Tramadol vs. Lidocaine Administered Intraperitoneally and in Incisional Lines for the Intraoperative and Postoperative Pain Management of Romifidine-Telazol-Anesthetized Swine Undergoing Umbilical Hernia Repair
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Treatment Administration
2.3. Umbilical Hernia Repair
2.4. Measurement of Physiological Parameters
2.5. Assessment of Response to Surgical Stimulus
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Searcy-Bernal, R.; Gardner, I.A.; Hird, D.W. Effects of and factors associated with umbilical hernias in a swine herd. J. Am. Vet. Med. Assoc. 1994, 204, 1660–1664. [Google Scholar] [PubMed]
- Petersen, H.H.; Nielsen, E.O.; Hassing, A.G.; Ersbøll, A.K.; Nielsen, J.P. Prevalence of clinical signs of disease in Danish finisher pigs. Vet. Rec. 2008, 162, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Straw, B.E.; Bates, R.O.; May, G. Anatomical abnormalities in a group of finishing pigs: Prevalence and pig performance. J. Swine Health Prod. 2009, 17, 28–31. [Google Scholar]
- Schild, S.-L.A.; Brandt, P.; Rousing, T.; Herskin, M.S. Does the presence of umbilical outpouchings affect the behaviour of pigs during the day of slaughter? Livest. Sci. 2015, 176, 146–151. [Google Scholar] [CrossRef]
- Atkinson, M.; Amezcua, R.; DeLay, J.; Widowski, T.; Friendship, R. Evaluation of the effect of umbilical hernias on play behaviors in growing pigs. Can. Vet. J. 2017, 58, 1065–1072. [Google Scholar] [PubMed]
- Li, X.; Xu, P.; Zhang, C.; Sun, C.; Li, X.; Han, X.; Li, M.; Qiao, R. Genome-wide association study identifies variants in the CAPN9 gene associated with umbilical hernia in pigs. Anim. Genet. 2019, 50, 162–165. [Google Scholar] [CrossRef]
- Millard, J.L.; Moraney, R.; Childs, J.C.; Ewing, J.A.; Carbonell, A.M.; Cobb, W.S.; Warren, J.A. Opioid Use After Inguinal and Ventral Hernia Repair. Am. Surg. 2020, 86, 965–970. [Google Scholar] [CrossRef]
- Jendi, S.K.; Syed, A.M.; Badal, S.; Doiphode, A.; Chougule, S.S.; Shaikh, S.A.; Ahtesham, A. Comparison of Local Anaesthetic Efficacy of Tramadol Versus Lignocaine for Extraction of Tooth Under Supraperiosteal Infiltration. J. Maxillofac. Oral. Surg. 2019, 18, 100–105. [Google Scholar] [CrossRef]
- Goel, M.; Sen, P.; Maturkar, T.; Latke, S.; Dehankar, T. Effectiveness of tramadol compared to lignocaine as local anesthesia in the extraction of firm teeth: A randomized controlled trial. J. Dent. Anesth. Pain. Med. 2021, 21, 245–252. [Google Scholar] [CrossRef]
- Farokhzad, B.; Sabiza, S.; Razi Jalali, M.; Baniadam, A. Intraperitoneal administration of lidocaine or tramadol alone or in combination on postoperative pain after ovariohysterectomy in dogs. Vet. Med. Sci. 2021, 7, 634–641. [Google Scholar] [CrossRef]
- Wilson, D.V.; Barnes, K.S.; Hauptman, J.G. Pharmacokinetics of combined intraperitoneal and incisional lidocaine in the dog following ovariohysterectomy. J. Vet. Pharmacol. Ther. 2004, 27, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Kalchofner Guerrero, K.S.; Campagna, I.; Bruhl-Day, R.; Hegamin-Younger, C.; Guerrero, T.G. Intraperitoneal bupivacaine with or without incisional bupivacaine for postoperative analgesia in dogs undergoing ovariohysterectomy. Vet. Anaesth. Analg. 2016, 43, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.L.; Leonardi, F.; Interlandi, C.; Licata, P.; Lizarraga, I.; Macri, F.; Macri, D.; Ferrantelli, V.; Spadola, F. Tramadol Administered Intravenously Either as a Bolus or a Slow Injection in Pain Management of Romifidine-Sedated Calves Undergoing Umbilical Hernia Repair. Animal 2023, 13, 1145. [Google Scholar] [CrossRef] [PubMed]
- Altunkaya, H.; Ozer, Y.; Kargi, E.; Ozkocak, I.; Hosnuter, M.; Demirel, C.B.; Babuccu, O. The postoperative analgesic effect of tramadol when used as subcutaneous local anesthetic. Anesth. Analg. 2004, 99, 1461–1464. [Google Scholar] [CrossRef]
- Lambertini, C.; Kluge, K.; Lanza-Perea, M.; Bruhl-Day, R.; Kalchofner Guerrero, K.S. Comparison of intraperitoneal ropivacaine and bupivacaine for postoperative analgesia in dogs undergoing ovariohysterectomy. Vet. Anaesth. Analg. 2018, 45, 865–870. [Google Scholar] [CrossRef]
- Costa, G.L.; Nastasi, B.; Spadola, F.; Leonardi, F.; Interlandi, C. Effect of levobupivacaine, administered intraperitoneally, on physiological variables and on intrasurgery and postsurgery pain in dogs undergoing ovariohysterectomy. J. Vet. Behav. 2019, 30, 33–36. [Google Scholar] [CrossRef]
- Covino, B.G.; Vassallo, H.G. Local Anesthetics: Mechanisms of Action and Clinical Use; Grune & Stratton: North Hollywood, CA, USA; New York, NY, USA, 1976. [Google Scholar]
- Mather, L.E.; Tucker, G.T. Pharmacokinetics and biotransformation of local anesthetics. Int. Anesth. Clin. 1978, 16, 23–51. [Google Scholar] [CrossRef]
- Estebe, J.P. Intravenous lidocaine. Best Pract. Res. Clin. Anaesthesiol. 2017, 31, 513–521. [Google Scholar] [CrossRef]
- Hermanns, H.; Hollmann, M.W.; Stevens, M.F.; Lirk, P.; Brandenburger, T.; Piegeler, T.; Werdehausen, R. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: A narrative review. Br. J. Anaesth. 2019, 123, 335–349. [Google Scholar] [CrossRef]
- Lisander, B. An antiinflammatory effect of lidocaine? Acta Anaesthesiol. Scand. 1996, 40, 285–286. [Google Scholar] [CrossRef]
- Beaussier, M.; Delbos, A.; Maurice-Szamburski, A.; Ecoffey, C.; Mercadal, L. Perioperative Use of Intravenous Lidocaine. Drugs 2018, 78, 1229–1246. [Google Scholar] [CrossRef] [PubMed]
- Caracas, H.C.; Maciel, J.V.; Martins, P.M.; de Souza, M.M.; Maia, L.C. The use of lidocaine as an anti-inflammatory substance: A systematic review. J. Dent. 2009, 37, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Karnina, R.; Arif, S.K.; Hatta, M.; Bukhari, A. Molecular mechanisms of lidocaine. Ann. Med. Surg. 2021, 69, 102733. [Google Scholar] [CrossRef]
- Joo, J.D.; Choi, J.W.; In, J.H.; Jung, H.S.; Lee, J.A.; Kim, Y.S.; Kim, D.W.; Yeom, J.H.; Shin, E.Y.; Jeon, Y.S. Lidocaine suppresses the increased extracellular signal-regulated kinase/cyclic AMP response element-binding protein pathway and pro-inflammatory cytokines in a neuropathic pain model of rats. Eur. J. Anaesthesiol. 2011, 28, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Barbolini, G.; Bisetti, A.; Colizzi, V.; Damiani, G.; Migaldi, M.; Vismara, D. Immunohistologic analysis of mycobacterial antigens by monoclonal antibodies in tuberculosis and mycobacteriosis. Hum. Pathol. 1989, 20, 1078–1083. [Google Scholar] [CrossRef]
- Altunkaya, H.; Ozer, Y.; Kargi, E.; Babuccu, O. Comparison of local anaesthetic effects of tramadol with prilocaine for minor surgical procedures. Br. J. Anaesth. 2003, 90, 320–322. [Google Scholar] [CrossRef]
- Vahabi, S.; Heidari, M.; Ahmadinejad, M.; Akhlaghi, J.; Birjandi, M. Comparison of local anesthetic effects of tramadol and lidocaine used subcutaneously in minor surgeries with local anesthesia. Middle East. J. Anaesthesiol. 2011, 21, 9–14. [Google Scholar] [CrossRef]
- Interlandi, C.; Leonardi, F.; Spadola, F.; Costa, G.L. Evaluation of the paw withdrawal latency for the comparison between tramadol and butorphanol administered locally, in the plantar surface of rat, preliminary study. PLoS ONE 2021, 16, e0254497. [Google Scholar] [CrossRef]
- Costa, G.L.; Cristarella, S.; Quartuccio, M.; Interlandi, C. Anti-nociceptive and sedative effects of romifidine, tramadol and their combination administered intravenously slowly in ponies. Vet. Anaesth. Analg. 2015, 42, 220–225. [Google Scholar] [CrossRef]
- Interlandi, C.; Nastasib, B.; Moricic, M.; CalabrÒd, P.; Costa, G. Effects of the combination romifidine/tramadol drug administration on several physiological and behavioral variables in calves. Large Anim. Rev. 2017, 23, 51/54. [Google Scholar]
- Costa, G.; Musicò, M.; Spadola, F.; Leonardi, F.; Interlandi, C. Effects of tramadol slow injection vs fast bolus in the therapeutic balance of the foot in bovine. Large Anim. Rev. 2018, 24, 219–221. [Google Scholar]
- Costa, G.L.; Pietro, S.D.; Interlandi, C.; Leonardi, F.; Macrì, D.; Ferrantelli, V.; Macrì, F. Effect on physiological parameters and anaesthetic dose requirement of isoflurane when tramadol given as a continuous rate infusion vs a single intravenous bolus injection during ovariohysterectomy in dogs. PLoS ONE 2023, 18, e0281602. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.; Spadola, F.; Lentini, M.; Lubian, E.; Leonardi, F.J.L.A.R. Comparison of analgesic and sedative effects between three doses of tramadol in calves. Large Anim. Rev. 2021, 27, 65–68. [Google Scholar]
- Dominguez-Oliva, A.; Casas-Alvarado, A.; Miranda-Cortes, A.E.; Hernandez-Avalos, I. Clinical pharmacology of tramadol and tapentadol, and their therapeutic efficacy in different models of acute and chronic pain in dogs and cats. J. Adv. Vet. Anim. Res. 2021, 8, 404–422. [Google Scholar] [CrossRef] [PubMed]
- Luna, S.P.L.; de Araujo, A.L.; da Nobrega Neto, P.I.; Brondani, J.T.; de Oliveira, F.A.; Azeredo, L.; Telles, F.G.; Trindade, P.H.E. Validation of the UNESP-Botucatu pig composite acute pain scale (UPAPS). PLoS ONE 2020, 15, e0233552. [Google Scholar] [CrossRef]
- Leece, E. Veterinary Anesthesia and Analgesia, 5th edn, L.A. Grim, L.A. Lamont, W.J. Tranquilli, S.A. Greene, S.A. Robertson Wiley Blackwell, Chichester, UK (2015), pp 1061, ISBN: 978111852631. Vet. Anaesth. Analg. 2017, 44, 694. [Google Scholar] [CrossRef]
- Bouisset, S.; Saunier, D.; Blaye, I.L.; Batut, V. L’association tilétamine/zolazepam romifidine dans l’anesthésie du veau. Rev. De Med. Vet. 2002, 153, 19–26. [Google Scholar]
- Interlandi, C.; Di Pietro, S.; Costa, G.L.; Spadola, F.; Iannelli, N.M.; Macri, D.; Ferrantelli, V.; Macri, F. Effects of Cisatracurium in Sevoflurane and Propofol Requirements in Dog-Undergoing-Mastectomy Surgery. Animal 2022, 12, 3134. [Google Scholar] [CrossRef]
- Costa, G.; Musico, M.; Spadola, F.; Oliveri, M.; Leonardi, F.; Interlandi, C. Comparison of Tiletamine-Zolazepam Combined with Dexmedetomidine or Xylazine for Chemical Immobilization of Wild Fallow Deer (Dama Dama). J. Zoo. Wildl. Med. 2021, 52, 1009–1012. [Google Scholar] [CrossRef]
- Celly, C.S.; McDonell, W.N.; Young, S.S.; Black, W.D. The comparative hypoxaemic effect of four alpha 2 adrenoceptor agonists (xylazine, romifidine, detomidine and medetomidine) in sheep. J. Vet. Pharmacol. Ther. 1997, 20, 464–471. [Google Scholar] [CrossRef]
- Interlandi, C.; Calapai, G.; Nastasi, B.; Mannucci, C.; Morici, M.; Costa, G.L. Effects of Atipamezole on the Analgesic Activity of Butorphanol in Rats. J. Exot. Pet Med. 2017, 26, 290–293. [Google Scholar] [CrossRef]
- Lizarraga, I.; Castillo-Alcala, F. Sedative and mechanical hypoalgesic effects of butorphanol in xylazine-premedicated donkeys. Equine Vet. J. 2015, 47, 308–312. [Google Scholar] [CrossRef]
- Leonardi, F.; Costa, G.L.; Dubau, M.; Sabbioni, A.; Simonazzi, B.; Angelone, M. Effects of intravenous romifidine, detomidine, detomidine combined with butorphanol, and xylazine on tear production in horses. Equine Vet. Educ. 2020, 32, 53–57. [Google Scholar] [CrossRef]
- Rioja, E.; Kerr, C.L.; Enouri, S.S.; McDonell, W.N. Sedative and cardiopulmonary effects of medetomidine hydrochloride and xylazine hydrochloride and their reversal with atipamezole hydrochloride in calves. J. Am. J. Vet. Res. 2008, 69, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mann, H.J.; Remmel, R.P.; Beilman, G.J.; Kaila, N. Pharmacokinetic study in pigs and in vitro metabolic characterization in pig- and human-liver microsomes reveal marked differences in disposition and metabolism of tiletamine and zolazepam (Telazol). Xenobiotica 2014, 44, 379–390. [Google Scholar] [CrossRef]
- Leonardi, F.; Costa, G.L.; Stagnoli, A.; Zubin, E.; Boschi, P.; Sabbioni, A.; Simonazzi, B. The effect of intramuscular dexmedetomidine-butorphanol combination on tear production in dogs. Can. Vet. J. 2019, 60, 55–59. [Google Scholar] [PubMed]
- Costa, G.L.; Nastasi, B.; Musico, M.; Spadola, F.; Morici, M.; Cucinotta, G.; Interlandi, C. Influence of Ambient Temperature and Confinement on the Chemical Immobilization of Fallow Deer (Dama dama). J. Wildl. Dis. 2017, 53, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.L.; Nastasi, B.; Musico, M.; Spadola, F.; Morici, M.; Cucinotta, G.; Interlandi, C. Reply to Arnemo and Kreeger: “Commentary on ‘Influence of Ambient Temperature and Confinement on the Chemical Immobilization of Fallow Deer (Dama dama)’”. J. Wildl. Dis. 2017, 53, 701–702. [Google Scholar] [CrossRef]
- Ajadi, A.R.; Olusa, T.A.; Smith, O.F.; Ajibola, E.S.; Adeleye, O.E.; Adenubi, O.T.; Makinde, F.A. Tramadol improved the efficacy of ketamine-xylazine anaesthesia in young pigs. Vet. Anaesth. Analg. 2009, 36, 562–566. [Google Scholar] [CrossRef]
- McMillan, D.M.; Tyndale, R.F. Nicotine Increases Codeine Analgesia through the Induction of Brain CYP2D and Central Activation of Codeine to Morphine. Neuropsychopharmacology 2015, 40, 1804–1812. [Google Scholar] [CrossRef]
- Lu, D.Z.; Fan, H.G.; Wang, H.B.; Hu, K.; Zhang, J.T.; Yu, S.M. Effect of the addition of tramadol to a combination of tiletamine-zolazepam and xylazine for anaesthesia of miniature pigs. Vet. Rec. 2010, 167, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Vullo, C.; Kim, T.W.; Meligrana, M.; Marini, C.; Giorgi, M. Pharmacokinetics of tramadol and its major metabolite after intramuscular administration in piglets. J. Vet. Pharmacol. Ther. 2014, 37, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Siemon, A.; Wiesner, H.; von Hegel, G. The use of tiletamine/zolazepam/romifidine for distant immobilization of wild boars. Tierarztl. Prax. 1992, 20, 55–58. [Google Scholar]
- Spadola, F.; Costa, G.L.; Interlandi, C.; Musicò, M. Hyaluronidase, with xylazine and ketamine, reducing immobilization time in wild cattle (Bos taurus). Aim Scope J. 2019, 25, 159–161. [Google Scholar]
- Hernandez-Avalos, I.; Flores-Gasca, E.; Mota-Rojas, D.; Casas-Alvarado, A.; Miranda-Cortes, A.E.; Dominguez-Oliva, A. Neurobiology of anesthetic-surgical stress and induced behavioral changes in dogs and cats: A review. Vet. World 2021, 14, 393–404. [Google Scholar] [CrossRef]
- Bigham, A.S.; Habibian, S.; Ghasemian, F.; Layeghi, S. Caudal epidural injection of lidocaine, tramadol, and lidocaine–tramadol for epidural anesthesia in cattle. J. Vet. Pharmacol. Ther. 2010, 33, 439–443. [Google Scholar] [CrossRef]
- Ajadi, R.A.; Owanikin, A.O.; Martins, M.M.; Gazal, O.S. Effect of epidural tramadol and lignocaine on physiological and behavioural changes in goats subjected to castration with a high tension band. N. Z. Vet. J. 2012, 60, 344–348. [Google Scholar] [CrossRef]
- Health, E.P.o.A.; Welfare; Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; et al. Welfare of pigs on farm. EFSA J. 2022, 20, e07421. [Google Scholar] [CrossRef]
Groups | T1 | T5 | T10 | T15 | T20 | T25 | T30 |
---|---|---|---|---|---|---|---|
HR (beatsmin) | |||||||
LL | 146 ± 12 αβ | 61 ± 4 *αβ | 104 ± 3 *αβ | 105 ± 3 *αβ | 93 ± 5 *αβ | 86 ± 3 *α | 89 ± 5 *αβ |
LT | 80 ± 3 | 76 ± 3 * | 42 ± 3 *δ | 44 ± 3 *δ | 68 ± 5 * | 67 ± 2 * | 84 ± 2 δ |
TT | 84 ± 10 | 78 ± 12 | 80 ± 3 | 78 ± 15 | 77 ± 11 | 69 ± 16 | 77 ± 3 |
fR (breathsmin) | |||||||
LL | 70 ± 3 αβ | 66 ± 4 αβ | 67 ± 4 αβ | 68 ± 3 αβ | 57 ± 3 * | 52 ± 3 *α | 63 ± 3 *β |
LT | 60 ± 3 δ | 57 ± 3 δ | 64 ± 2 *δ | 63 ± 2 *δ | 55 ± 8 | 63 ± 2 *δ | 64 ± 3 *δ |
TT | 51 ± 4 | 50 ± 3 | 58 ± 3 * | 44 ± 2 * | 54 ± 3 | 50 ± 3 | 51 ± 2 |
SAP (mmHg) | |||||||
LL | 123 ± 2 αβ | 161 ± 3 *αβ | 141 ± 3 *αβ | 148 ± 12 * | 135 ± 10 α | 116 ± 2 *αβ | 167 ± 2 *β |
LT | 164 ± 2 δ | 166 ± 2 | 158 ± 3 *δ | 157 ± 5 * | 185 ± 19 δ | 152 ± 3 *δ | 170 ± 25 δ |
TT | 140 ± 2 | 170 ± 4 * | 163 ± 3 * | 158 ± 9 * | 137 ± 4 | 132 ± 3 * | 133 ± 3 * |
MAP (mmHg) | |||||||
LL | 111 ± 7 β | 102 ± 4 *αβ | 107 ± 4 α | 111 ± 8 αβ | 104 ± 14 αβ | 87 ± 4 *α | 114 ± 4 β |
LT | 109 ± 3 δ | 108 ± 3 | 93 ± 2 *δ | 94 ± 4 *δ | 116 ± 12 δ | 98 ± 2 *δ | 113 ± 14 δ |
TT | 97 ± 6 | 109 ± 9 * | 108 ± 2 * | 103 ± 10 | 92 ± 7 * | 88 ± 8 * | 92 ± 3 * |
DAP (mmHg) | |||||||
LL | 65 ± 2 αβ | 82 ± 2 *β | 72 ± 3 *αβ | 77 ± 7 * | 70 ± 8 α | 59 ± 3 *αβ | 84 ± 2 *β |
LT | 82 ± 3 δ | 83 ± 2 δ | 79 ± 1 *δ | 79 ± 3 *δ | 93 ± 10 | 76 ± 2 * | 85 ± 13 δ |
TT | 70 ± 3 | 85 ± 2 * | 81 ± 2 * | 80 ± 2 * | 70 ± 2 | 66 ± 1 * | 66 ± 2 * |
CPS Score | T10 | T15 | T20 | T25 | T30 |
---|---|---|---|---|---|
LL | 1 (1/2) β | 3 (1/4) * | 1 (0/3) | 0 (0/0) * | 3 (3/3) *β |
LT | 1 (0/1) αδ | 1 (1/1) α | 1 (0/2) | 1 (0/1) α | 1 (1/4) α |
TT | 4 (3/4) δβ | 2 (2/2) *δ | 1 (0/5) * | 0 (0/2) * | 0 (0/5) * |
UPAPS Score | R0 | R1 | R2 | R3 | R4 | R5 | R6 |
---|---|---|---|---|---|---|---|
LL | 0 (0/0) | 0 (0/0) | 1 (1/3) *αβ | 2 (1/3) *αβ | 3 (3/3) *αβ | 3 (3/4) *αβ | 3 (3/4) *αβ |
LT | 0 (0/0) | 0 (0/0) | 0 (0/0) | 0 (0/0) | 0 (1/1) | 0 (1/1) | 0 (1/1) |
TT | 0 (0/0) | 0 (0/0) | 0 (0/0) | 0 (0/0) | 0 (0/0) | 0 (0/0) | 0 (0/0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, G.L.; Spadola, F.; Di Pietro, S.; Nava, V.; Licata, P.; Giudice, E.; Leonardi, F.; Bruno, F.; Messina, L.; Macrì, F.; et al. Tramadol vs. Lidocaine Administered Intraperitoneally and in Incisional Lines for the Intraoperative and Postoperative Pain Management of Romifidine-Telazol-Anesthetized Swine Undergoing Umbilical Hernia Repair. Animals 2023, 13, 2905. https://doi.org/10.3390/ani13182905
Costa GL, Spadola F, Di Pietro S, Nava V, Licata P, Giudice E, Leonardi F, Bruno F, Messina L, Macrì F, et al. Tramadol vs. Lidocaine Administered Intraperitoneally and in Incisional Lines for the Intraoperative and Postoperative Pain Management of Romifidine-Telazol-Anesthetized Swine Undergoing Umbilical Hernia Repair. Animals. 2023; 13(18):2905. https://doi.org/10.3390/ani13182905
Chicago/Turabian StyleCosta, Giovanna Lucrezia, Filippo Spadola, Simona Di Pietro, Vincenzo Nava, Patrizia Licata, Elisabetta Giudice, Fabio Leonardi, Fabio Bruno, Laura Messina, Francesco Macrì, and et al. 2023. "Tramadol vs. Lidocaine Administered Intraperitoneally and in Incisional Lines for the Intraoperative and Postoperative Pain Management of Romifidine-Telazol-Anesthetized Swine Undergoing Umbilical Hernia Repair" Animals 13, no. 18: 2905. https://doi.org/10.3390/ani13182905
APA StyleCosta, G. L., Spadola, F., Di Pietro, S., Nava, V., Licata, P., Giudice, E., Leonardi, F., Bruno, F., Messina, L., Macrì, F., Macrì, D., Ferrantelli, V., Tabbì, M., & Interlandi, C. (2023). Tramadol vs. Lidocaine Administered Intraperitoneally and in Incisional Lines for the Intraoperative and Postoperative Pain Management of Romifidine-Telazol-Anesthetized Swine Undergoing Umbilical Hernia Repair. Animals, 13(18), 2905. https://doi.org/10.3390/ani13182905