Unmasking the Adverse Impacts of Sex Bias on Science and Research Animal Welfare
Abstract
:Simple Summary
Abstract
1. Introduction
2. How Did Sex Bias Develop and How Pervasive Is It?
3. Why One Sex May Be Preferred in Research Settings
3.1. Known Sex Differences or Sex Effects on Research
3.2. Increased Experimental Variability
3.3. Experimental Condition
3.4. Limited Sample Size
3.5. Inability to Sex Subjects
3.6. Animal Husbandry
4. The Impact of Sex Bias on Animal Welfare
4.1. Overproduction of Research Animals: Ethics and Sex Bias
4.2. Pain Recognition and Mitigation in Laboratory Animals
4.2.1. Pain Response by Sex
4.2.2. Pain Mitigation by Sex
4.3. Welfare Impact of Differential Housing by Sex in Biomedical Research
4.4. Sex Bias and Research Animal Waste
5. How Can Sex Bias Be Minimized in Biomedical Research?
5.1. Awareness and Education
5.2. Funding Agency Requirements
5.3. Accountability in Reporting Practices
5.4. Legislation
5.5. Technology
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zakiniaeiz, Y.; Cosgrove, K.P.; Potenza, M.N.; Mazure, C.M. Balance of the Sexes: Addressing Sex Differences in Preclinical Research. Yale J. Biol. Med. 2016, 89, 255–259. [Google Scholar] [PubMed]
- Cahill, L. Equal ≠ the same: Sex differences in the human brain. Cerebrum 2014, 2014, 5. [Google Scholar] [PubMed]
- Zucker, I.; Prendergast, B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex Differ. 2020, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Beery, A.K.; Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 2011, 35, 565–572. [Google Scholar] [CrossRef]
- Woitowich, N.C.; Beery, A.; Woodruff, T. A 10-year follow-up study of sex inclusion in the biological sciences. eLife 2020, 9, e56344. [Google Scholar] [CrossRef]
- Karp, N.A.; Fry, D. What is the optimum design for my animal experiment? BMJ Open Sci. 2021, 5, e100126. [Google Scholar] [CrossRef]
- Phillips, B.; Haschler, T.N.; Karp, N.A. Statistical simulations show that scientists need not increase overall sample size by default when including both sexes in in vivo studies. PLoS Biol. 2023, 21, e3002129. [Google Scholar] [CrossRef]
- Beery, A.K. Inclusion of females does not increase variability in rodent research studies. Curr. Opin. Behav. Sci. 2018, 23, 143–149. [Google Scholar] [CrossRef]
- McNemar, Q.; Stone, C.P. Sex differences in rats on three learning tasks. J. Comp. Psychol. 1932, 14, 171–180. [Google Scholar] [CrossRef]
- Broadhurst, P.L. Determinants of emotionality in the rat. I. Situational factors. Br. J. Psychol. 1957, 48, 1–12. [Google Scholar] [CrossRef]
- Broadhurst, P.L.; Sinha, S.N.; Singh, S.D. The effect of stimulant and depressant drugs on a measure of emotional reactivity in the rat. J. Genet. Psychol. 1959, 95, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Van Liere, E.J.; Stickney, J.C.; Marsh, D.F. Sex Differences in Blood Pressure of Dogs. Science 1949, 109, 489. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.J. An Introduction to Pharmacology; E. & S. Livingstone Ltd.: Edinburgh, UK; London, UK, 1960; p. 49. [Google Scholar]
- Beatty, W.W. Gonadal hormones and sex differences in nonreproductive behaviors in rodents: Organizational and activational influences. Horm. Behav. 1979, 12, 112–163. [Google Scholar] [CrossRef] [PubMed]
- Docherty, J.R.; Stanford, S.C.; Panettieri, R.A.; Alexander, S.P.; Cirino, G.; George, C.H.; Hoyer, D.; Izzo, A.A.; Ji, Y.; Lilley, E.; et al. Sex: A change in our guidelines to authors to ensure that this is no longer an ignored experimental variable. Br. J. Pharmacol. 2019, 176, 4081–4086. [Google Scholar] [CrossRef]
- Zucker, I.; Beery, A.K. Males still dominate animal studies. Nature 2010, 465, 690. [Google Scholar] [CrossRef] [PubMed]
- Berkley, K.J. Vive la différence! Trends Neurosci. 1992, 15, 331–332. [Google Scholar] [CrossRef] [PubMed]
- Sechzer, J.A.; Rabinowitz, V.C.; Denmark, F.L.; McGinn, M.F.; Weeks, B.M.; Wilkens, C.L. Sex and Gender Bias in Animal Research and in Clinical Studies of Cancer, Cardiovascular Disease, and Depression. Ann. N. Y. Acad. Sci. 1994, 736, 21–48. [Google Scholar] [CrossRef]
- Hughes, R.N. Sex does matter: Comments on the prevalence of male-only investigations of drug effects on rodent behaviour. Behav. Pharmacol. 2007, 18, 583–589. [Google Scholar] [CrossRef]
- Clayton, J.A. Applying the new SABV (sex as a biological variable) policy to research and clinical care. Physiol. Behav. 2018, 187, 2–5. [Google Scholar] [CrossRef]
- National Institutes of Health. Consideration of Sex as a Biological Variable in NIH-Funded Research. National Institutes of Health Notice Number: NOT-OD-15–102. Available online: https://grants.nih.gov/grants/guide/notice-files/not-od-15-102.html (accessed on 28 February 2023).
- Clayton, J.A.; Collins, F.S. Policy: NIH to balance sex in cell and animal studies. Nature 2014, 509, 282–283. [Google Scholar] [CrossRef]
- Sadler, K.E.; Mogil, J.S.; Stucky, C.L. Innovations and advances in modelling and measuring pain in animals. Nat. Rev. Neurosci. 2022, 23, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, F.D.; Motazedian, P.; Jung, R.G.; Di Santo, P.; MacDonald, Z.; Simard, T.; Clancy, A.A.; Russo, J.J.; Welch, V.; Wells, G.A.; et al. Sex Bias Is Increasingly Prevalent in Preclinical Cardiovascular Research: Implications for Translational Medicine and Health Equity for Women: A Systematic Assessment of Leading Cardiovascular Journals over a 10-Year Period. Circulation 2017, 135, 625–626. [Google Scholar] [CrossRef] [PubMed]
- Flórez-Vargas, O.; Brass, A.; Karystianis, G.; Bramhall, M.; Stevens, R.; Cruickshank, S.; Nenadic, G. Research: Bias in the reporting of sex and age in biomedical research on mouse models. eLife 2016, 5, e13615. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Qu, Y.; Zhong, J.; Che, Z.; Wang, H.; Xiao, J.; Wang, F.; Xiao, J. Sex bias in alcohol research: A 20-year comparative study. Front. Neuroendocrinol. 2021, 63, 100939. [Google Scholar] [CrossRef]
- Yoon, D.Y.; Mansukhani, N.A.; Stubbs, V.C.; Helenowski, I.B.; Woodruff, T.K.; Kibbe, M.R. Sex bias exists in basic science and translational surgical research. Surgery 2014, 156, 508–516. [Google Scholar] [CrossRef]
- Navarro, K.L.; Huss, M.; Smith, J.C.; Sharp, P.; Marx, J.O.; Pacharinsak, C. Mouse Anesthesia: The Art and Science. ILAR J. 2021, 62, 238–273. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S.; Chanda, M.L. The case for the inclusion of female subjects in basic science studies of pain. Pain 2005, 117, 1–5. [Google Scholar] [CrossRef]
- Meziane, H.; Ouagazzal, A.M.; Aubert, L.; Wietrzych, M.; Krezel, W. Estrous cycle effects on behavior of C57BL/6J and BALB/cByJ female mice: Implications for phenotyping strategies. Genes Brain Behav. 2007, 6, 192–200. [Google Scholar] [CrossRef]
- Becker, J.B.; Arnold, A.P.; Berkley, K.J.; Blaustein, J.D.; Eckel, L.A.; Hampson, E.; Herman, J.P.; Marts, S.; Sadee, W.; Steiner, M.; et al. Strategies and methods for research on sex differences in brain and behavior. Endocrinology 2005, 146, 1650–1673. [Google Scholar] [CrossRef]
- Johnson, J.L.; Greaves, L.; Repta, R. Better science with sex and gender: Facilitating the use of a sex and gender-based analysis in health research. Int. J. Equity Health 2009, 8, 14. [Google Scholar] [CrossRef]
- Holdcroft, A. Integrating the dimensions of sex and gender into basic life sciences research: Methodologic and ethical issues. Gend. Med. 2007, 4 (Suppl. B), S64–S74. [Google Scholar] [CrossRef] [PubMed]
- Smarr, B.L.; Grant, A.D.; Zucker, I.; Prendergast, B.J.; Kriegsfeld, L.J. Sex differences in variability across timescales in BALB/c mice. Biol. Sex Differ. 2017, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Bramlett, H.M.; Dietrich, W.D. Neuropathological protection after traumatic brain injury in intact female rats versus males or ovariectomized females. J. Neurotrauma 2001, 18, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, J.D.; Craft, R.M.; LeResche, L.; Arendt-Nielsen, L.; Berkley, K.J.; Fillingim, R.; Gold, M.; Holdcroft, A.; Lautenbacher, S.; Mayer, E.A.; et al. Studying sex and gender differences in pain and analgesia: A consensus report. Pain 2007, 132 (Suppl. S1), S26–S45. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.R.; Hunter, N.; Lin, S.; Robinson, E.M.; Gillis, W.; Conlin, E.B.; Anyoha, R.; Shansky, R.M.; Datta, S.R. Mouse spontaneous behavior reflects individual variation rather than estrous state. Curr. Biol. 2023, 33, 1358–1364. [Google Scholar] [CrossRef]
- National Research Council of the National Academies. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Langen, M.; Peters, U.; Körner, U.; Gissel, C.; Stanislawski, D.; Klein, G. Semiquantitative detection of male pork tissue in meat and meat products by PCR. Meat Sci. 2010, 86, 821–824. [Google Scholar] [CrossRef]
- Gokulakrishnan, P.; Kumar, R.R.; Sharma, B.D.; Mendiratta, S.K.; Malav, O.; Sharma, D. Determination of sex origin of meat and meat products on the DNA basis: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1303–1314. [Google Scholar] [CrossRef]
- Peura, T.; Hyttinen, J.M.; Turunen, M.; Jänne, J. Areliable sex determination assay for bovine preimplantation embryos using the polymerase chain reaction. Theriogenology 1991, 35, 547–555. [Google Scholar] [CrossRef]
- Ewen, K.A.; Koopman, P. Mouse germ cell development: From specification to sex determination. Mol. Cell. Endocrinol. 2010, 323, 76–93. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Arnold, A.P.; Reue, K. A Guide for the Design of Pre-Clinical Studies on Sex Differences in Metabolism. Cell Metab. 2017, 25, 1216–1230. [Google Scholar] [CrossRef]
- Theil, J.H.; Ahloy-Dallaire, J.; Weber, E.M.; Gaskill, B.N.; Pritchett-Corning, K.R.; Felt, S.A.; Garner, J.P. The epidemiology of fighting in group-housed laboratory mice. Sci. Rep. 2020, 10, 16649. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.; Buitenhuis, B.; Kjaer, J.; Zanella, A.; Mormede, P.; Pizzari, T. Genetics and genomics of animal behaviour and welfare—Challenges and possibilities. Appl. Anim. Behav. Sci. 2008, 113, 383–403. [Google Scholar] [CrossRef]
- Sensini, F.; Inta, D.; Palme, R.; Brandwein, C.; Pfeiffer, N.; Riva, M.A.; Gass, P.; Mallien, A.S. The impact of handling technique and handling frequency on laboratory mouse welfare is sex-specific. Sci. Rep. 2020, 10, 17281. [Google Scholar] [CrossRef] [PubMed]
- Lewejohann, L.; Schwabe, K.; Häger, C.; Jirkof, P. Impulse for animal welfare outside the experiment. Lab Anim. 2020, 54, 150–158. [Google Scholar] [CrossRef]
- Canadian Council for Animal Care. CCAC Animal Data Report 2018. Available online: https://ccac.ca/Documents/AUD/2018-Animal-Data-Report.pdf (accessed on 18 June 2023).
- Report from the Commission to the European Parliament and the Council: 2019 Report on the Statistics on the Use of Animals for Scientific Purposes in the Member States of the European Union in 2015–2017. Available online: https://op.europa.eu/en/publication-detail/-/publication/04a890d4-47ff-11ea-b81b-01aa75ed71a1 (accessed on 18 June 2023).
- New South Wales 2018 Animal Use in Research Statistics. Available online: https://www.animalethics.org.au/__data/assets/pdf_file/0011/1200710/nsw-2018-animal-use-in-research-statistics-report.pdf (accessed on 18 June 2023).
- United Kingdom Home Office. Animals in Science Statistics. Available online: https://www.gov.uk/government/collections/animals-in-science-statistics (accessed on 18 June 2023).
- Federal Ministry of Food and Agriculture (Germany). Versuchstierdaten 2018: Animals Used under § 7 (2) of the Animal Protection Act by Species. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Tiere/Tierschutz/Tierversuche/Versuchstierdaten2018.pdf?__blob=publicationFile&v=1 (accessed on 18 June 2023).
- Carbone, L. Estimating mouse and rat use in American laboratories by extrapolation from Animal Welfare Act-regulated species. Sci. Rep. 2021, 11, 493. [Google Scholar] [CrossRef]
- Wewetzer, H.; Wagenknecht, T.; Bert, B.; Schönfelder, G. The fate of surplus laboratory animals: Minimizing the production of surplus animals has the greatest potential to reduce the number of laboratory animals. EMBO Rep. 2023, 24, e56551. [Google Scholar] [CrossRef]
- Hose, K.; Nagel-Riedasch, S.; Schenkel, J.; Buch, T. Use surplus laboratory animals as animal feed. Lab Anim. 2022, 51, 233. [Google Scholar] [CrossRef] [PubMed]
- Buch, T.; Davidson, J.; Hose, K.; Jerchow, B.; Nagel-Riedasch, S.; Schenkel, J. Reducing surplus experimental animal generation. Lab Anim. 2022, 56, 305. [Google Scholar] [CrossRef]
- Feldwisch-Drentrup, H. Germany weighs whether culling excess lab animals is a crime. Science 2022, 376, 567–568. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Title 21 CFR 620.4. Code of Federal Regulations 1 April 1996. Chapter I—FDA Administration Subchapter F—BIOLOGICS, Part 620—Additional Standards for Bacterial Products, Subpart A—Pertussis Vaccine, Sec. 620.4—Potency Test. From the U.S. Government Publishing Office. Available online: https://www.govinfo.gov/content/pkg/CFR-1996-title21-vol7/html/CFR-1996-title21-vol7-sec620-4.htm (accessed on 18 June 2023).
- Jennings, M.; Morton, D.B.; Charton, E.; Cooper, J.; Hendriksen, C.; Martin, S. Application of the Three Rs to challenge assays used in vaccine testing: Tenth report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Biologicals 2012, 38, 684–695. [Google Scholar] [CrossRef]
- LASA. The Production and Disposition of Laboratory Rodents Surplus to the Requirements for Scientific Procedures. A Report of a LASA Taskforce Meeting Held on 12 June 1998. Available online: https://www.lasa.co.uk/PDF/Surplus.pdf (accessed on 13 June 2023).
- National Research Council (US) Committee on Guidelines for the Use of Animals in Neuroscience and Behavioral Research. Appendix B, Estimating Animal Numbers. In Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research; National Academies Press: Washington, DC, USA, 2003; pp. 181–190. [Google Scholar]
- Robinson, V.; Jennings, M.; Working Group. Refinement and reduction in the production of genetically modified mice: Sixth report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Altern. Lab. Anim. 2004, 32 (Suppl. 1A), 373–375. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S. Qualitative sex differences in pain processing: Emerging evidence of a biased literature. Nat. Rev. Neurosci. 2020, 21, 353–365. [Google Scholar] [CrossRef]
- Hurley, R.W.; Adams, M.C. Sex, gender, and pain: An overview of a complex field. Anesth. Analg. 2008, 107, 309–317. [Google Scholar] [CrossRef]
- Kaur, S.; Benton, W.L.; Tongkhuya, S.A.; Lopez, C.M.C.; Uphouse, L.; Averitt, D.L. Sex Differences and Estrous Cycle Effects of Peripheral Serotonin-Evoked Rodent Pain Behaviors. Neuroscience 2018, 384, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Dohoo, S.E.; Dohoo, I.R. Postoperative use of analgesics in dogs and cats by Canadian veterinarians. Can. Vet. J. 1996, 37, 546–551. [Google Scholar]
- Hunt, J.R.; Knowles, T.G.; Lascelles, B.D.; Murrell, J.C. Prescription of perioperative analgesics by UK small animal veterinary surgeons in 2013. Vet. Rec. 2015, 176, 493. [Google Scholar] [CrossRef]
- Quarterone, C.; Luna, S.P.L.; Crosignani, N.; de Oliveira, F.A.; Lopes, C.; da Maia Lima, A.F.; de Araújo Aguiar, A.J. Ovariohysterectomy requires more post-operative analgesia than orchiectomy in dogs and cats. Can. Vet. J. 2017, 58, 1191–1194. [Google Scholar]
- Pisanu, C.; Franconi, F.; Gessa, G.L.; Mameli, S.; Pisanu, G.M.; Campesi, I.; Leggio, L.; Agabio, R. Sex differences in the response to opioids for pain relief: A systematic review and meta-analysis. Pharmacol. Res. 2019, 148, 104447. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.B. The influence of sex on pharmacokinetics. Clin. Pharmacokinet. 2003, 42, 107–121. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I. Pharmacogenomics, pharmacokinetics and pharmacodynamics: Interaction with biological differences between men and women. Br. J. Pharmacol. 2014, 171, 580–594. [Google Scholar] [CrossRef]
- Klein, K.; Zanger, U.M. Pharmacogenomics of Cytochrome P450 3A4: Recent progress toward the “missing heritability” problem. Front. Genet. 2013, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.C. A Review of Strain and Sex Differences in Response to Pain and Analgesia in Mice. Comp. Med. 2019, 69, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Farkouh, A.; Baumgärtel, C.; Gottardi, R.; Hemetsberger, M.; Czejka, M.; Kautzky-Willer, A. Sex-Related Differences in Drugs with Anti-Inflammatory Properties. J. Clin. Med. 2021, 10, 1441. [Google Scholar] [CrossRef] [PubMed]
- Lemonnier, C.; Bize, P.; Boonstra, R.; Dobson, F.S.; Criscuolo, F.; Viblanc, V.A. Effects of the social environment on vertebrate fitness and health in nature: Moving beyond the stress axis. Horm. Behav. 2022, 145, 105232. [Google Scholar] [CrossRef]
- Kappel, S.; Hawkins, P.; Mendl, M.T. To Group or Not to Group? Good Practice for Housing Male Laboratory Mice. Animals 2017, 7, 88. [Google Scholar] [CrossRef]
- Zidar, J.; Weber, E.M.; Ewaldsson, B.; Tjäder, S.; Lilja, J.; Mount, J.; Svensson, C.I.; Svensk, E.; Udén, E.; Törnqvist, E. Group and Single Housing of Male Mice: Collected Experiences from Research Facilities in Sweden. Animals 2019, 9, 1010. [Google Scholar] [CrossRef]
- Lidster, K.; Owen, K.; Browne, W.J.; Prescott, M.J. Cage aggression in group-housed laboratory male mice: An international data crowdsourcing project. Sci. Rep. 2019, 9, 15211. [Google Scholar] [CrossRef]
- Wilson, L.A.B.; Zajitschek, S.R.K.; Lagisz, M.; Mason, J.; Haselimashhadi, H.; Nakagawa, S. Sex differences in allometry for phenotypic traits in mice indicate that females are not scaled males. Nat. Commun. 2022, 13, 7502. [Google Scholar] [CrossRef]
- Avona, A.; Burgos-Vega, C.; Burton, M.D.; Akopian, A.N.; Price, T.J.; Dussor, G. Dural Calcitonin Gene-Related Peptide Produces Female-Specific Responses in Rodent Migraine Models. J. Neurosci. 2019, 39, 4323–4331. [Google Scholar] [CrossRef]
- Garcia-Sifuentes, Y.; Maney, D.L. Reporting and misreporting of sex differences in the biological sciences. eLife 2021, 10, e70817. [Google Scholar] [CrossRef]
- Smith, A.J.; Clutton, R.E.; Lilley, E.; Hansen, K.E.A.; Brattelid, T. PREPARE: Guidelines for planning animal research and testing. Lab Anim. 2018, 52, 135–141. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Denfeld, Q.E.; Lee, C.S.; Habecker, B.A. A primer on incorporating sex as a biological variable into the conduct and reporting of basic and clinical research studies. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H350–H354. [Google Scholar] [CrossRef]
- Garner, J.P.; Gaskill, B.N.; Weber, E.M.; Ahloy-Dallaire, J.; Pritchett-Corning, K.R. Introducing Therioepistemology: The study of how knowledge is gained from animal research. Lab Anim. 2017, 46, 103–113. [Google Scholar] [CrossRef]
- NIH Policy on Sex as a Biological Variable. Available online: https://orwh.od.nih.gov/sex-gender/nih-policy-sex-biological-variable (accessed on 28 February 2023).
- Canadian Institutes of Health Research. Does Sex Make a Difference in Preclinical Research? Available online: https://cihr-irsc.gc.ca/e/49346.html (accessed on 28 February 2023).
- UK Research and Innovation. Sex in Experimental Design. Available online: https://www.ukri.org/councils/mrc/guidance-for-applicants/policies-and-guidance-for-researchers/sex-in-experimental-design/ (accessed on 28 February 2023).
- Bolon, B. Gender agenda: Sex bias can be justified in animal research. Nature 2012, 466, 28. [Google Scholar] [CrossRef]
- Heidari, S.; Babor, T.F.; De Castro, P.; Tort, S.; Curno, M. Sex and Gender Equity in Research: Rationale for the SAGER guidelines and recommended use. Res. Integr. Peer Rev. 2016, 1, 2. [Google Scholar] [CrossRef]
- du Sert, N.P.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef]
- Tannenbaum, C.; Ellis, R.P.; Eyssel, F.; Zou, J.; Schiebinger, L. Sex and gender analysis improves science and engineering. Nature 2019, 575, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Bundesministerium der Justiz. Available online: https://www.gesetze-im-internet.de/tierschg/BJNR012770972.html (accessed on 25 May 2023).
- Lonergan, P. Review: Historical and futuristic developments in bovine semen technology. Animal 2018, 12, s4–s18. [Google Scholar] [CrossRef]
- Neculai-Valeanu, A.S.; Ariton, A.M. Game-Changing Approaches in Sperm Sex-Sorting: Microfluidics and Nanotechnology. Animals 2021, 11, 1182. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.B.; Rutledge, J.J.; Fischer-Brown, A.; VanEtten, T.; Malusky, S.; Beebe, D.J. Application of sexed semen technology to in vitro embryo production in cattle. Theriogenology 2006, 65, 219–227. [Google Scholar] [CrossRef]
- Li, J.; Zhu, S.; He, X.; Sun, R.; He, Q.; Gan, Y.; Liu, S.; Funahashi, H.; Li, Y. Application of a microfluidic sperm sorter to in vitro production of dairy cattle sex-sorted embryos. Theriogenology 2016, 85, 1211–1218. [Google Scholar] [CrossRef]
- Roca, J.; Parrilla, I.; Bolarin, A.; Martinez, E.A.; Rodriguez-Martinez, H. Will AI in pigs become more efficient? Theriogenology 2016, 86, 187–193. [Google Scholar] [CrossRef]
- Zuidema, D.; Kerns, K.; Sutovsky, P. An Exploration of Current and Perspective Semen Analysis and Sperm Selection for Livestock Artificial Insemination. Animals 2021, 11, 3563. [Google Scholar] [CrossRef]
- Squires, E. Current Reproductive Technologies Impacting Equine Embryo Production. J. Equine Vet. Sci. 2020, 89, 102981. [Google Scholar] [CrossRef] [PubMed]
- Balzani, A.; Aparacida Vaz do Amaral, C.; Hanlon, A. A perspective on the use of sexed semen to reduce the number of surplus male dairy calves in Ireland: A pilot study. Front. Vet. Sci. 2021, 7, 623128. [Google Scholar] [CrossRef]
- Douglas, C.; Maciulyte, V.; Zohren, J.; Snell, D.M.; Mahadevaiah, S.K.; Ojarikre, O.A.; Ellis, P.J.I.; Turner, J.M.A. CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes. Nat. Commun. 2021, 12, 6926. [Google Scholar] [CrossRef] [PubMed]
- vom Saal, F.S. Sexual differentiation in litter-bearing mammals: Influence of sex of adjacent fetuses in utero. J. Anim. Sci. 1989, 67, 1824–1840. [Google Scholar] [CrossRef]
- Ryan, B.C.; Vandenbergh, J.G. Intrauterine position effects. Neurosci. Biobehav. Rev. 2002, 26, 665–678. [Google Scholar] [CrossRef]
- Clark, M.M.; Galef, B.G., Jr. A gerbil dam’s fetal intrauterine position affects the sex ratios of litters she gestates. Physiol. Behav. 1995, 57, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Fishman, R.; Vortman, Y.; Shanas, U.; Koren, L. Cortisol advantage of neighbouring the opposite sex in utero. R. Soc. Open Sci. 2018, 5, 171636. [Google Scholar] [CrossRef] [PubMed]
Issue Resulting in Overproduction of Rodents | Definition of Issue |
---|---|
Sex preference | Use of one sex in preference to equal use of both sexes. Remainder of lesser used sex becomes surplus. |
Body weight and age requirement | Requirement for a narrow age and/or body weight requirement, such that any animals outside of these requirements become surplus (any time up to study start). |
Breeding pressures | Variable demand for animals of multiple strains, for example, changes in week-to-week orders, as well as short notice orders for animals. Creates pressures to have large numbers of animals ready at a given moment. |
Timed mating | Inexact procedure such that more animals are mated than are needed. Surplus also created if study is cancelled after mating has occurred. |
Poor health status | Animals with clinical disease may need to be euthanized, and more animals are bred to account for these losses. In addition, a large surplus may need to be produced if mouse strains need to be replaced or rederived because of unwanted colony infections (clinical or subclinical). |
Part use of litter | Selective use of animals in a litter with remainder as surplus. |
Study cancellation | Sudden cancellation of studies such that it may not be possible to reallocate animals to a different study within a given institution. |
Genetics of breeding | Proportion of animals may not have the required genotype, and some animals may not be of appropriate quality, e.g., stunted or malformed. |
Historical use | Use of specific strains that are no longer in common use because of historical database |
Duplication of animal colonies | Duplication of in-house breeding colonies of multiple strains of mice and rats in large institutions |
Ineffective management practices | Failure to manage breeding colonies efficiently, for example, by maintaining breeding at low levels when future use is uncertain. |
Study Aspect | Actionable Items |
---|---|
Literature search |
|
Study design |
|
Data collection |
|
Data analysis |
|
Reporting |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunamaker, E.A.; Turner, P.V. Unmasking the Adverse Impacts of Sex Bias on Science and Research Animal Welfare. Animals 2023, 13, 2792. https://doi.org/10.3390/ani13172792
Nunamaker EA, Turner PV. Unmasking the Adverse Impacts of Sex Bias on Science and Research Animal Welfare. Animals. 2023; 13(17):2792. https://doi.org/10.3390/ani13172792
Chicago/Turabian StyleNunamaker, Elizabeth A., and Patricia V. Turner. 2023. "Unmasking the Adverse Impacts of Sex Bias on Science and Research Animal Welfare" Animals 13, no. 17: 2792. https://doi.org/10.3390/ani13172792