Changes in Hemolymph Microbiota of Chinese Mitten Crab (Eriocheir sinensis) in Response to Aeromonas hydrophila or Staphylococcus aureus Infection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. DNA Extraction, PCR Amplification, Library Preparation, and Sequencing
2.3. Bioinformatics
2.4. Data Analysis
3. Results
3.1. General Sequencing and Microbial Diversity
3.2. Composition of Hemolymph Microbiota
3.3. Intergroup Variation in the Abundance of Hemolymph Microbial Communities
3.4. Changes in the Abundance of Potentially Beneficial Bacteria in Experimental Groups
3.5. Function Profile of Hemolymph Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, J.Y.; Yin, W.L.; Dong, Q.; Wen, L.; Zheng, C.; Shen, Z.H.; Wu, Y.L.; Zhang, N.C. Studies on the pathogens of bacterial diseases of Eriocheir sinensis. J. Fish. Sci. China 2000, 7, 89–92. [Google Scholar]
- Schrimpf, A.; Schmidt, T.; Schulz, R. Invasive Chinese mitten crab (Eriocheir sinensis) transmits crayfish plague pathogen (Aphanomyces astaci). Aquat. Invasions 2014, 9, 203–209. [Google Scholar] [CrossRef]
- Fu, L.L.; Gao, T.H.; Jiang, H.C.; Qiang, F.Q.; Zhang, Y.; Pan, J.L. Staphylococcus aureus causes hepatopancreas browned disease and hepatopancreatic necrosis complications in Chinese mitten crab, Eriocheir sinensis. Aquac. Int. 2019, 27, 1301–1314. [Google Scholar] [CrossRef]
- Rosa, R.D.; Barracco, M.A. Antimicrobial peptides in crustaceans. ISJ-Invert. Surviv. J. 2010, 7, 262–284. [Google Scholar]
- Islam, M.M.; Masum, S.M.; Mahbub, K.R.; Haque, M.Z. Antibacterial activity of Crab-Chitosan against Staphylococcus aureus and Escherichia coli. J. Adv. Sci. Res. 2011, 2, 63–66. [Google Scholar]
- Wang, J.; Yang, B.; Wang, W.; Song, X.; Song, L. The enhanced immune protection in Chinese mitten crab Eriocheir sinensis against the second exposure to bacteria Aeromonas hydrophila. Front. Immunol. 2019, 10, 2041. [Google Scholar] [CrossRef]
- Li, J.; Ma, S.; Li, Z.; Yu, W.; Zhou, P.; Ye, X.; Islam, M.S.; Zhang, Y.-A.; Zhou, Y.; Li, J. Construction and characterization of an Aeromonas hydrophila multi-gene deletion strain and evaluation of its potential as a live-attenuated vaccine in grass carp. Vaccines 2021, 9, 451. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.Y.; Butcher, J.; Stintzi, A.; Figeys, D. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome 2019, 7, 154. [Google Scholar] [CrossRef]
- Angthong, P.; Chaiyapechara, S.; Rungrassamee, W. Shrimp microbiome and immune development in the early life stages. Dev. Comp. Immunol. 2023, 147, 104765. [Google Scholar] [CrossRef]
- Xiong, W.; Song, Y.Q.; Yang, K.M.; Gu, Y.; Wei, Z.; Kowalchuk, G.A.; Xu, Y.C.; Jousset, A.; Shen, Q.R.; Geisen, S. Rhizosphere protists are key determinants of plant health. Microbiome 2020, 8, 27. [Google Scholar] [CrossRef]
- Lee, J.Y.; Tsolis, R.M.; Baumler, A.J. Gut Physiology The microbiome and gut homeostasis. Science 2022, 377, 44. [Google Scholar] [CrossRef]
- Zhang, F.; Aschenbrenner, D.; Yoo, J.Y.; Zuo, T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe 2022, 3, e969–e983. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Xia, Y.Y.; He, F.; Zhu, C.R.; Ren, W.K. Intestinal mycobiota in health and diseases: From a disrupted equilibrium to clinical opportunities. Microbiome 2021, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.F.; Cao, M.J.; Zhu, X.S.; Xu, G.H.; Wang, R.L. Changes in the gut microbiome of the Chinese mitten crab (Eriocheir sinensis) in response to White spot syndrome virus (WSSV) infection. J. Fish Dis. 2017, 40, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Zhao, Z.; Luo, L.; Wang, S.H.; Zhang, R.; Xu, W.; Qiao, G. Immune and intestinal microbiota responses to aerial exposure stress in Chinese mitten crab (Eriocheir sinensis). Aquaculture 2021, 541, 736833. [Google Scholar] [CrossRef]
- Shao, C.X.; Zhao, W.Q.; Li, N.N.; Li, Y.K.; Zhang, H.M.; Li, J.J.; Xu, Z.Q.; Wang, J.J.; Gao, T.H. Gut microbiome succession in Chinese mitten crab Eriocheir sinensis during seawater-freshwater migration. Front. Microbiol. 2022, 13, 858508. [Google Scholar] [CrossRef]
- Sun, Y.F.; Han, W.F.; Liu, J.; Huang, X.S.; Zhou, W.Q.; Zhang, J.B.; Cheng, Y.X. Bacterial community compositions of crab intestine, surrounding water, and sediment in two different feeding modes of Eriocheir sinensis. Aquac. Rep. 2019, 16, 100236. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, L.; Jiang, S.; Sun, M.; Wang, M.; Yi, Q.; Song, L. Functional characterization of hemocytes from Chinese mitten crab Eriocheir sinensis by flow cytometry. Fish Shellfish Immunol. 2017, 69, 15–25. [Google Scholar] [CrossRef]
- Desriac, F.; Le, C.P.; Brillet, B.; Leguerinel, I.; Thuillier, B.; Paillard, C.; Fleury, Y. Exploring the hologenome concept in marine bivalvia: Haemolymph microbiota as a pertinent source of probiotics for aquaculture. FEMS Microbiol. Lett. 2014, 350, 107–116. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Zhang, X.; Zhang, M.; Li, S. Hemolymph microbiomes of three aquatic invertebrates as revealed by a new cell extraction method. Appl. Environ. Microbiol. 2018, 84, e02824-17. [Google Scholar] [CrossRef]
- Lokmer, A.; Wegner, K.M. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J. 2015, 9, 670–682. [Google Scholar] [CrossRef] [PubMed]
- Nellaiappan, K.; Sugumaran, M. On the presence of prophenoloxidase in the hemolymph of the horseshoe crab, Limulus. Comp. Biochem. Phys. B 1996, 113, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.H.; Ma, H.T.; Ma, H.L.; Liu, G.X.; Guo, Z.X. The role of tumor suppressor protein p53 in the mud crab (Scylla paramamosain) after Vibrio parahaemolyticus infection. Comp. Biochem. Physiol. C 2021, 246, 108976. [Google Scholar] [CrossRef]
- Jung, J.; Gillevet, P.M.; Sikaroodi, M.; Andrews, J.; Shields, J.D. Comparative study of the hemolymph microbiome between live and recently dead American lobsters Homarus americanus. Dis. Aquat. Org. 2020, 143, 147–158. [Google Scholar] [CrossRef]
- Chevalier, F.D.; Diaz, R.; Mcdew-White, M.; Anderson, T.J.C.; Clec’h, W.L. The hemolymph of Biomphalaria snail vectors of schistosomiasis supports a diverse microbiome. Environ. Microbiol. 2020, 22, 5450–5466. [Google Scholar] [CrossRef]
- Sui, L.; Ma, G.; Lu, W.; Deng, Y.; Bossier, P.; Schryver, P.D. Effect of poly-β-hydroxybutyrate on growth, enzyme activity and intestinal microbial community of Chinese mitten crab, Eriocheir sinensis (Milne-Edwards) juveniles. Aquac. Res. 2016, 47, 3644–3652. [Google Scholar] [CrossRef]
- Lim, M.Y.; Hong, S.; Bang, S.J.; Chung, W.H.; Shin, J.H.; Kim, J.H.; Nam, Y.D. Gut microbiome structure and association with host factors in a Korean population. Msystems 2022, 6, e0017921. [Google Scholar] [CrossRef]
- Shang, J.; Zhang, Y.D.; Guo, R.X.; Liu, W.L.; Zhang, J.; Yan, G.; Wu, F.; Cui, W.; Wang, P.P.; Zheng, X.J.; et al. Gut microbiome analysis can be used as a noninvasive diagnostic tool and plays an essential role in the onset of membranous nephropathy. Adv. Sci. 2022, 9, 2201581. [Google Scholar] [CrossRef]
- Dragicevic, P.; Bielen, A.; Petric, I.; Vuk, M.; Zucko, J.; Hudina, S. Microbiome of the successful freshwater invader, the signal crayfish, and its changes along the invasion range. Microbiol. Spectr. 2021, 9, e00389-21. [Google Scholar] [CrossRef]
- Eisapour, M.; Aliabadi, M.A.S.; Salamat, N.; Bahabadi, N.; Salati, A.P. Identification and taxonomy of sea cucumbers (Holothuria) in Persian Gulf. Iran. J. Fish. Sci. 2022, 21, 63–81. [Google Scholar]
- Lin, S.M.; Kong, T.T.; Ren, X.; Gong, Y. Elucidation of gut microbiota in mud crab Scylla paramamosain challenged to WSSV and Aeromonas hydrophila. Mar. Biotechnol. 2020, 22, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community s equencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef]
- Auguste, M.; Lasa, A.; Pallavicini, A.; Gualdi, S.; Vezzulli, L.; Canesi, L. Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Sci. Total Environ. 2019, 670, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Zhang, Q.Q.; Zhang, T.L.; Wang, S.Y.; Hao, J.W.; Wu, Z.B.; Li, A.H. Comparative analysis of the symbiotic microbiota in the Chinese mitten crab (Eriocheir sinensis): Microbial structure, co-occurrence patterns, and predictive functions. Microorganisms 2023, 11, 544. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Bouvier, C.; Bouvier, T.; Troussellier, M.; Escalas, A.; Mouillot, D. Genetic difference but functional similarity among fish gut bacterial communities through molecular and biochemical fingerprints. Fems Microbiol. Ecol. 2012, 79, 568–580. [Google Scholar] [CrossRef]
- Cottrell, M.T.; Kirchman, D.L. Natural assemblages of marine proteobacteria and members of the cytophaga-flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 2000, 66, 1692–1697. [Google Scholar] [CrossRef]
- Feng, W.R.; Feng, W.; Ge, J.C.; Li, J.L.; Su, S.Y.; Jia, R.; Yu, J.H.; Xu, P.; Tang, Y.K. Alterations of amino acid metabolism and intestinal microbiota in Chinese mitten crab (Eriocheir sinensis) fed on formulated diet and iced trash fish. Comp. Biochem. Physiol. D 2021, 40, 100924. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Zheng, H.; Ye, H.; Zhang, X.; Li, S. Source of hemolymph microbiota and their roles in the immune system of mud crab. Dev. Comp. Immunol. 2020, 102, 103470. [Google Scholar] [CrossRef]
- Hudson, J.; Egan, S. Opportunistic diseases in marine eukaryotes: Could bacteroidota be the next threat to ocean life? Environ. Microbiol. 2022, 24, 4505–4518. [Google Scholar] [CrossRef]
- Gao, T.; Li, N.; Xue, W.; Hu, Y.; Lin, H. The responses of sediment bacterial communities in Chinese mitten crab (Eriocheir sinensis) culture ponds to changes in physicochemical properties caused by sediment improvement. Fishes 2023, 8, 98. [Google Scholar] [CrossRef]
- Zhan, M.; Xi, C.; Gong, J.; Zhu, M.R.; Shui, Y.; Xu, Z.H.; Xu, G.C.; Shen, H.S. 16S rRNA gene sequencing analysis reveals an imbalance in the intestinal flora of Eriocheir sinensis with hepatopancreatic necrosis disease. Comp. Biochem. Physiol. D 2022, 42, 100988. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Bose, C.; Mande, S.S. Tryptophan metabolism by gut microbiome and gut-brain-axis: An in silico analysis. Front. Neurosci. 2019, 13, 1365. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.H.; Yang, B.T.; Hu, R.G.; Zhang, P.; Gu, M.; Cong, W. Gut microbiota and metabolites may play a crucial role in sea cucumber Apostichopus japonicus aestivation. Microorganisms 2023, 11, 416. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Yin, B.S. Alterations in the gut microbial composition and diversity of Tibetan sheep infected with Echinococcus granulosus. Front. Vet. Sci. 2022, 8, 778789. [Google Scholar] [CrossRef]
- Liu, B.; Ding, Z.H.; Xiong, J.H.; Heng, X.; Wang, H.F.; Chu, W.H. Gut microbiota and inflammatory cytokine changes in patients with ankylosing spondylitis. BioMed Res. Int. 2022, 2022, 1005111. [Google Scholar] [CrossRef]
- Lim, W.G.; Tong, T.; Chew, J. Chryseobacterium indologenes and Chryseobacterium gleum interact and multiply intracellularly in Acanthamoeba castellanii. Exp. Parasitol. 2020, 211, 107862. [Google Scholar] [CrossRef]
- Jabeur, R.; Guyon, V.; Toth, S.; Pereira, A.E.; Huynh, M.P.; Selmani, Z.; Boland, E.; Bosio, M.; Beuf, L.; Clark, P.; et al. A novel binary pesticidal protein from Chryseobacterium arthrosphaerae controls western corn rootworm by a different mode of action to existing commercial pesticidal proteins. PLoS ONE 2023, 18, e0267220. [Google Scholar] [CrossRef]
- Shi, X.S.; Meng, L.H.; Li, X.; Wang, D.J.; Zhou, X.W.; Du, F.Y.; Wang, B.G.; Li, X.M. Polyketides and terpenoids with potent antibacterial activities from the Artemisia argyi-derived fungus trichoderma koningiopsis QA-3. Chem. Biodivers. 2020, 17, e2000566. [Google Scholar] [CrossRef]
- Li, Y.N.; Kang, N.L.; Jiang, J.J.; Zhu, Y.Y.; Liu, Y.R.; Zeng, D.W.; Wang, F. Gut microbiota of hepatitis B virus-infected patients in the immune-tolerant and immune-active phases and their implications in metabolite changes. World J. Gastroenterol. 2022, 28, 5188–5202. [Google Scholar] [CrossRef]
- Li, L.B.; Li, K.P.; Bian, Z.Y.; Chen, Z.S.; Li, B.L.; Cui, K.; Wang, F.Y. Association between body weight and distal gut microbes in Hainan black goats at weaning age. Front. Microbiol. 2022, 13, 951473. [Google Scholar] [CrossRef] [PubMed]
- Erttmann, S.F.; Swacha, P.; Aung, K.M.; Brindefalk, B.; Jiang, H.; Hartova, A.; Uhlin, B.E.; Wai, S.N.; Gekara, N.O. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity 2022, 55, 847. [Google Scholar] [CrossRef] [PubMed]
- Schaubeck, A.; Cao, D.J.; Cavaleri, V.; Mun, S.; Jeon, S.J. Carapace microbiota in American lobsters (Homarus americanus) associated with epizootic shell disease and the green gland. Front. Microbiol. 2023, 14, 1093312. [Google Scholar] [CrossRef] [PubMed]
- Harrington, A.M.; Clark, K.F.; Hamlin, H.J. Expected ocean warming conditions significantly alter the transcriptome of developing postlarval American lobsters (Homarus americanus): Implications for energetic trade-offs. Comp. Biochem. Physiol. D 2020, 36, 100716. [Google Scholar] [CrossRef]
- Cao, R.W.; Liu, Y.L.; Wang, Q.; Yang, D.L.; Liu, H.; Ran, W.; Qu, Y.; Zhao, J.M. Seawater acidification reduced the resistance of Crassostrea gigas to Vibrio splendidus challenge: An energy metabolism perspective. Front. Physiol. 2018, 9, 880. [Google Scholar] [CrossRef]
Taxonomy | PBS Group | Ah Group | Sa Group |
---|---|---|---|
Proteobacteria | 69.18% | 68.05% | 37.65% |
Bacteroidota | 15.12% | 20.57% | 52.48 |
Firmicutes | 6.40% | 2.98% | 3.21% |
Actinobacteriota | 2.38% | 1.82% | 1.73% |
Unidentified bacteria | 1.17% | 1.55% | 1.04% |
Bdellovibrionota | 0.42% | 0.18% | 0.11% |
Gracilibacteria | 0.43% | 0.49% | 0.21% |
Desulfobacterota | 0.21% | 0.25% | 0.18% |
Acidobacteriota | 0.28% | 0.15% | 0.12% |
Myxococcota | 0.38% | 0.26% | 0.17% |
Others | 4.03% | 3.70% | 3.10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, T.; Fan, X.; Tran, N.T. Changes in Hemolymph Microbiota of Chinese Mitten Crab (Eriocheir sinensis) in Response to Aeromonas hydrophila or Staphylococcus aureus Infection. Animals 2023, 13, 3058. https://doi.org/10.3390/ani13193058
Kong T, Fan X, Tran NT. Changes in Hemolymph Microbiota of Chinese Mitten Crab (Eriocheir sinensis) in Response to Aeromonas hydrophila or Staphylococcus aureus Infection. Animals. 2023; 13(19):3058. https://doi.org/10.3390/ani13193058
Chicago/Turabian StyleKong, Tongtong, Xinyue Fan, and Ngoc Tuan Tran. 2023. "Changes in Hemolymph Microbiota of Chinese Mitten Crab (Eriocheir sinensis) in Response to Aeromonas hydrophila or Staphylococcus aureus Infection" Animals 13, no. 19: 3058. https://doi.org/10.3390/ani13193058
APA StyleKong, T., Fan, X., & Tran, N. T. (2023). Changes in Hemolymph Microbiota of Chinese Mitten Crab (Eriocheir sinensis) in Response to Aeromonas hydrophila or Staphylococcus aureus Infection. Animals, 13(19), 3058. https://doi.org/10.3390/ani13193058