the Art and Future Directions. Mol. Nutr. Food Res. 2021, 65, 1901071. [Google Scholar] [CrossRef]
- Choromanska, A.; Kulbacka, J.; Rembialkowska, N.; Pilat, J.; Oledzki, R.; Harasym, J.; Saczko, J. Anticancer Properties of Low Molecular Weight Oat Beta-Glucan—An In Vitro Study. Int. J. Biol. Macromol. 2015, 80, 23–28. [Google Scholar] [CrossRef]
- Smiderle, F.R.; Baggio, C.H.; Borato, D.G.; Santana-Filho, A.P.; Sassaki, G.L.; Iacomini, M.; Van Griensven, L.J.L.D. Anti-Inflammatory Properties of the Medicinal Mushroom Cordyceps Militaris Might Be Related to Its Linear (1→3)-β-D-Glucan. PLoS ONE 2014, 9, e110266. [Google Scholar] [CrossRef]
- Parzonko, A.; Makarewicz-Wujec, M.; Jaszewska, E.; Harasym, J.; Kozłowska-Wojciechowska, M. Pro-Apoptotic Properties of (1,3)(1,4)-β-d-Glucan from Avena Sativa on Human Melanoma HTB-140 Cells in Vitro. Int. J. Biol. Macromol. 2015, 72, 757–763. [Google Scholar] [CrossRef]
- Bose, N.; Wurst, L.R.; Chan, A.S.H.; Dudney, C.M.; LeRoux, M.L.; Danielson, M.E.; Will, P.M.; Nodland, S.E.; Patchen, M.L.; Dalle Lucca, J.J.; et al. Differential Regulation of Oxidative Burst by Distinct β-Glucan-Binding Receptors and Signaling Pathways in Human Peripheral Blood Mononuclear Cells. Glycobiology 2014, 24, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Takagi, Y.; Nakamura, T.; Hasegawa, T.; Suzuki, I.; Oshima, M.; Tawaraya, H.; Niwano, Y. Enhancement of Radioprotection and Anti-Tumor Immunity by Yeast-Derived β-Glucan in Mice. J. Med. Food 2005, 8, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Luo, Y.; Yu, B.; Zheng, P.; Yu, J.; Huang, Z.; Mao, X.; Luo, J.; Yan, H.; He, J. Effect of β-Glucan Supplementation on Growth Performance and Intestinal Epithelium Functions in Weaned Pigs Challenged by Enterotoxigenic Escherichia coli. Antibiot. 2022, 11, 519. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; de Boeck, G.; Becker, K. Dietary Roles of Non-Starch Polysachharides in Human Nutrition: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 899–935. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.G.; Sweeney, T.; Bahar, B.; Lynch, B.P.; O’Doherty, J.V. Effects of Dietary Seaweed Extract Supplementation in Sows and Post-Weaned Pigs on Performance, Intestinal Morphology, Intestinal Microflora and Immune Status. Br. J. Nutr. 2011, 106, 688–699. [Google Scholar] [CrossRef]
- Sonck, E.; Stuyven, E.; Goddeeris, B.; Cox, E. The Effect of β-Glucans on Porcine Leukocytes. Vet. Immunol. Immunopathol. 2010, 135, 199–207. [Google Scholar] [CrossRef]
- Levine, R.; Horst, G.; Tonda, R.; Lumpkins, B.; Mathis, G. Evaluation of the Effects of Feeding Dried Algae Containing Beta-1,3-Glucan on Broilers Challenged with Eimeria. Poult. Sci. 2018, 97, 3494–3500. [Google Scholar] [CrossRef]
- Luo, J.; Zeng, D.; Cheng, L.; Mao, X.; Yu, J.; Yu, B.; Chen, D. Dietary β-Glucan Supplementation Improves Growth Performance, Carcass Traits and Meat Quality of Finishing Pigs. Anim. Nutr. 2019, 5, 380–385. [Google Scholar] [CrossRef]
- Chau, G.P.; Collier, C.T.; Welsh, T.H.; Carroll, J.A.; Laurenz, J.C. Beta-1,3-Glucan Effect on Sow Antibody Production and Passive Immunisation of Progeny. Food Agric. Immunol. 2009, 20, 185–193. [Google Scholar] [CrossRef]
- Szuba-Trznadel, A.; Fuchs, B.; Lira, R.; Rzasa, A. Influence of Application of (1,3)-(1,6)-β-D-Glucans and Mannans on Production Results of Sows and Piglets. Ann. Wars. Univ. Life Sci. SGGW Anim. Sci. 2018, 56, 311–322. [Google Scholar] [CrossRef]
- Szuba-Trznadel, A.; Rząsa, A.; Lira, R.; Fuchs, B. The Influence of (1,3)-(1,6)-β-D-Glucan on the Production Results of Sows and Their Offspring. J. Anim. Feed. Sci. 2014, 23, 228–235. [Google Scholar] [CrossRef]
- Devillers, N.; van Milgen, J.; Prunier, A.; Le Dividich, J. Estimation of Colostrum Intake in the Neonatal Pig. Anim. Sci. 2004, 78, 305–313. [Google Scholar] [CrossRef]
- Liu, X.; Xia, B.; He, T.; Li, D.; Su, J.-H.; Guo, L.; Wang, J.; Zhu, Y.-H. Oral Administration of a Select Mixture of Lactobacillus and Bacillus Alleviates Inflammation and Maintains Mucosal Barrier Integrity in the Ileum of Pigs Challenged with Salmonella Infantis. Microorganisms 2019, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Yang, T.; Lee, H. Evaluation the effect of dietary β-glucan supplementation on the improvement of reproductive and growth performance of sow and piglet. J. Chin. Soc. Anim. Sci. 2018, 47, 209–219. [Google Scholar]
- Kornegay, E.T.; Rhein-Welker, D.; Lindemann, M.D.; Wood, C.M. Performance and Nutrient Digestibility in Weanling Pigs as Influenced by Yeast Culture Additions to Starter Diets Containing Dried Whey or One of Two Fiber Sources. J. Anim. Sci. 1995, 73, 1381–1389. [Google Scholar] [CrossRef]
- Hasan, S.; Junnikkala, S.; Peltoniemi, O.; Paulin, L.; Lyyski, A.; Vuorenmaa, J.; Oliviero, C. Dietary Supplementation with Yeast Hydrolysate in Pregnancy Influences Colostrum Yield and Gut Microbiota of Sows and Piglets after Birth. PLoS ONE 2018, 13, e0197586. [Google Scholar] [CrossRef]
- Decaluwé, R.; Maes, D.; Declerck, I.; Cools, A.; Wuyts, B.; De Smet, S.; Janssens, G.P.J. Changes in Back Fat Thickness during Late Gestation Predict Colostrum Yield in Sows. Animal 2013, 7, 1999–2007. [Google Scholar] [CrossRef]
- Quesnel, H.; Farmer, C.; Devillers, N. Colostrum Intake: Influence on Piglet Performance and Factors of Variation. Livest. Sci. 2012, 146, 105–114. [Google Scholar] [CrossRef]
- Quesnel, H.; Farmer, C. Review: Nutritional and Endocrine Control of Colostrogenesis in Swine. Animal 2019, 13, S26–S34. [Google Scholar] [CrossRef]
- Machado, A.P.; Otto, M.A.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Factors Influencing Colostrum Yield by Sows. Arq. Bras. Med. Vet. Zootec. 2016, 68, 553–561. [Google Scholar] [CrossRef]
- Devillers, N.; Le Dividich, J.; Prunier, A. Influence of Colostrum Intake on Piglet Survival and Immunity. Animal 2011, 5, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.V.; Sbardella, P.E.; Bernardi, M.L.; Coutinho, M.L.; Vaz, I.S.; Wentz, I.; Bortolozzo, F.P. Effect of Birth Weight and Colostrum Intake on Mortality and Performance of Piglets after Cross-Fostering in Sows of Different Parities. Prev. Vet. Med. 2014, 114, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Trujillo, A.; Senn, L.K.; Teeple, K.; Casey, T.M.; Stewart, K.R. A Standardized Model to Study Effects of Varying 24-h Colostrum Dose on Postnatal Growth and Development. Transl. Anim. Sci. 2020, 4, txaa212. [Google Scholar] [CrossRef] [PubMed]
- Quesnel, H.; Farmer, C.; Theil, P.K. Colostrum and Milk Production. In The Gestating and Lactating Sow; Wageningen Academic Publishers: Wageningen, The Netherlands, 2014; pp. 173–192. ISBN 978-90-8686-253-5. [Google Scholar]
- Zhang, S.; Chen, F.; Zhang, Y.; Lv, Y.; Heng, J.; Min, T.; Li, L.; Guan, W. Recent Progress of Porcine Milk Components and Mammary Gland Function. J. Anim. Sci. Biotechnol. 2018, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wang, Z.A.; Wang, B.; Jahan, M.; Wang, Z.; Wynn, P.C.; Du, Y. Characterization of Porcine Milk Oligosaccharides over Lactation between Primiparous and Multiparous Female Pigs. Sci. Rep. 2018, 8, 4688. [Google Scholar] [CrossRef]
- Inoue, R.; Tsukahara, T. Composition and Physiological Functions of the Porcine Colostrum. Anim. Sci. J. 2021, 92, e13618. [Google Scholar] [CrossRef]
- Segura, M.; Martínez-Miró, S.; López, M.J.; Madrid, J.; Hernández, F. Effect of Parity on Reproductive Performance and Composition of Sow Colostrum during First 24 h Postpartum. Animals 2020, 10, 1853. [Google Scholar] [CrossRef]
- Xu, R.J.; Sangild, P.T.; Zhang, Y.Q.; Zhang, S.H. Chapter 5 Bioactive Compounds in Porcine Colostrum and Milk and Their Effects on Intestinal Development in Neonatal Pigs. Biol. Intest. Grow. Anim. 2002, 1, 169–192. [Google Scholar]
- Quesnel, H. Colostrum production by sows: Variability of colostrum yield and immunoglobulin G concentrations. Animal 2011, 5, 1546–1553. [Google Scholar] [CrossRef]
- Devillers, N.; Farmer, C.; Le Dividich, J.; Prunier, A. Variability of Colostrum Yield and Colostrum Intake in Pigs. Animal 2007, 1, 1033–1041. [Google Scholar] [CrossRef]
- Matheson, S.M.; Edwards, S.A.; Kyriazakis, I. Farm Characteristics Affecting Antibiotic Consumption in Pig Farms in England. Porc. Health Manag. 2022, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Krakowski, L.; Krzyżanowski, J.; Wrona, Z.; Kostro, K.; Siwicki, A.K. The Influence of Nonspecific Immunostimulation of Pregnant Sows on the Immunological Value of Colostrum. Vet. Immunol. Immunopathol. 2002, 87, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Bontempo, V.; Sciannimanico, D.; Pastorelli, G.; Rossi, R.; Rosi, F.; Corino, C. Dietary Conjugated Linoleic Acid Positively Affects Immunologic Variables in Lactating Sows and Piglets. J. Nutr. 2004, 134, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, T.; Piedra, J.V.; Skrzypek, H.; Wolinski, J.; Kazimierczak, W.; Szymanczyk, S.; Pawlowska, M.; Zabielski, R. Light and Scanning Electron Microscopy Evaluation of the Postnatal Small Intestinal Mucosa Development in Pigs. J. Physiol. Pharmacol. 2005, 56 (Suppl. S3), 71–87. [Google Scholar] [PubMed]
- Gao, J.; Yin, J.; Xu, K.; Li, T.; Yin, Y. What Is the Impact of Diet on Nutritional Diarrhea Associated with Gut Microbiota in Weaning Piglets: A System Review. BioMed Res. Int. 2019, 2019, 6916189. [Google Scholar] [CrossRef]
Ingredients (%) | Phases | |
---|---|---|
Gestation | Lactation | |
Corn 7.5% | 54.39 | 51.60 |
Soybean meal 45% | 26.50 | 27.00 |
Cookie meal | 10.00 | 9.00 |
Meat and bone meal 44% | 3.92 | 5.00 |
Soybean oil | 1.36 | 2.55 |
Soybean hulls | 1.25 | 2.00 |
Premix for sows | 1.50 1 | 1.50 1 |
Salt | 0.30 | 0.40 |
Limestone 37% | 0.20 | 0.33 |
L-carnitine | 0.20 | 0.20 |
Sodium bicarbonate 27% | 0.25 | 0.10 |
L-lysine 80% | 0.00 | 0.07 |
L-threonine 98% | 0.00 | 0.06 |
DL-methionine 98% | 0.00 | 0.04 |
Palatability enhancer | 0.00 | 0.02 |
Vitamin D3 | 0.01 | 0.01 |
Mycotoxin binder | 0.10 | 0.10 |
Beta-glucans ● | 0.02 | 0.02 |
Total | 100 | 100 |
Nutrients estimated | ||
Metabolizable energy—(kcal/kg) | 3325 | 3350 |
Crude protein (%) | 18.500 | 19.136 |
Lysine digestible (%) | 1.044 | 1.127 |
Methionine + cysteine digestible (%) | 0.854 | 0.897 |
Threonine digestible (%) | 0.726 | 0.797 |
Tryptophan digestible (%) | 0.466 | 0.469 |
Valine digestible (%) | 0.829 | 0.848 |
Crude fiber (%) | 3.653 | 3.888 |
Total fat (%) | 5.262 | 6.349 |
Total calcium (%) | 0.700 | 0.900 |
Total phosphorus (%) | 0.586 | 0.648 |
Available phosphorus (%) | 0.400 | 0.460 |
Sodium (%) | 0.320 | 0.322 |
Dry matter (%) | 87.264 | 87.564 |
Variables | Control | β-Glucans (1,3) | CV (%) | p-Value |
---|---|---|---|---|
Backfat thickness D85 (mm) | 12.32 | 11.88 | 22.01 | 0.1866 |
Backfat thickness D0 (mm) | 14.38 | 14.03 | 18.28 | 0.5557 |
Backfat thickness D21 (mm) | 12.81 | 12.25 | 19.69 | 0.2345 |
Difference BT D85 to D0 (mm) | 2.06 | 2.15 | 91.7 | 0.2487 |
Difference BT D1 to D21 (mm) | −1.57 | −1.78 | 112.9 | 0.1698 |
FCR * up to D10 | 2.142 | 2.122 | 36.7 | 0.9213 |
FCR * up to D18 | 2.026 | 2.134 | 29.1 | 0.4880 |
Average feed intake D21 | 6.49 | 6.40 | 20.7 | 0.7789 |
Variables | Control | β-Glucans (1,3) | CV (%) | p-Value |
---|---|---|---|---|
Total born (n) | 16.79 | 16.31 | 23.0 | 0.2931 |
Live born (n) | 15.34 | 14.79 | 24.3 | 0.3590 |
Stillborn (n) | 0.92 | 0.90 | 144.8 | 0.5123 |
Mummification (n) | 0.55 | 0.45 | 187.5 | 0.0948 |
Average weight at birth (kg) | 1.342 | 1.337 | 15.3 | 0.9263 |
Piglets below 900 g (n) | 1.76 | 1.56 | 113.9 | 0.6832 |
Piglets below 900 g (%) | 10.07 | 10.24 | 109.7 | 0.9423 |
Dystocia (n) | 3 | 1 | - | 0.5371 |
Dystocia (%) | 5.00 | 1.66 | - | |
Oxytocin (n) | 7 | 3 | - | 0.3153 |
Oxytocin (%) | 11.66 | 5.00 | - | - |
Time of delivery (min) | 224.15 | 255.74 | 41.6 | 0.1677 |
Weight at 18 h (kg) * | 1.403 | 1.426 | 14.9 | 0.7316 |
Serum glucose of sow at 0 h post-partum (mg/dL) * | 71.370 | 74.533 | 14.2 | 0.2566 |
Serum glucose of sow at 2 h post-partum (mg/dL) * | 73.778 | 76.233 | 18.8 | 0.5198 |
Serum glucose of sow at the end of parturition (mg/dL) * | 77.120 | 77.068 | 28.2 | 0.9932 |
Colostrum production up to 18 h (kg) * | 3.476 b | 4.343 a | 41.89 | 0.0450 |
Colostrum intake up to 18 h (g) * | 234.92 b | 294.05 a | 40.1 | 0.0394 |
Piglet weight gain up to 18 h (g) * | 68 b | 102 a | 69.3 | 0.0354 |
Colostrum intake by piglet weight (%) | 17.4 b | 21.8 a | 49.8 | 0.0000 |
Colostrum | Treatments | CV (%) | p-Value | |
---|---|---|---|---|
Control | β-Glucans (1,3) | |||
IgG (mg/mL) | 36.594 b | 42.508 a | 10.9 | 0.0000 |
IgA (mg/mL) | 6.462 | 10.332 | 72.9 | 0.0699 |
IgM (mg/mL) | 2.320 b | 2.698 a | 18.3 | 0.0161 |
Serum | ||||
IgG (mg/mL) | 27.038 b | 40.894 a | 41.1 | 0.0033 |
IgA (mg/mL) | 14.278 b | 31.439 a | 88.5 | 0.0236 |
IgM (mg/mL) | 9.135 b | 22.361 a | 112.2 | 0.0270 |
Variables | Control | β-Glucans (1,3) | CV (%) | p-Value |
---|---|---|---|---|
Piglets at D2 (n) | 14.98 | 14.98 | 4.5 | 0.7326 |
Piglets weight at D2 (kg) | 1.47 | 1.48 | 25.2 | 0.9425 |
Litter weight at D2 (kg) | 21.87 | 22.05 | 23.7 | 0.8810 |
Piglets at D10 (n) | 14.67 | 14.60 | 4.9 | 0.6767 |
DWG to D10 (kg) | 0.20 | 0.21 | 26.0 | 0.5745 |
Piglets weight at D10 (kg) | 3.06 | 3.16 | 21.7 | 0.6897 |
Litter weight at D10 (kg) | 43.26 | 45.92 | 25.4 | 0.7994 |
Piglets at D18 (n) | 14.49 | 14.28 | 5.4 | 0.2355 |
DWG to D18 (kg) | 0.23 | 0.23 | 20.3 | 0.6119 |
Piglets weight at D18 (kg) | 5.06 | 5.20 | 19.0 | 0.6794 |
Litter weight at D18 (kg) | 73.32 | 74.06 | 19.2 | 0.9867 |
Piglets at D21 (n) | 14.49 | 14.28 | 5.4 | 0.2355 |
DWG to D21 (kg) | 0.23 | 0.23 | 20.3 | 0.6119 |
Piglets weight at D21 (kg) | 5.74 | 5.89 | 19.1 | 0.6686 |
Litter weight at D21 (kg) | 83.09 | 84.00 | 19.3 | 0.9773 |
Piglets’ mortality (%) | 3.21 | 4.60 | 125.5 | 0.1285 |
Variables | Control | β-Glucans (1,3) | p-Value |
---|---|---|---|
Diarrhea D2–D10 (n) | 76 | 62 | 0.2094 |
Diarrhea D2–D10 (%) | 8.64 | 7.06 | - |
Diarrhea index D2–D10 | 0.085 | 0.069 | - |
Diarrhea D11–D18 (n) | 37 | 42 | 0.5578 |
Diarrhea D11–D18 (%) | 4.24 | 4.87 | - |
Diarrhea index D11–D18 | 0.042 | 0.047 | - |
Diarrhea D19–D21 (n) | 3 | 3 | 1.0000 |
Diarrhea D19–D21 (%) | 0.34 | 0.34 | - |
Diarrhea index D19–D21 | 0.003 | 0.003 | - |
Diarrhea D2–D21 (n) | 116 | 107 | 0.5080 |
Diarrhea D2–D21 (%) | 12.94 | 11.91 | - |
Diarrhea index D2–D21 | 0.129 | 0.124 | - |
TLD * (n) | 18 | 12 | 0.2091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, R.H.; Callegari, M.A.; Dias, C.P.; Kirwan, S.; da Costa, M.C.R.; da Silva, C.A. Euglena gracilis β-Glucans (1,3): Enriching Colostrum of Sow for Enhanced Piglet Immunity. Animals 2023, 13, 3490. https://doi.org/10.3390/ani13223490
de Carvalho RH, Callegari MA, Dias CP, Kirwan S, da Costa MCR, da Silva CA. Euglena gracilis β-Glucans (1,3): Enriching Colostrum of Sow for Enhanced Piglet Immunity. Animals. 2023; 13(22):3490. https://doi.org/10.3390/ani13223490
Chicago/Turabian Stylede Carvalho, Rafael Humberto, Marco Aurélio Callegari, Cleandro Pazinato Dias, Susanne Kirwan, Mara Cristina Ribeiro da Costa, and Caio Abércio da Silva. 2023. "Euglena gracilis β-Glucans (1,3): Enriching Colostrum of Sow for Enhanced Piglet Immunity" Animals 13, no. 22: 3490. https://doi.org/10.3390/ani13223490
APA Stylede Carvalho, R. H., Callegari, M. A., Dias, C. P., Kirwan, S., da Costa, M. C. R., & da Silva, C. A. (2023). Euglena gracilis β-Glucans (1,3): Enriching Colostrum of Sow for Enhanced Piglet Immunity. Animals, 13(22), 3490. https://doi.org/10.3390/ani13223490