Analysis of the Complete Mitochondrial Genome of Pteronura brasiliensis and Lontra canadensis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mitochondrial Genome Assembly and Annotation
2.2. tRNA Gene Structure Analyses
2.3. Comparative Mitochondrial Genome Analyses
2.4. Phylogenetic Analyses
2.5. Selection Analyses
2.6. Phylogenetic Independent Contrast (PIC) Analysis
3. Results
3.1. Mitochondrial Genome Structure and Annotation
3.2. tRNA Gene Structure
3.3. Comparison of Mitochondrial Genomes among Species
3.4. Phylogenetic Analyses
3.5. Selection Analyses
3.6. PIC Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duplaix, N. Observations on the Ecology and Behavior of the Giant River Otter Pteronura brasiliensis in Suriname. Rev. D’écologie 1980, 34, 495–620. [Google Scholar] [CrossRef]
- Lariviere, S.; Walton, L.R. Lontra canadensis. Mamm. Species 1998, 587, 1–8. [Google Scholar] [CrossRef]
- Noonan, P.; Prout, S.; Hayssen, V. Pteronura brasiliensis (Carnivora: Mustelidae). Mamm. Species 2017, 49, 97–108. [Google Scholar] [CrossRef]
- Chadwick, E. Otters: Ecology, Behaviour and Conservation. Freshw. Biol. 2010, 53, 1914–1915. [Google Scholar] [CrossRef]
- Timm-Davis, L.L.; DeWitt, T.J.; Marshall, C.D. Divergent Skull Morphology Supports Two Trophic Specializations in Otters (Lutrinae). PLoS ONE 2015, 10, e0143236. [Google Scholar] [CrossRef]
- Waku, D.; Segawa, T.; Yonezawa, T.; Akiyoshi, A.; Ishige, T.; Ueda, M.; Ogawa, H.; Sasaki, H.; Ando, M.; Kohno, N.; et al. Evaluating the Phylogenetic Status of the Extinct Japanese Otter on the Basis of Mitochondrial Genome Analysis. PLoS ONE 2016, 11, e0149341. [Google Scholar] [CrossRef]
- Das, J. The role of mitochondrial respiration in physiological and evolutionary adaptation. Bioessays 2010, 28, 890–901. [Google Scholar] [CrossRef]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef]
- Macey, J.R.; Schulte, J.A.; Larson, A.; Papenfuss, T.J. Tandem duplication via light-strand synthesis may provide a precursor for mitochondrial genomic rearrangement. Mol. Biol. Evol. 1998, 15, 71–75. [Google Scholar] [CrossRef]
- Pereira, S.L. Mitochondrial genome organization and vertebrate phylogenetics. Genet. Mol. Biol. 2000, 23, 745–752. [Google Scholar] [CrossRef]
- Gissi, C.; Iannelli, F.; Pesole, G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 2008, 101, 301–320. [Google Scholar] [CrossRef]
- Saccone, C.; De Giorgi, C.; Gissi, C.; Pesole, G.; Reyes, A. Evolutionary genomics in Metazoa: The mitochondrial DNA as a model system. Gene 1999, 238, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhang, H.; Wu, X.; Sha, W. The selective constraints of ecological specialization in mustelidae on mitochondrial genomes. Mammal Res. 2019, 65, 85–92. [Google Scholar] [CrossRef]
- Wang, X.; Shang, Y.; Wu, X.; Wei, Q.; Zhou, S.; Sun, G.; Mei, X.; Dong, Y.; Sha, W.; Zhang, H. Divergent evolution of mitogenomics in Cetartiodactyla niche adaptation. Org. Divers. Evol. 2023, 23, 243–259. [Google Scholar] [CrossRef]
- Yang, M.; Gong, L.; Sui, J.; Li, X. The complete mitochondrial genome of Calyptogena marissinica (Heterodonta: Veneroida: Vesicomyidae): Insight into the deep-sea adaptive evolution of vesicomyids. PLoS ONE 2019, 14, e0217952. [Google Scholar] [CrossRef] [PubMed]
- Bjornerfeldt, S.; Webster, M.T.; Vila, C. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res. 2006, 16, 990–994. [Google Scholar] [CrossRef]
- Maceachern, S.; Mcewan, J.; Mcculloch, A.; Mather, A.; Savin, K.; Goddard, M. Molecular evolution of the Bovini tribe (Bovidae, Bovinae): Is there evidence of rapid evolution or reduced selective constraint in Domestic cattle? BMC Genom. 2009, 10, 179–193. [Google Scholar] [CrossRef]
- Wang, Z.; Yonezawa, T.; Bin Liu, B.; Ma, T.; Shen, X.; Su, J.; Guo, S.; Hasegawa, M.; Liu, J. Domestication relaxed selective constraints on the yak mitochondrial genome. Mol. Biol. Evol. 2011, 28, 1553–1556. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Feng, C.; Zhao, K.; Song, Z.; Zhang, Y.; Yang, L.; He, S. Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude. Sci. Rep. 2016, 6, 29690–29700. [Google Scholar] [CrossRef]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef]
- Lohse, M.; Drechsel, O.; Bock, R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 2007, 52, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.C.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovli, I.; Zou, H.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef]
- Yang, Z.H. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Phylogenies and the Comparative Method. Am. Nat. 1985, 125, 1–15. [Google Scholar] [CrossRef]
- Maes, D.; Collins, D.; Declercq, L.; Foyouzi-Yousseffi, R.; Gan, D.; Mammone, T.; Pelle, E.; Marenus, K.; Gedeon, H. Improving cellular function through modulation of energy metabolism. Int. J. Cosmet. 2004, 26, 268–269. [Google Scholar] [CrossRef]
- Huttemann, M.; Lee, I.; Samavati, L.; Yu, H.; Doan, J.W. Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim. Biophys. Acta 2007, 1773, 1701–1720. [Google Scholar] [CrossRef]
- Koch, R.E.; Buchanan, K.L.; Casagrande, S.; Crino, O.; Dowling, D.K.; Hill, G.E.; Hood, W.R.; McKenzie, M.; Mariette, M.M.; Noble, D.W.; et al. Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends Ecol. Evol. 2021, 36, 321–332. [Google Scholar] [CrossRef]
- Yonezawa, T.; Nikaido, M.; Kohno, N.; Fukumoto, Y.; Okada, N.; Hasegawa, M. Molecular phylogenetic study on the origin and evolution of Mustelidae. Gene 2007, 396, 1–12. [Google Scholar] [CrossRef]
- Ki, J.S.; Hwang, D.S.; Park, T.J.; Han, S.H.; Lee, J.S. A comparative analysis of the complete mitochondrial genome of the Eurasian otter Lutra lutra (Carnivora; Mustelidae). Mol. Biol. Rep. 2010, 37, 1943–1955. [Google Scholar] [CrossRef]
- Salleh, F.M.; Ramos-Madrigal, J.; Peñaloza, F.; Liu, S.; Mikkel-Holger, S.S.; Riddhi, P.P.; Martins, R.; Lenz, D.; Fickel, J.; Roos, C.; et al. An expanded mammal mitogenome dataset from Southeast Asia. GigaScience 2017, 6, gix053. [Google Scholar]
- Madisha, M.T.; du Plessis, M.; Kotze, A.; Dalton, D.L. Complete mitochondrial genomes of the African clawless (Aonyx capensis) and spotted necked (Hydrictis maculicollis) otter: Structure, annotation, and interspecies variation. Mitochondrial DNA B 2019, 4, 1556–1557. [Google Scholar] [CrossRef]
- Baeza, J.A.; Macdonald-Shedd, A.; Latorre-Cárdenas, M.C.; Griffin, E.; Gutiérrez-Rodríguez, C. The first genomic resource for the ‘near threatened’ Neotropical otter Lontra longicaudis (Carnivora: Mustelidae): Mitochondrial genome characterisation and insights into phylomitogenomic relationships in the family Mustelidae. J. Nat. Hist. 2023, 57, 408–425. [Google Scholar] [CrossRef]
- Saccone, C.; Gissi, C.; Reyes, A.; Larizza, A.; Pesole, G. Mitochondrial DNA in metazoa: Degree of freedom in a frozen event. Gene 2002, 286, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Zhao, C.; Xia, T.; Wei, Q.; Yang, X.; Feng, S.; Sha, W.; Zhang, H. Sequence and organisation of the mitochondrial genome of Japanese Grosbeak (Eophona personata), and the phylogenetic relationships of Fringillidae. Zookeys 2020, 995, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Wang, X.; Liu, G.; Wu, X.; Wei, Q.; Sun, G.; Mei, X.; Dong, Y.; Sha, W.; Zhang, H. Adaptability and Evolution of Gobiidae: A Genetic Exploration. Animals 2022, 12, 1741. [Google Scholar] [CrossRef] [PubMed]
- Kono, N.; Tomita, M.; Arakawa, K. Accelerated Laboratory Evolution Reveals the Influence of Replication on the GC Skew in Escherichia coli. Genome Biol. Evol. 2018, 10, 3110–3117. [Google Scholar] [CrossRef]
- Ma, B.; Li, Z.; Lv, Y.; E, Z.; Fang, J.; Ren, C.; Luo, P.; Hu, C. Analysis of Complete Mitochondrial Genome of Bohadschia argus (Jaeger, 1833) (Aspidochirotida, Holothuriidae). Animals 2022, 12, 1437. [Google Scholar] [CrossRef] [PubMed]
- Fourdrilis, S.; de Frias Martins, A.M.; Backeljau, T. Relation between mitochondrial DNA hyperdiversity, mutation rate and mitochondrial genome evolution in Melarhaphe neritoides (Gastropoda: Littorinidae) and other Caenogastropoda. Sci. Rep. 2018, 8, 17964. [Google Scholar] [CrossRef]
- Watanabe, Y.; Suematsu, T.; Ohtsuki, T. Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Front. Genet. 2014, 5, 109. [Google Scholar] [CrossRef]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
- Moretti, B.; Al-Sheikhly, O.F.; Guerrini, M.; Theng, M.; Gupta, B.K.; Haba, M.K.; Khan, W.A.; Khan, A.A.; Barbanera, F. Phylogeography of the smooth-coated otter (Lutrogale perspicillata): Distinct evolutionary lineages and hybridization with the Asian small-clawed otter (Aonyx cinereus). Sci. Rep. 2017, 7, 41611. [Google Scholar] [CrossRef]
- Park, H.-C.; Kurihara, N.; Kim, K.S.; Min, M.-S.; Han, S.; Lee, H.; Kimura, J. What is the taxonomic status of East Asian otter species based on molecular evidence?: Focus on the position of the Japanese otter holotype specimen from museum. Anim. Cells Syst. 2019, 23, 228–234. [Google Scholar] [CrossRef]
- Kim, H.; Jo, Y. Complete mitochondrial genome sequencing of Lutra lutra (Linnaeus, 1758) (Carnivora: Mustelidae) and its phylogenetic status in Mustelidae. Mitochondrial DNA Part B Resour. 2021, 6, 2066–2068. [Google Scholar] [CrossRef]
- de Ferran, V.; Figueiró, H.V.; de Jesus Trindade, F.; Smith, O.; Sinding, M.H.; Trinca, C.S.; Lazzari, G.Z.; Veron, G.; Vianna, J.A.; Barbanera, F.; et al. Phylogenomics of the world’s otters. Curr. Biol. 2022, 32, 3650–3658.e4. [Google Scholar] [CrossRef]
- Koepfli, K.P.; Deere, K.A.; Slater, G.J.; Begg, C.; Begg, K.; Grassman, L.; Lucherini, M.; Veron, G.; Wayne, R.K. Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol. 2008, 6, 10. [Google Scholar] [CrossRef]
- Hughes, A.L. Accumulation of slightly deleterious mutations in the mitochondrial genome: A hallmark of animal domestication. Gene 2013, 515, 28–33. [Google Scholar] [CrossRef]
- Shen, Y.Y.; Shi, P.; Sun, Y.B.; Zhang, Y.P. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res. 2009, 19, 1760–1765. [Google Scholar] [CrossRef]
- Sun, S.; Li, Q.; Kong, L.; Yu, H. Limited locomotive ability relaxed selective constraints on molluscs mitochondrial genomes. Sci. Rep. 2017, 7, 10628–10636. [Google Scholar] [CrossRef]
- Zhang, S.; Han, J.; Zhong, D.; Wang, T. Analysis of selective constraints on mitochondrial DNA, Flight ability and physiological index on avian. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013. [Google Scholar]
- Sun, Y.B.; Shen, Y.Y.; Irwin, D.M.; Zhang, Y.P. Evaluating the roles of energetic functional constraints on teleost mitochondrial-encoded protein evolution. Mol. Biol. Evol. 2011, 28, 39–44. [Google Scholar] [CrossRef]
- Palozzi, J.M.; Jeedigunta, S.P.; Hurd, T.R. Mitochondrial DNA Purifying Selection in Mammals and Invertebrates. J. Mol. Biol. 2018, 430, 4834–4848. [Google Scholar] [CrossRef]
- Allen, J.F. Cyclic, pseudocyclic and noncyclic photophosphorylation: New links in the chain. Trends Plant Sci. 2003, 8, 15–19. [Google Scholar] [CrossRef]
- Li, F.; Lv, Y.; Wen, Z.; Bian, C.; Zhang, X.; Guo, S.; Shi, Q.; Li, D. The complete mitochondrial genome of the intertidal spider (Desis jiaxiangi) provides novel insights into the adaptive evolution of the mitogenome and the evolution of spiders. BMC Ecol. Evol. 2021, 21, 72. [Google Scholar] [CrossRef]
- Chang, H.; Qiu, Z.; Yuan, H.; Wang, X.; Li, X.; Sun, H.; Guo, X.; Lu, Y.; Feng, X.; Majid, M.; et al. Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Mol. Phylogenet. Evol. 2020, 145, 106734. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, S.; Wu, X.; Wei, Q.; Shang, Y.; Sun, G.; Mei, X.; Dong, Y.; Sha, W.; Zhang, H. High-altitude adaptation in vertebrates as revealed by mitochondrial genome analyses. Ecol. Evol. 2021, 11, 15077–15084. [Google Scholar] [CrossRef]
- Zhou, T.; Shen, X.; Irwin, D.M.; Shen, Y.; Zhang, Y. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds. Mitochondrion 2014, 18, 70–75. [Google Scholar] [CrossRef]
Gene | Nucleotide Positions | Size (bp) | Stand | Intergenic Nucleotide | Start | Stop |
---|---|---|---|---|---|---|
tRNAPHE | 1–69 | 69 | + | |||
12s rRNA | 72–1033 | 962 | + | 2 | ||
tRNAVAL | 1034–1101 | 68 | + | 0 | ||
16s rRNA | 1102–2670 | 1569 | + | 0 | ||
tRNALEU | 2671–2745 | 75 | + | 0 | ||
ND1 | 2748–3704 | 957 | + | 2 | ATG | TAG |
tRNAILE | 3704–3772 | 69 | + | −1 | ||
tRNAGLN | 3770–3843 | 74 | − | −3 | ||
tRNAMET | 3845–3913 | 69 | + | 1 | ||
ND2 | 3914–4957 | 1044 | + | 0 | ATC | TAG |
tRNATRP | 4956–5023 | 68 | + | −2 | ||
tRNAALA | 5033–5101 | 69 | − | 9 | ||
tRNAASN | 5103–5175 | 73 | − | 1 | ||
tRNACYS | 5209–5275 | 67 | − | 33 | ||
tRNATYR | 5276–5343 | 68 | − | 0 | ||
COX1 | 5345–6889 | 1545 | + | 1 | ATG | TAA |
tRNASER | 6887–6955 | 69 | − | −3 | ||
tRNAASP | 6962–7028 | 67 | + | 6 | ||
COX2 | 7029–7712 | 684 | + | 0 | ATG | TAA |
tRNALYS | 7716–7783 | 68 | + | 3 | ||
ATP8 | 7785–7988 | 204 | + | 1 | ATG | TAA |
ATP6 | 7946–8626 | 681 | + | −43 | ATG | TAA |
COX3 | 8626–9410 | 785 | + | −1 | ATG | TA- |
tRNAGLY | 9410–9479 | 70 | + | −1 | ||
ND3 | 9480–9827 | 348 | + | 0 | ATA | TAA |
tRNAARG | 9828–9895 | 69 | + | 0 | ||
ND4L | 9896–10,192 | 297 | + | 0 | GTG | TAA |
ND4 | 10,186–11,563 | 1378 | + | −7 | ATG | T-- |
tRNAHIS | 11,564–11,632 | 69 | + | 0 | ||
tRNASER | 11,633–11,694 | 62 | + | 0 | ||
tRNALEU | 11,695–11,764 | 70 | + | 0 | ||
ND5 | 11,765–13,585 | 1821 | + | 0 | ATT | TAA |
ND6 | 13,570–14,102 | 533 | − | −16 | ATG | TA- |
tRNAGLU | 14,103–14,171 | 69 | − | 0 | ||
CYTB | 14,176–15,315 | 1140 | + | 4 | ATG | AGA |
tRNATHR | 15,316–15,383 | 68 | + | 0 | ||
tRNAPRO | 15,384–15,449 | 66 | − | 0 |
P. brasiliensis | Size | A% | T% | G% | C% | AT% | GC% | AT Skew | GC Skew |
---|---|---|---|---|---|---|---|---|---|
mtDNA | 16,395.0 | 32.5 | 28.0 | 14.3 | 25.2 | 60.5 | 39.5 | 0.074 | −0.276 |
PCGs | 11,414.0 | 30.6 | 29.7 | 14.0 | 25.6 | 60.3 | 39.7 | 0.015 | −0.293 |
tRNAs | 1515.0 | 33.1 | 31.2 | 18.5 | 17.2 | 64.3 | 35.7 | 0.030 | 0.036 |
rRNAs | 2532.0 | 36.1 | 24.0 | 18.2 | 21.7 | 60.1 | 39.9 | 0.201 | −0.088 |
D-loop | 1010.0 | 29.7 | 27.9 | 15.5 | 26.8 | 57.6 | 42.4 | 0.031 | −0.267 |
L. canadensis | Size | A% | T% | G% | C% | AT% | GC% | AT Skew | GC Skew |
---|---|---|---|---|---|---|---|---|---|
mitogenome | 16,500.0 | 31.3 | 25.9 | 15.5 | 27.2 | 57.2 | 42.7 | 0.094 | −0.274 |
PCGs | 11,412.0 | 29.0 | 27.4 | 15.5 | 28.1 | 56.4 | 43.6 | 0.028 | −0.289 |
tRNAs | 1512.0 | 31.9 | 30.6 | 19.7 | 17.8 | 62.5 | 37.5 | 0.021 | 0.051 |
rRNAs | 2530.0 | 36.0 | 22.8 | 18.5 | 22.6 | 58.8 | 41.1 | 0.224 | −0.100 |
D-loop | 1123.0 | 30.0 | 26.0 | 16.4 | 27.6 | 56 | 44 | 0.071 | −0.255 |
Species | T(U)% | A% | AT% | AT Skew | C% | G% | GC% | GC Skew |
---|---|---|---|---|---|---|---|---|
Pteronura brasiliensis | 28.0 | 32.5 | 60.5 | 0.074 | 25.2 | 14.3 | 39.5 | −0.276 |
Lontra canadensis | 25.9 | 31.3 | 57.2 | 0.094 | 27.2 | 15.5 | 42.8 | −0.274 |
Hydrictis maculicollis | 26.9 | 31.8 | 58.7 | 0.083 | 26.4 | 14.8 | 41.3 | −0.281 |
Aonyx cinerea | 25.3 | 31.7 | 57.0 | 0.112 | 28.0 | 15.0 | 43.0 | −0.303 |
Aonyx capensis | 25.6 | 31.7 | 57.3 | 0.107 | 27.9 | 14.8 | 42.7 | −0.307 |
Enhydra lutris | 26.4 | 32.5 | 58.9 | 0.104 | 26.9 | 14.2 | 41.1 | −0.308 |
Lutra lutra | 25.8 | 32.3 | 58.1 | 0.112 | 27.5 | 14.4 | 41.9 | −0.313 |
Lutrogale perspicillata | 25.5 | 31.1 | 56.6 | 0.100 | 28.0 | 15.4 | 43.4 | −0.289 |
Lutra sumatrana | 25.8 | 32.6 | 58.3 | 0.116 | 27.5 | 14.2 | 41.7 | −0.318 |
Mustela frenata | 27.4 | 33.3 | 60.8 | 0.096 | 25.8 | 13.5 | 39.2 | −0.314 |
Mustela eversmannii | 27.3 | 32.8 | 60.0 | 0.091 | 26.1 | 13.9 | 40.0 | −0.305 |
Mustela itatsi | 27.5 | 33.0 | 60.5 | 0.091 | 25.7 | 13.7 | 39.5 | −0.304 |
Mustela nigripes | 27.2 | 32.9 | 60.1 | 0.095 | 26.2 | 13.8 | 39.9 | −0.310 |
Mustela putorius | 27.4 | 32.8 | 60.2 | 0.091 | 26.0 | 13.8 | 39.8 | −0.308 |
Mustela erminea | 26.6 | 33.4 | 60.1 | 0.113 | 26.5 | 13.4 | 39.9 | −0.327 |
Mustela kathiah | 27.9 | 33.3 | 61.1 | 0.088 | 25.3 | 13.6 | 38.9 | −0.301 |
Mustela nivalis | 27.3 | 32.6 | 60.0 | 0.088 | 26.0 | 14.0 | 40.0 | −0.299 |
Mustela sibirica | 27.3 | 32.9 | 60.2 | 0.093 | 26.0 | 13.9 | 39.8 | −0.304 |
Mustela altaica | 27.6 | 32.8 | 60.3 | 0.087 | 25.8 | 13.9 | 39.7 | −0.301 |
Vormela peregusna | 27.6 | 33.4 | 61.0 | 0.095 | 26.1 | 12.9 | 39.0 | −0.338 |
Galictis vittata | 26.8 | 32.3 | 59.2 | 0.093 | 26.3 | 14.5 | 40.8 | −0.290 |
Gene | Omega Background | Omega Forward Branches | 2ΔlnL | p Value |
---|---|---|---|---|
ND1 | 0.0147 | 0.0233 | 4.2566 | 0.0391 |
ND4 | 0.0226 | 0.0355 | 7.6079 | <0.01 |
ND4L | 0.0226 | 0.0355 | 7.6079 | <0.01 |
ND5 | 0.0491 | 0.0628 | 4.0296 | 0.0447 |
COX3 | 0.0253 | 0.0493 | 15.3550 | <0.01 |
CYTB | 0.0253 | 0.0493 | 15.3550 | <0.01 |
ND2 | 0.0632 | 0.0665 | 0.1480 | 0.7004 |
ND3 | 0.0332 | 0.0459 | 1.3190 | 0.2508 |
ND6 | 0.0182 | 0.0264 | 1.5611 | 0.2115 |
COX1 | 0.0121 | 0.0085 | 1.9831 | 0.1591 |
COX2 | 0.0145 | 0.0173 | 0.3077 | 0.5791 |
ATP6 | 0.0338 | 0.0506 | 3.4832 | 0.0620 |
ATP8 | 0.1867 | 0.2720 | 1.6266 | 0.2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Wang, X.; Dong, Y.; Shang, Y.; Sun, G.; Wu, X.; Zhao, C.; Sha, W.; Yang, G.; Zhang, H. Analysis of the Complete Mitochondrial Genome of Pteronura brasiliensis and Lontra canadensis. Animals 2023, 13, 3165. https://doi.org/10.3390/ani13203165
Wei Q, Wang X, Dong Y, Shang Y, Sun G, Wu X, Zhao C, Sha W, Yang G, Zhang H. Analysis of the Complete Mitochondrial Genome of Pteronura brasiliensis and Lontra canadensis. Animals. 2023; 13(20):3165. https://doi.org/10.3390/ani13203165
Chicago/Turabian StyleWei, Qinguo, Xibao Wang, Yuehuan Dong, Yongquan Shang, Guolei Sun, Xiaoyang Wu, Chao Zhao, Weilai Sha, Guang Yang, and Honghai Zhang. 2023. "Analysis of the Complete Mitochondrial Genome of Pteronura brasiliensis and Lontra canadensis" Animals 13, no. 20: 3165. https://doi.org/10.3390/ani13203165
APA StyleWei, Q., Wang, X., Dong, Y., Shang, Y., Sun, G., Wu, X., Zhao, C., Sha, W., Yang, G., & Zhang, H. (2023). Analysis of the Complete Mitochondrial Genome of Pteronura brasiliensis and Lontra canadensis. Animals, 13(20), 3165. https://doi.org/10.3390/ani13203165