The Identification of Functional Genes Affecting Fat-Related Meat Traits in Meat-Type Pigeons Using Double-Digest Restriction-Associated DNA Sequencing and Molecular Docking Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Phenotyping
2.2. Construction and Sequencing of the ddRAD Sequencing Library
2.3. Quality Filtering and Mapping to the Reference Genome
2.4. Detection and Annotation of SNPs
2.5. In Silico Molecular Docking
2.6. Statistical Analysis
3. Results
3.1. Physical and Chemical Properties of Breast Muscles
3.2. ddRAD Sequencing and SNP Discovering
3.3. Distribution and Annotation of SNPs
3.4. In Silico Docking Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, S.G.; Pan, N.X.; Chen, M.J.; Wang, X.Q.; Yan, H.C.; Gao, C.Q. Effects of dietary supplementation with dl-methionine and dl-methionyl-dl-methionine in breeding pigeons on the carcass characteristics, meat quality and antioxidant activity of squabs. Antioxidants 2019, 8, 435. [Google Scholar] [CrossRef]
- Yin, Z.; Zhou, W.; Mao, H.; Dong, X.; Huang, X.; Zhang, H.; Liu, H. Identification of genes related to squab muscle growth and lipid metabolism from transcriptome profiles of breast muscle and liver in domestic pigeon (Columba livia). Animals 2022, 12, 1061. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, L.; Zhao, M.; Zhang, X.; Chen, J.; Zhang, Z.; Cheng, X.; Ren, C. Feeding regimens affecting carcass and quality attributes of sheep and goat meat: A comprehensive review. Anim. Biosci. 2023, 36, 1314–1326. [Google Scholar] [CrossRef] [PubMed]
- Estany, J.; Ros-Freixedes, R.; Tor, M.; Pena, R.N. Triennial growth and development symposium: Genetics and breeding for intramuscular fat and oleic acid content in pigs. J. Anim. Sci. 2017, 95, 2261–2271. [Google Scholar] [CrossRef] [PubMed]
- Baik, M.; Kang, H.J.; Park, S.J.; Na, S.W.; Piao, M.; Kim, S.Y.; Fassah, D.M.; Moon, Y.S. Triennial growth and development symposium: Molecular mechanisms related to bovine intramuscular fat deposition in the Longissimus muscle. J. Anim. Sci. 2017, 95, 2284–2303. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, J.; Wang, Y.; Li, Q.; Lin, S. Identification of differentially expressed genes through RNA sequencing in goats (Capra hircus) at different postnatal stages. PLoS ONE 2017, 12, e0182602. [Google Scholar] [CrossRef]
- Li, G.; Yang, R.; Lu, X.; Liu, Y.; He, W.; Li, Y.; Yu, H.; Qin, L.; Cao, Y.; Zhao, Z.; et al. RNA-seq analysis identifies differentially expressed genes in the Longissimus dorsi of wagyu and chinese red steppe cattle. Int. J. Mol. Sci. 2022, 24, 387. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, L.; Hao, X.; Wang, L.; Han, F.; Liu, L.; Duan, X.; Guo, F.; He, J.; Liu, N. Identification and characterization of circular rnas in association with the deposition of intramuscular fat in aohan fine-wool sheep. Front. Genet. 2021, 12, 759747. [Google Scholar] [CrossRef]
- Wang, Y.L.; Hou, Y.H.; Ling, Z.J.; Zhao, H.L.; Zheng, X.R.; Zhang, X.D.; Yin, Z.J.; Ding, Y.Y. RNA sequencing analysis of the Longissimus dorsi to identify candidate genes underlying the intramuscular fat content in Anqing Six-end-white pigs. Anim. Genet. 2023, 54, 315–327. [Google Scholar] [CrossRef]
- Kang, H.; Zhao, D.; Xiang, H.; Li, J.; Zhao, G.; Li, H. Large-scale transcriptome sequencing in broiler chickens to identify candidate genes for breast muscle weight and intramuscular fat content. Genet. Sel. Evol. 2021, 53, 66. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.; Ma, J.; Zhang, Y.; Zhang, H. Integrating genome and transcriptome profiling for elucidating the mechanism of muscle growth and lipid deposition in Pekin ducks. Sci. Rep. 2017, 7, 3837. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Zhou, B.; Wei, S.; Ding, M.; Lu, X.; Shi, X.; Ding, J.; Yang, S.; Wei, W. Transcriptomic analysis identifies candidate genes related to intramuscular fat deposition and fatty acid composition in the breast muscle of squabs (Columba). G3 (Bethesda) 2016, 6, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Cao, H.; Mao, H.; Hong, Q.; Yin, Z. Association of MyoD1 gene polymorphisms with meat quality traits in domestic pigeons (Columba livia). J. Poult. Sci. 2019, 56, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.G.; Xu, X.L.; Cao, H.Y.; Dong, X.Y.; Zou, X.T.; Xu, N.Y.; Yin, Z.Z. H-FABP gene expression and genetic association with meat quality traits in domestic pigeons (Columba livia). Br. Poult. Sci. 2021, 62, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Masharing, N.; Sodhi, M.; Chanda, D.; Singh, I.; Vivek, P.; Tiwari, M.; Kumari, P.; Mukesh, M. ddRAD sequencing based genotyping of six indigenous dairy cattle breeds of India to infer existing genetic diversity and population structure. Sci. Rep. 2023, 13, 9379. [Google Scholar] [CrossRef]
- Rahman, J.U.; Kumar, D.; Singh, S.P.; Shahi, B.N.; Ghosh, A.K.; Verma, M.K.; Pathak, A.; Dar, A.H.; Kumar, A.; Sharma, R.K. Genome-wide identification and annotation of SNPs and their mapping in candidate genes related to milk production and fertility traits in Badri cattle. Trop. Anim. Health Prod. 2023, 55, 117. [Google Scholar] [CrossRef]
- Raja, T.V.; Alex, R.; Singh, U.; Kumar, S.; Das, A.K.; Sengar, G.; Singh, A.K. Genome wide mining of SNPs and INDELs through ddRAD sequencing in Sahiwal cattle. Anim. Biotechnol. 2023, 24, 1–15. [Google Scholar] [CrossRef]
- Kour, A.; Niranjan, S.K.; Malayaperumal, M.; Surati, U.; Pukhrambam, M.; Sivalingam, J.; Kumar, A.; Sarkar, M. Genomic diversity profiling and breed-specific evolutionary signatures of selection in arunachali yak. Genes 2022, 13, 254. [Google Scholar] [CrossRef]
- Ye, M.; Xu, M.; Lu, M.; Zhou, B.; Heba, A.E.K.; Said, A.S.; Fathy, M.K. Identification of candidate genes associated with milk yield trait in buffaloes (Bubalus bubalis) by restriction-site-associated DNA sequencing. R. Bras. Zootec. 2020, 49, e20190267. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, Y.; Yang, Y.; Chen, Z.; Liao, R.; Xie, X.; Wang, Z.; He, P.; Tu, Y.; Zhang, X.; et al. Genotyping by genome reducing and sequencing for outbred animals. PLoS ONE 2013, 8, e67500. [Google Scholar] [CrossRef] [PubMed]
- Herry, F.; Hérault, F.; Lecerf, F.; Lagoutte, L.; Doublet, M.; Picard-Druet, D.; Bardou, P.; Varenne, A.; Burlot, T.; Le Roy, P.; et al. Restriction site-associated DNA sequencing technologies as an alternative to low-density SNP chips for genomic selection: A simulation study in layer chickens. BMC Genom. 2023, 24, 271. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Zhao, W.; He, C.; Yang, K.; Tang, L.; Liu, S.; Zhang, Y.; Huang, Q.; Meng, H. SNP discovery and genotyping using restriction-site-associated DNA sequencing in chickens. Anim. Genet. 2015, 46, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.; Wang, Z.; Chen, Q.; Tu, Y.; Chen, Z.; Wang, Q.; Yang, C.; Zhang, X.; Pan, Y. An efficient genotyping method in chicken based on genome reducing and sequencing. PLoS ONE 2015, 10, e0137010. [Google Scholar] [CrossRef]
- Pértille, F.; Guerrero-Bosagna, C.; Silva, V.H.; Boschiero, C.; Nunes, J.R.; Ledur, M.C.; Jensen, P.; Coutinho, L.L. High-throughput and cost-effective chicken genotyping using next-generation sequencing. Sci. Rep. 2016, 6, 26929. [Google Scholar] [CrossRef]
- Ye, M.; Xu, M.; Chen, C.; He, Y.; Ding, M.; Ding, X.; Wei, W.; Yang, S.; Zhou, B. Expression analyses of candidate genes related to meat quality traits in squabs from two breeds of meat-type pigeon. J. Anim. Physiol. Anim. Nutr. 2018, 102, 727–735. [Google Scholar] [CrossRef]
- Mohanty, M.; Mohanty, P.S. Molecular docking in organic, inorganic, and hybrid systems: A tutorial review. Monatsh. Chem. 2023, 154, 683–707. [Google Scholar] [CrossRef]
- Callil-Soares, P.H.; Biasi, L.C.K.; Pessoa Filho, P.A. Effect of preprocessing and simulation parameters on the performance of molecular docking studies. J. Mol. Model. 2023, 29, 251. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Rochette, N.C.; Rivera-Colón, A.G.; Catchen, J.M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 2019, 28, 4737–4754. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Huang, W.; Liang, Y.; Zhang, W.; Zhang, Y.; Yang, M.; Zheng, S.; Lv, Y.; Gou, Z.; Cheng, C.; et al. Optimal dietary energy and protein levels for breeding pigeons in the winter “2 + 3” lactation pattern. Poult. Sci. 2023, 102, 102964. [Google Scholar] [CrossRef]
- Peng, J.; Huang, W.; Zhang, W.; Zhang, Y.; Yang, M.; Zheng, S.; Lv, Y.; Gao, H.; Wang, W.; Peng, J.; et al. Effect of different dietary energy/protein ratios on growth performance, reproductive performance of breeding pigeons and slaughter performance, meat quality of squabs in summer. Poult. Sci. 2023, 102, 102577. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, H.; Han, P.; Li, Y.; Sun, Y.; Yuan, J.; Wang, Y.; Ni, A.; Zong, Y.; Bian, S.; et al. Effects of feed systems on growth performance, carcass characteristics, organ index, and serum biochemical parameters of pigeon. Poult. Sci. 2022, 101, 102224. [Google Scholar] [CrossRef]
- Liu, T.; Wang, L.; Jiang, X.; Liu, Y.; Diao, E.; Xie, P. Free-choice feeding of whole grains improves meat quality and intestinal development of pigeon squabs compared with complete pelleted feed. Life 2023, 13, 848. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, X.; Liu, Y.; Dong, X.; Zou, X. Parental dietary arachidonic acid altered serum fatty acid profile, hepatic antioxidant capacity, and lipid metabolism in domestic pigeons (Columba livia). Anim. Sci. J. 2021, 92, e13616. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, W.; Li, J.; Hu, C.; Zou, X.; Dong, X. Dietary supplementation of chitosan oligosaccharide-clostridium butyricum synbiotic relieved early-weaned stress by improving intestinal health on pigeon squabs (Columba livia). Front. Immunol. 2022, 13, 926162. [Google Scholar] [CrossRef] [PubMed]
- Amer, H.Y.; Hassan, R.I.M.; Mustafa, F.E.A.; El-Shoukary, R.D.; Rehan, I.F.; Zigo, F.; Lacková, Z.; Gomaa, W.M.S. Modulation of immunity, antioxidant status, performance, blood hematology, and intestinal histomorphometry in response to dietary inclusion of Origanum majorana in domestic pigeons’ diet. Life 2023, 13, 664. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Tang, Q.; Zhang, R.; Fu, S.; Mu, C.; Shen, X.; Bu, Z. Evaluation of meat quality of local pigeon varieties in China. Animals 2023, 13, 1291. [Google Scholar] [CrossRef]
- Boschetti, E.; Bordoni, A.; Meluzzi, A.; Castellini, C.; Dal Bosco, A.; Sirri, F. Fatty acid composition of chicken breast meat is dependent on genotype-related variation of FADS1 and FADS2 gene expression and desaturating activity. Animal 2016, 10, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mei, H.; Liu, Y.; Li, Z.; Qamar, H.; Yu, M.; Ma, X. Dietary supplementation with rutin alters meat quality, fatty acid profile, antioxidant capacity, and expression levels of genes associated with lipid metabolism in breast muscle of qingyuan partridge chickens. Foods 2023, 12, 2302. [Google Scholar] [CrossRef]
- Luo, N.; Shu, J.; Yuan, X.; Jin, Y.; Cui, H.; Zhao, G.; Wen, J. Differential regulation of intramuscular fat and abdominal fat deposition in chickens. BMC Genom. 2022, 23, 308. [Google Scholar] [CrossRef]
- Chang, T.Y.; Li, B.L.; Chang, C.C.; Urano, Y. Acyl-coenzyme A: Cholesterol acyltransferases. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E1–E9. [Google Scholar] [CrossRef]
- Liu, L.; Cui, H.; Fu, R.; Zheng, M.; Liu, R.; Zhao, G.; Wen, J. The regulation of IMF deposition in pectoralis major of fast- and slow- growing chickens at hatching. J. Anim. Sci. Biotechnol. 2017, 8, 77. [Google Scholar] [CrossRef]
- Zhang, M.; Li, F.; Ma, X.F.; Li, W.T.; Jiang, R.R.; Han, R.L.; Li, G.X.; Wang, Y.B.; Li, Z.Y.; Tian, Y.D.; et al. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro. BMC Genom. 2019, 20, 743. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuang, H.; Cao, J.; Geng, A.; Wang, H.; Chu, Q.; Yan, Z.; Zhang, X.; Zhang, Y.; Liu, H. Breast meat fatty acid profiling and proteomic analysis of Beijing-You chicken during the laying period. Front. Vet. Sci. 2022, 9, 908862. [Google Scholar] [CrossRef]
- Dutta, D.; Mishra, S. Structural and mechanistic insight into substrate binding from the conformational dynamics in apo and substrate-bound DapE enzyme. Phys. Chem. Chem. Phys. 2016, 18, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shen, M.; Li, L. Exploring the active components and mechanism of modified bazhen decoction in treatment of chronic cerebral circulation insufficiency based on network pharmacology and molecular docking. Medicine 2023, 102, e34341. [Google Scholar] [CrossRef] [PubMed]
- Ferdinandusse, S.; Denis, S.; Mooijer, P.A.; Zhang, Z.; Reddy, J.K.; Spector, A.A.; Wanders, R.J. Identification of the peroxisomal beta-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. J. Lipid Res. 2001, 42, 1987–1995. [Google Scholar] [CrossRef] [PubMed]
- Kiema, T.R.; Harijan, R.K.; Strozyk, M.; Fukao, T.; Alexson, S.E.; Wierenga, R.K. The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): Insight into the reaction mechanism of its thiolase and thioesterase activities. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 3212–3225. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fu, S.; Chen, Y.; Jin, W.; Zhai, B.; Li, Y.; Sun, G.; Han, R.; Wang, Y.; Tian, Y.; et al. MicroRNA-15a regulates the differentiation of intramuscular preadipocytes by targeting ACAA1, ACOX1 and SCP2 in chickens. Int. J. Mol. Sci. 2019, 20, 4063. [Google Scholar] [CrossRef]
- Harriman, G.; Greenwood, J.; Bhat, S.; Huang, X.; Wang, R.; Paul, D.; Tong, L.; Saha, A.K.; Westlin, W.F.; Kapeller, R.; et al. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc. Natl. Acad. Sci. USA 2016, 113, E1796–E1805. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, D.; Peng, Z.; Zhu, Y.; Li, R.; Wu, Q.; Li, Y.; Li, H.; Xu, W.; Zhang, M.; et al. Identification of differentially expressed genes and lipid metabolism signaling pathways between muscle and fat tissues in broiler chickens. J. Poult. Sci. 2021, 8, 131–137. [Google Scholar] [CrossRef]
- Luo, C.; Zhao, S.; Dai, W.; Zheng, N.; Wang, J. Proteomic analysis of lysosomal membrane proteins in bovine mammary epithelial cells illuminates potential novel lysosome functions in lactation. J. Agric. Food Chem. 2018, 66, 13041–13049. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Cao, Y.; Xiao, C.; Liu, Y.; Jin, H.; Cao, Y. Effect of the ACAA1 gene on preadipocyte differentiation in sheep. Front. Genet. 2021, 12, 649140. [Google Scholar] [CrossRef]
- Miltiadou, D.; Hager-Theodorides, A.L.; Symeou, S.; Constantinou, C.; Psifidi, A.; Banos, G.; Tzamaloukas, O. Variants in the 3′ untranslated region of the ovine acetyl-coenzyme A acyltransferase 2 gene are associated with dairy traits and exhibit differential allelic expression. J. Dairy Sci. 2017, 100, 6285–6297. [Google Scholar] [CrossRef]
- Symeou, S.; Tzamaloukas, O.; Banos, G.; Miltiadou, D. ACAA2 and FASN polymorphisms affect the fatty acid profile of Chios sheep milk. J. Dairy Res. 2020, 87, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Liang, W.; Liu, L.; Li, Y.; Sun, D. Genetic association of the ACACB gene with milk yield and composition traits in dairy cattle. Anim. Genet. 2018, 49, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Zhang, X.; Wang, D.; Jin, G.; Li, B.; Xu, F.; Cheng, J.; Zhang, F.; Wu, S.; et al. The comprehensive liver transcriptome of two cattle breeds with different intramuscular fat content. Biochem. Biophys. Res. Commun. 2017, 490, 1018–1025. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Hou, X.; Yan, H.; Zhang, L.; Liu, X.; Gao, H.; Zhao, F.; Wang, L. Genome-wide identification of RNA editing sites affecting intramuscular fat in pigs. Animals 2020, 10, 1616. [Google Scholar] [CrossRef]
- Silva-Vignato, B.; Coutinho, L.L.; Poleti, M.D.; Cesar, A.S.M.; Moncau, C.T.; Regitano, L.C.A.; Balieiro, J.C.C. Gene co-expression networks associated with carcass traits reveal new pathways for muscle and fat deposition in Nelore cattle. BMC Genom. 2019, 20, 32. [Google Scholar] [CrossRef]
- Zappaterra, M.; Luise, D.; Zambonelli, P.; Mele, M.; Serra, A.; Costa, L.N.; Davoli, R. Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs. Meat Sci. 2019, 156, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Corominas, J.; Ramayo-Caldas, Y.; Puig-Oliveras, A.; Pérez-Montarelo, D.; Noguera, J.L.; Folch, J.M.; Ballester, M. Polymorphism in the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs. PLoS ONE 2013, 8, e53687. [Google Scholar] [CrossRef]
- Crespo-Piazuelo, D.; Criado-Mesas, L.; Revilla, M.; Castelló, A.; Noguera, J.L.; Fernández, A.I.; Ballester, M.; Folch, J.M. Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig. Sci. Rep. 2020, 10, 13962. [Google Scholar] [CrossRef]
- Palma-Granados, P.; García-Casco, J.M.; Caraballo, C.; Vázquez-Ortego, P.; Gómez-Carballar, F.; Sánchez-Esquiliche, F.; Óvilo, C.; Muñoz, M. Design of a low-density SNP panel for intramuscular fat content and fatty acid composition of backfat in free-range Iberian pigs. J. Anim. Sci. 2023, 101, skad079. [Google Scholar] [CrossRef]
- Xie, T.; Liu, Y.; Lu, H.; Iqbal, A.; Ruan, M.; Jiang, P.; Yu, H.; Meng, J.; Zhao, Z. The knockout of the ASIP gene altered the lipid composition in bovine mammary epithelial cells via the expression of genes in the lipid metabolism pathway. Animals 2022, 12, 1389. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Pan, C.; Feng, X.; Lei, Z.; Huang, J.; Wei, X.; Li, F.; Ma, Y. Identification of key genes and functional enrichment pathways involved in fat deposition in Xinyang buffalo by WGCNA. Gene 2022, 818, 146225. [Google Scholar] [CrossRef] [PubMed]
Items | Female SQ | Female WK | p-Value | Male SQ | Male WK | p-Value |
---|---|---|---|---|---|---|
Body weight (g) | 510.0 ± 5.8 | 444.0 ± 11.4 | 0.007 ** | 526.7 ± 8.8 | 470.0 ± 21.4 | 0.070 |
WBSF (Kg/f) | 1.060 ± 0.045 | 1.080 ± 0.021 | 0.708 | 1.037 ± 0.222 | 1.627 ± 0.206 | 0.123 |
WHC(%) | 63.59 ± 1.41 | 63.58 ± 0.81 | 0.996 | 61.85 ± 1.65 | 63.90 ± 0.82 | 0.328 |
IMF% | 3.2328 ± 0.1930 | 2.0225 ± 0.4125 | 0.004 | 2.0384 ± 0.1636 | 1.7731 ± 0.3078 | 0.307 |
C16:0 | 22.3421 ± 0.2818 | 22.0875 ± 0.4921 | 0.677 | 23.6477 ± 0.4845 | 21.0036 ± 0.6779 | 0.034 * |
C18:0 | 8.7136 ± 0.2263 | 10.3539 ± 0.8077 | 0.122 | 9.8626 ± 0.7161 | 10.3701 ± 0.7234 | 0.644 |
∑SFA | 34.2023 ± 0.4369 | 34.2604 ± 0.4597 | 0.931 | 35.2068 ± 0.2799 | 33.0905 ± 0.7618 | 0.060 |
C16:1, cis-9 | 5.4010 ± 0.2921 | 9.009 ± 0.5994 | 0.006 * | 5.0882 ± 0.2713 | 8.6849 ± 1.2331 | 0.046 * |
C18:1, cis-9 | 32.6232 ± 0.6590 | 36.8815 ± 1.3255 | 0.045 * | 32.4019 ± 1.4223 | 35.9913 ± 1.1260 | 0.119 |
∑MUFA | 38.9323 ± 1.0076 | 45.8906 ± 1.7524 | 0.026 * | 38.2960 ± 1.5041 | 44.7817 ± 1.9014 | 0.056 |
C18:2, cis-9,12 | 21.5117 ± 1.2321 | 15.2448 ± 0.9287 | 0.015 * | 21.3717 ± 0.1038 | 16.8426 ± 0.9562 | 0.009 ** |
C20:3, cis-11,14,17 | 4.0916 ± 0.3035 | 3.9388 ± 0.3734 | 0.767 | 3.0832 ± 0.9397 | 4.6960 ± 0.4949 | 0.448 |
C20:5, cis-5,8,11,14,17 | 0.9758 ± 0.0618 | 0.5803 ± 0.0416 | 0.006 * | 0.8500 ± 0.1770 | 0.6738 ± 0.1114 | 0.447 |
∑PUFA | 26.8655 ± 1.1656 | 19.7638 ± 1.3420 | 0.016 * | 26.3058 ± 1.2389 | 22.1278 ± 1.5426 | 0.102 |
∑ω-3FA | 5.1711 ± 0.3757 | 4.5191 ± 0.4149 | 0.309 | 4.7237 ± 1.1882 | 5.2853 ± 0.6127 | 0.696 |
∑ω-6FA | 21.6943 ± 1.2402 | 15.2448 ± 0.9287 | 0.014 * | 21.5821 ± 0.1005 | 16.8426 ± 0.9562 | 0.008 ** |
ω-6/ω-3 | 4.2529 ± 0.4733 | 3.4069 ± 0.1122 | 0.157 | 5.5360 ± 1.8704 | 3.2377 ± 0.1978 | 0.289 |
P/S | 0.6293 ± 0.0995 | 0.5220 ± 0.0105 | 0.344 | 0.7501 ± 0.0272 | 0.4952 ± 0.0170 | 0.001 ** |
Female SQ | Female WK | p-Value | Male SQ | Male WK | p-Value | ||
---|---|---|---|---|---|---|---|
NEAA | Asp | 3.40 ± 0.15 | 3.59 ± 0.26 | 0.226 | 3.54 ± 0.13 | 3.92 ± 0.12 | 0.001 ** |
Glu | 6.13 ± 0.23 | 6.37 ± 0.53 | 0.407 | 6.32 ± 0.29 | 7.06 ± 0.20 | 0.001 ** | |
Arg | 1.12 ± 0.17 | 1.11 ± 0.17 | 0.932 | 1.20 ± 0.19 | 1.13 ± 0.17 | 0.628 | |
Gly | 2.31 ± 0.11 | 2.44 ± 0.17 | 0.218 | 2.46 ± 0.12 | 2.71 ± 0.11 | 0.009 ** | |
Ala | 2.90 ± 0.15 | 3.06 ± 0.23 | 0.299 | 3.07 ± 0.13 | 3.30 ± 0.14 | 0.048 * | |
Ser | 1.85 ± 0.10 | 1.94 ± 0.17 | 0.390 | 1.94 ± 0.12 | 2.11 ± 0.10 | 0.069 | |
Cys | 0.18 ± 0.02 | 0.20 ± 0.05 | 0.587 | 0.18 ± 0.02 | 0.21 ± 0.02 | 0.116 | |
Tyr | 1.73 ± 0.09 | 1.72 ± 0.17 | 0.864 | 1.82 ± 0.10 | 1.88 ± 0.08 | 0.360 | |
His | 0.82 ± 0.12 | 0.85 ± 0.08 | 0.709 | 0.78 ± 0.12 | 0.87 ± 0.10 | 0.264 | |
Pro | 0.68 ± 0.05 | 0.64 ± 0.06 | 0.377 | 0.64 ± 0.05 | 0.71 ± 0.06 | 0.079 | |
EAA | Lys | 2.11 ± 0.16 | 2.00 ± 0.19 | 0.381 | 2.06 ± 0.18 | 1.99 ± 0.19 | 0.628 |
Val | 2.70 ± 0.13 | 2.75 ± 0.24 | 0.694 | 2.80 ± 0.12 | 3.01 ± 0.08 | 0.014 * | |
Met | 0.76 ± 0.13 | 0.76 ± 0.14 | 0.977 | 0.77 ± 0.13 | 0.85 ± 0.12 | 0.438 | |
Ile | 2.61 ± 0.14 | 2.56 ± 0.22 | 0.730 | 2.72 ± 0.15 | 2.87 ± 0.09 | 0.173 | |
Leu | 3.07 ± 0.14 | 3.10 ± 0.24 | 0.857 | 3.18 ± 0.16 | 3.43 ± 0.10 | 0.024 * | |
Phe | 2.79 ± 0.13 | 2.83 ± 0.30 | 0.779 | 2.92 ± 0.14 | 3.12 ± 0.09 | 0.054 | |
Thr | 2.22 ± 0.19 | 2.29 ± 0.26 | 0.670 | 2.12 ± 0.43 | 2.53 ± 0.20 | 0.146 | |
EAA/NEAA | 76.96 ± 1.28 | 74.08 ± 2.00 | 0.028 * | 75.53 ± 3.06 | 74.51 ± 1.71 | 0.609 |
Reference | Gene | Position | Codon | Amino Acid (Position) | Protein ID |
---|---|---|---|---|---|
NW_004973530.1 | ACAA1 (acetyl-CoA acyltransferase 1) | 195222 | AGT/AAT | Ser/Asn (357) | XP_005509181.1 |
NW_004973534.1 | ACAA2 (acetyl-CoA acyltransferase 2) | 468878 | ACT/ATT | Thr/Ile (234) | XP_005509195.2 |
NW_004973182.1 | ACACB (acetyl-CoA carboxylase beta) | 2195260 | CAC/AAC | His/Asn (1418) | XP_021140886.1 |
NW_004973254.1 | ACAT1 (acetyl-CoA acetyltransferase 1) | 7307277 | AAC/AAA | Asn/Lys (143) | XP_021141966.1 |
NW_004973187.1 | ACOX3 (acyl-CoA oxidase 3, pristanoyl) | 1445784 | GCC/TCC | Ala/Ser (329) | XP_021143932.1 |
NW_004973678.1 | FADS1 (fatty acid desaturase 1) | 407943 | GCA/ACA | Ala/Thr (76) | XP_005511095.1 |
NW_004974432.1 | HADHA (hydroxyacyl-CoA dehydrogenase, alpha subunit) | 29797 | GAG/AAG | Glu/Lys (314) | XP_021138551.1 |
NW_004974432.1 | HADHB (hydroxyacyl-CoA dehydrogenase, beta subunit) | 20595 | AAA/GAA | Lys/Glu (96) | XP_013226901.1 |
NW_004973569.1 | MECR (mitochondrial trans-2-enoyl-CoA reductase) | 3420884 | ACG/ATG | Thr/Met (218) | XP_021153195.1 |
NW_004973196.1 | OXSM (3-oxoacyl-ACP synthase, mitochondrial) | 1164225 | CAC/CGC | His/Arg (5) | XP_005499238.1 |
Cluster | Description | Strength | lgFDR |
---|---|---|---|
CL:20682 | acetyl-CoA C-acyltransferase activity and fatty acid beta-oxidation using acyl-CoA dehydrogenase | 2.65 | −6.75 |
CL:20720 | decanoate-CoA ligase activity and isobutyryl-CoA dehydrogenase | 2.59 | −6.61 |
CL:20806 | Fatty acid biosynthesis | 2.49 | −2.14 |
CL:20660 | Fatty acid beta-oxidation | 2.41 | −10.08 |
CL:20663 | Acyl-CoA oxidase and MaoC-like domain | 2.41 | −2.04 |
CL:20652 | Fatty acid beta-oxidation and medium-chain fatty acid-CoA ligase activity | 2.35 | −22.43 |
CL:20655 | Fatty acid beta-oxidation and decanoate-CoA ligase activity | 2.33 | −13.67 |
CL:20650 | Fatty acid beta-oxidation and medium-chain fatty acid-CoA ligase activity | 2.26 | −23.73 |
CL:20963 | Fatty acid biosynthesis | 2.19 | −1.70 |
CL:20961 | Biosynthesis of unsaturated fatty acids | 2.16 | −3.39 |
CL:20648 | Valine, leucine, and isoleucine degradation and fatty acid metabolism | 2.15 | −28.75 |
CL:20649 | Valine, leucine, and isoleucine degradation and fatty acid beta-oxidation | 2.14 | −24.44 |
CL:20644 | Fatty acid metabolic process and microbody membrane | 1.92 | −32.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Tian, S.; Meng, C.; Ji, F.; Zhou, B.; Rushdi, H.E.; Ye, M. The Identification of Functional Genes Affecting Fat-Related Meat Traits in Meat-Type Pigeons Using Double-Digest Restriction-Associated DNA Sequencing and Molecular Docking Analysis. Animals 2023, 13, 3256. https://doi.org/10.3390/ani13203256
Yuan S, Tian S, Meng C, Ji F, Zhou B, Rushdi HE, Ye M. The Identification of Functional Genes Affecting Fat-Related Meat Traits in Meat-Type Pigeons Using Double-Digest Restriction-Associated DNA Sequencing and Molecular Docking Analysis. Animals. 2023; 13(20):3256. https://doi.org/10.3390/ani13203256
Chicago/Turabian StyleYuan, Siyu, Shaoqi Tian, Chuang Meng, Feng Ji, Bin Zhou, Hossam E. Rushdi, and Manhong Ye. 2023. "The Identification of Functional Genes Affecting Fat-Related Meat Traits in Meat-Type Pigeons Using Double-Digest Restriction-Associated DNA Sequencing and Molecular Docking Analysis" Animals 13, no. 20: 3256. https://doi.org/10.3390/ani13203256
APA StyleYuan, S., Tian, S., Meng, C., Ji, F., Zhou, B., Rushdi, H. E., & Ye, M. (2023). The Identification of Functional Genes Affecting Fat-Related Meat Traits in Meat-Type Pigeons Using Double-Digest Restriction-Associated DNA Sequencing and Molecular Docking Analysis. Animals, 13(20), 3256. https://doi.org/10.3390/ani13203256