Impact of Inbreeding and Ancestral Inbreeding on Longevity Traits in German Brown Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Averdunk, G.; Gottschalk, A. Moglichkeiten der Kreuzungszucht beim Zweinutzungsrind: Brown-Swiss x Braunvieh in Bayern—Eine Zwischenbilanz. Züchtungskunde 1975, 47, 393–403. [Google Scholar]
- Krogmeier, D.; Aumann, J.; Averdunk, G. Untersuchungen zur Inzucht in der Gelbvieh-und Braunviehpopulation in Süddeutschland. Züchtungskunde 1997, 69, 233–243. [Google Scholar]
- Casanova, L.; Hagger, C.; Kuenzi, N.; Schneeberger, M. Inbreeding in Swiss Braunvieh and Its Influence on Breeding Values Predicted from a Repeatability Animal Model. J. Dairy. Sci. 1992, 75, 1119–1126. [Google Scholar] [CrossRef]
- Fuerst, C.; Sölkner, J. Additive and Nonadditive Genetic Variances for Milk Yield, Fertility, and Lifetime Performance Traits of Dairy Cattle. J. Dairy. Sci. 1994, 77, 1114–1125. [Google Scholar] [CrossRef] [PubMed]
- Fuerst-Waltl, B.; Fuerst, C. Effect of inbreeding depression on survival of Austrian Brown Swiss calves and heifers. J. Dairy. Sci. 2012, 95, 6086–6092. [Google Scholar] [CrossRef]
- Doekes, H.P.; Veerkamp, R.F.; Bijma, P.; de Jong, G.; Hiemstra, S.J.; Windig, J.J. Inbreeding depression due to recent and ancient inbreeding in Dutch Holstein—Friesian dairy cattle. Genet. Sel. Evol. 2019, 51, 54. [Google Scholar] [CrossRef]
- Hinrichs, D.; Bennewitz, J.; Wellmann, R.; Thaller, G. Estimation of ancestral inbreeding effects on stillbirth, calving ease and birthweight in German Holstein dairy cattle. J. Anim. Breed. Genet. 2015, 132, 59–67. [Google Scholar] [CrossRef]
- Hedrick, P.W.; Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 2016, 31, 940–952. [Google Scholar] [CrossRef]
- Hedrick, P.W. Purging inbreeding depression and the probability of extinction: Full-sib mating. Heredity 1994, 73, 363. [Google Scholar] [CrossRef]
- Howard, J.T.; Pryce, J.E.; Baes, C.; Maltecca, C. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J. Dairy. Sci. 2017, 100, 6009–6024. [Google Scholar] [CrossRef]
- Dickerson, G.E. Inbreeding and heterosis in animals. J. Anim. Sci. 1973, 1973, 54–77. [Google Scholar] [CrossRef]
- Byers, D.L.; Waller, D.M. Do Plant Populations Purge Their Genetic Load? Effects of Population Size and Mating History on Inbreeding Depression. Annu. Rev. Ecol. Syst. 1999, 30, 479–513. [Google Scholar] [CrossRef]
- MacNeil, M.; Kress, D.; Flower, A.; Blackwell, R. Effects of mating system in Japanese quail: 2. Genetic parameters, response and correlated response to selection. Theor. Appl. Genet. 1984, 67, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pereira, N.; Pouso, R.; Rus, A.; Vilas, A.; López-Cortegano, E.; García-Dorado, A.; Quesada, H.; Caballero, A. Long-term exhaustion of the inbreeding load in Drosophila melanogaster. Heredity 2021, 127, 373–383. [Google Scholar] [CrossRef]
- Frankham, R.; Gilligan, D.M.; Morris, D.; Briscoe, D.A. Inbreeding and extinction: Effects of purging. Conserv. Genet. 2001, 2, 279–284. [Google Scholar] [CrossRef]
- López-Cortegano, E.; Vilas, A.; Caballero, A.; García-Dorado, A. Estimation of genetic purging under competitive conditions. Evolution 2016, 70, 1856–1870. [Google Scholar] [CrossRef]
- Crnokrak, P.; Barrett, S.C. Perspective: Purging the genetic load: A review of the experimental evidence. Evolution 2002, 56, 2347–2358. [Google Scholar] [CrossRef]
- Ballou, J. Ancestral inbreeding only minimally affects inbreeding depression in mammalian populations. J. Hered. 1997, 88, 169–178. [Google Scholar] [CrossRef]
- Boakes, E.; Wang, J.; Amos, W. An investigation of inbreeding depression and purging in captive pedigreed populations. Heredity 2007, 98, 172–182. [Google Scholar] [CrossRef]
- MacNeil, M.; Kress, D.; Flower, A.; Webb, R.; Blackwell, R. Effects of mating system in Japanese quail: 1. Inbreeding and fitness. Theor. Appl. Genet. 1984, 67, 403–406. [Google Scholar] [CrossRef]
- Kalinowski, S.T.; Hedrick, P.W.; Miller, P.S. Inbreeding depression in the Speke’s gazelle captive breeding program. Conserv. Biol. 2000, 14, 1375–1384. [Google Scholar] [CrossRef]
- Baumung, R.; Farkas, J.; Boichard, D.; Mészáros, G.; Sölkner, J.; Curik, I. GRAIN: A computer program to calculate ancestral and partial inbreeding coefficients using a gene dropping approach. J. Anim. Breed. Genet. 2015, 132, 100–108. [Google Scholar] [CrossRef]
- Mc Parland, S.; Kearney, F.; Berry, D.P. Purging of inbreeding depression within the Irish Holstein-Friesian population. Genet. Sel. Evol. 2009, 41, 16. [Google Scholar] [CrossRef] [PubMed]
- Makanjuola, B.O.; Maltecca, C.; Miglior, F.; Schenkel, F.S.; Baes, C.F. Effect of recent and ancient inbreeding on production and fertility traits in Canadian Holsteins. BMC Genom. 2020, 21, 605. [Google Scholar] [CrossRef] [PubMed]
- Tohidi, R.; Cue, R.I.; Nazari, B.M.; Pahlavan, R. The effect of new and ancestral inbreeding on milk production traits in Iranian Holstein cattle. J. Anim. Breed. Genet. 2023, 140, 276–286. [Google Scholar] [CrossRef]
- Wirth, A.; Duda, J.; Distl, O. Genetic Diversity and the Impact of the Breed Proportions of US Brown Swiss in German Brown Cattle. Animals 2021, 11, 152. [Google Scholar] [CrossRef]
- Ducrocq, V.; Quaas, R.; Pollak, E.; Casella, G. Length of productive life of dairy cows. 1. Justification of a Weibull model. J. Dairy Sci. 1988, 71, 3061–3070. [Google Scholar] [CrossRef]
- Punsmann, T.; Duda, J.; Distl, O. Longevity, length of productive life and lifetime performance of German Brown Part 1: Systematic effects on longevity and length of productive life of German Brown cows. Züchtungskunde 2018, 90, 112–125. [Google Scholar]
- Schuster, J.C.; Barkema, H.W.; De Vries, A.; Kelton, D.F.; Orsel, K. Invited review: Academic and applied approach to evaluating longevity in dairy cows. J. Dairy. Sci. 2020, 103, 11008–11024. [Google Scholar] [CrossRef]
- VanRaden, P.M.; Sanders, A.H. Economic Merit of Crossbred and Purebred US Dairy Cattle. J. Dairy. Sci. 2003, 86, 1036–1044. [Google Scholar] [CrossRef]
- Groeneveld, E.; Kovac, M.; Mielenz, N. VCE 6.0.2. In Co-Variance Components Estimation Package; Institute of Farm Animal Genetics: Mariensee, Germany, 2008. [Google Scholar]
- Dempster, E.R.; Lerner, I.M. Heritability of threshold characters. Genetics 1950, 35, 212. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.A.; Cassell, B.; Pearson, R. The effects of inbreeding on the lifetime performance of dairy cattle. J. Dairy. Sci. 1998, 81, 2729–2737. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Everett, R.; Hammerschmidt, N. Effects of Inbreeding on Production and Survival in Holsteins. J. Dairy. Sci. 2000, 83, 1856–1864. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Everett, R.; Wolfe, C. Effects of Inbreeding on Production and Survival in Jerseys. J. Dairy. Sci. 2000, 83, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Hudson, G.; Van Vleck, L.D. Effects of inbreeding on milk and fat production, stayability, and calving interval of registered Ayrshire cattle in the Northeastern United States. J. Dairy. Sci. 1984, 67, 171–179. [Google Scholar] [CrossRef]
- Sewalem, A.; Kistemaker, G.; Miglior, F.; Van Doormaal, B. Analysis of inbreeding and its relationship with functional longevity in Canadian dairy cattle. J. Dairy. Sci. 2006, 89, 2210–2216. [Google Scholar] [CrossRef]
- Caraviello, D.; Weigel, K.; Gianola, D. Analysis of the relationship between type traits, inbreeding, and functional survival in Jersey cattle using a Weibull proportional hazards model. J. Dairy. Sci. 2003, 86, 2984–2989. [Google Scholar] [CrossRef]
- Pinedo, P.J.; De Vries, A.; Webb, D.W. Dynamics of culling risk with disposal codes reported by Dairy Herd Improvement dairy herds. J. Dairy. Sci. 2010, 93, 2250–2261. [Google Scholar] [CrossRef]
- Ahlman, T.; Berglund, B.; Rydhmer, L.; Strandberg, E. Culling reasons in organic and conventional dairy herds and genotype by environment interaction for longevity. J. Dairy. Sci. 2011, 94, 1568–1575. [Google Scholar] [CrossRef]
- Wondatir Workie, Z.; Gibson, J.P.; van der Werf, J.H.J. Analysis of culling reasons and age at culling in Australian dairy cattle. Anim. Prod. Sci. 2021, 61, 680–689. [Google Scholar] [CrossRef]
- Punsmann, T.; Duda, J.; Distl, O. Longevity, length of productive life and lifetime performance of German Brown. Part 3: Systematic effects on culling reasons and their relationships with longevity, length of productive life, lifetime performance and lifetime efficiency. Züchtungskunde 2018, 90, 243–261. [Google Scholar]
- González-Recio, O.; De Maturana, E.L.; Gutiérrez, J. Inbreeding depression on female fertility and calving ease in Spanish dairy cattle. J. Dairy. Sci. 2007, 90, 5744–5752. [Google Scholar] [CrossRef] [PubMed]
- Cassell, B.; Adamec, V.; Pearson, R. Maternal and fetal inbreeding depression for 70-day nonreturn and calving rate in Holsteins and Jerseys. J. Dairy. Sci. 2003, 86, 2977–2983. [Google Scholar] [CrossRef]
- Martikainen, K.; Tyrisevä, A.-M.; Matilainen, K.; Pösö, J.; Uimari, P. Estimation of inbreeding depression on female fertility in the Finnish Ayrshire population. J. Anim. Breed. Genet. 2017, 134, 383–392. [Google Scholar] [CrossRef] [PubMed]
- VanRaden, P.M.; Sanders, A.H.; Tooker, M.E.; Miller, R.H.; Norman, H.D.; Kuhn, M.T.; Wiggans, G.R. Development of a National Genetic Evaluation for Cow Fertility. J. Dairy. Sci. 2004, 87, 2285–2292. [Google Scholar] [CrossRef] [PubMed]
- Zavadilová, L.; Zink, V. Genetic relationship of functional longevity with female fertility and milk production traits in Czech Holsteins. Czech J. Anim. Sci. 2013, 58, 554–565. [Google Scholar] [CrossRef]
- Lopez-Villalobos, N.; Garrick, D.J.; Blair, H.T.; Holmes, C.W. Possible Effects of 25 Years of Selection and Crossbreeding on the Genetic Merit and Productivity of New Zealand Dairy Cattle. J. Dairy. Sci. 2000, 83, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, R. Estimation of Heterosis and Performance of Crossbred Swedish Dairy Cows. Master’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2015. [Google Scholar]
- Clasen, J.; Norberg, E.; Madsen, P.; Pedersen, J.; Kargo, M. Estimation of genetic parameters and heterosis for longevity in crossbred Danish dairy cattle. J. Dairy. Sci. 2017, 100, 6337–6342. [Google Scholar] [CrossRef]
- Addo, S.; Schäler, J.; Hinrichs, D.; Thaller, G. Genetic diversity and ancestral history of the German Angler and the red-and-white dual-purpose cattle breeds assessed through pedigree analysis. Agr. Sci. 2017, 8, 1033–1047. [Google Scholar] [CrossRef]
- Shin, J.; Lee, J.; Cho, J.; Dang, C.; Choi, T.; Do, C.; Lee, J.; Lee, S. The Estimation of Genetic Parameters for Longevity According to Lactation Period Using a Multiple Trait Animal Model in Korean Holstein Cows. Animals 2022, 12, 701. [Google Scholar] [CrossRef]
- Heise, J.; Liu, Z.; Stock, K.F.; Rensing, S.; Reinhardt, F.; Simianer, H. The genetic structure of longevity in dairy cows. J. Dairy. Sci. 2016, 99, 1253–1265. [Google Scholar] [CrossRef] [PubMed]
- Sewalem, A.; Miglior, F.; Kistemaker, G.J.; Sullivan, P.; Huapaya, G.; Van Doormaal, B.J. Short Communication: Modification of Genetic Evaluation of Herd Life from a Three-Trait to a Five-Trait Model in Canadian Dairy Cattle. J. Dairy. Sci. 2007, 90, 2025–2028. [Google Scholar] [CrossRef] [PubMed]
Trait | Mean | SD | 75% CI |
---|---|---|---|
HL (years) | 6.15 | 2.65 | 4.01–7.78 |
LPL (years) | 3.46 | 2.63 | 1.31–5.08 |
NC | 3.51 | 2.32 | 2–5 |
LMY (kg) | 22,319 | 18,445 | 7537–32,736 |
LFY (kg) | 933 | 769 | 316–1368 |
LPY (kg) | 797 | 661 | 269–1169 |
EffLMY (kg/day) | 8.420 | 4.359 | 5.092–11.555 |
EffLFY (kg/day) | 0.352 | 0.184 | 0.213–0.484 |
EffLPY (kg/day) | 0.301 | 0.159 | 0.181–0.414 |
Surv1 | 0.760 | 0.427 | |
Surv3 | 0.429 | 0.495 | |
Surv5 | 0.193 | 0.394 | |
Surv7 | 0.066 | 0.248 | |
Surv9 | 0.017 | 0.128 | |
CulCL | 0.118 | 0.322 | |
CulINF | 0.252 | 0.434 | |
CulUD | 0.115 | 0.319 |
Trait | σ2p | σ2a | ±SE | σ2herd | ±SE | σ2e | ±SE | h2 ± SE |
---|---|---|---|---|---|---|---|---|
HL | 4.798 | 0.770 | ±0.020 | 0.498 | ±0.008 | 3.529 | ±0.015 | 0.160 ± 0.004 |
LPL | 4.780 | 0.758 | ±0.020 | 0.482 | ±0.008 | 3.541 | ±0.015 | 0.159 ± 0.004 |
NC | 4.323 | 0.689 | ±0.018 | 0.368 | ±0.007 | 3.266 | ±0.014 | 0.159 ± 0.004 |
LMY (106) | 212.000 | 2.858 | ±0.861 | 17.050 | ±0.304 | 166.500 | ±0.640 | 0.135 ± 0.004 |
LFY (103) | 359.332 | 45.418 | ±1.423 | 26.620 | ±0.476 | 287.294 | ±1.102 | 0.126 ± 0.004 |
LPY (103) | 265.901 | 33.958 | ±1.054 | 20.709 | ±0.363 | 211.234 | ±0.810 | 0.128 ± 0.004 |
EffLMY (10−2) | 764.458 | 117.675 | ±3.471 | 67.842 | ±1.176 | 578.940 | ±2.585 | 0.154 ± 0.004 |
EffLFY (10−2) | 1.277 | 0.164 | ±0.057 | 0.101 | ±0.002 | 1.013 | ±0.004 | 0.128 ± 0.004 |
EffLPY (10−2) | 0.964 | 0.132 | ±0.004 | 0.088 | ±0.001 | 0.744 | ±0.003 | 0.137 ± 0.004 |
Surv1 (10−3) | 128.340 | 3.246 | ±0.312 | 5.989 | ±0.123 | 119 | ±0.327 | 0.025 ± 0.002 |
Surv3 (10−3) | 202.640 | 14.114 | ±0.751 | 12.201 | ±0.227 | 176.320 | ±0.653 | 0.070 ± 0.004 |
Surv5 (10−3) | 144.590 | 12.703 | ±0.501 | 8.087 | ±0.160 | 123.800 | ±3.363 | 0.088 ± 0.003 |
Surv7 (10−3) | 60.628 | 4.566 | ±0.188 | 2.357 | ±0.0516 | 53.704 | ±0.167 | 0.075 ± 0.003 |
Surv9 (10−3) | 16.467 | 0.555 | ±0.042 | 0.325 | ±0.010 | 15.588 | ±0.044 | 0.034 ± 0.003 |
CulCL (10−3) | 104.560 | 5.790 | ±0.332 | 3.564 | ±0.083 | 95.209 | ±0.288 | 0.055 ± 0.003 |
CulINF (10−3) | 179.200 | 6.051 | ±0.505 | 8.163 | ±0.171 | 164.980 | ±0.484 | 0.034 ± 0.003 |
CulUD (10−3) | 102.200 | 3.739 | ±0.275 | 2.723 | ±0.073 | 95.742 | ±0.275 | 0.037 ± 0.003 |
F | SE | HET | SE | REC | SE | |
---|---|---|---|---|---|---|
HL (years) | −1.99 *** | 0.19 | 0.44 *** | 0.05 | 0.16 * | 0.07 |
LPL (years) | −2.11 *** | 0.19 | 0.42 *** | 0.05 | 0.16 * | 0.07 |
NC | −2.48 *** | 0.19 | 0.31 *** | 0.05 | 0.13 * | 0.07 |
LMY (kg) | −18,556 *** | 1318 | 1700 *** | 332 | 374 | 477 |
LFY (kg) | −791 *** | 55 | 66.8 *** | 13.7 | 19.9 | 19.6 |
LPY (kg) | −666 *** | 46.8 | 50.5 *** | 11.7 | 10.0 | 16.9 |
EffLMY (kg/day) | −3.916 *** | 0.248 | 0.064 | 0.063 | −0.128 | 0.091 |
EffLFY (kg/day) | −0.170 *** | 0.010 | 0.000 | 0.003 | −0.005 | 0.004 |
EffLPY (kg/day) | −0.140 *** | 0.009 | −0.001 | 0.002 | −0.006 * | 0.003 |
Surv1 | −0.261 *** | 0.033 | 0.034 *** | 0.008 | 0.022 * | 0.011 |
Surv3 | −0.457 *** | 0.042 | 0.068 *** | 0.010 | 0.037 ** | 0.014 |
Surv5 | −0.377 *** | 0.035 | 0.059 *** | 0.009 | 0.031 ** | 0.012 |
Surv7 | −0.154 *** | 0.023 | 0.025 *** | 0.006 | 0.016 * | 0.008 |
Surv9 | −0.052 *** | 0.012 | 0.009 *** | 0.003 | −0.002 | 0.004 |
CulCL | −0.097 ** | 0.030 | −0.010 | 0.007 | −0.040 *** | 0.010 |
CulINF | 0.399 *** | 0.040 | 0.034 *** | 0.009 | 0.036 ** | 0.013 |
CulUD | −0.125 *** | 0.030 | −0.003 | 0.007 | −0.010 | 0.010 |
F | SE | F × Fa_Bal | SE | Fa_Kal | SE | FNew | SE | |
---|---|---|---|---|---|---|---|---|
HL (years) | −1.78 *** | 0.21 | −30.30 ** | 10.51 | −7.06 * | 2.90 | −0.08 | 0.24 |
LPL (years) | −1.90 *** | 0.21 | −29.89 ** | 10.51 | −6.90 * | 2.90 | −0.09 | 0.24 |
NC | −2.31 *** | 0.20 | −25.33 * | 10.08 | −6.61 * | 2.78 | −0.08 | 0.23 |
LMY (kg) | −16,943 *** | 1408 | −232,257 ** | 71,165 | −40,527 * | 19,640 | 118 | 1610 |
LFY (kg) | −723 *** | 58 | −9778 *** | 2944 | −1605 * | 812 | 8.685 | 67.61 |
LPY (kg) | −607 *** | 50 | −8516 *** | 2526 | −1426 * | 697 | 6.104 | 57.18 |
EffLMY (kg/day) | −3.668 *** | 0.265 | −35.615 ** | 13.394 | −6.953 | 3.696 | 0.188 | 0.303 |
EffLFY (kg/day) | −0.160 *** | 0.011 | −1.472 ** | 0.553 | −0.285 | 0.153 | 0.011 | 0.013 |
EffLPY (kg/day) | −0.131 *** | 0.009 | −1.309 ** | 0.477 | −0.241 | 0.132 | 0.008 | 0.011 |
Surv1 | −0.255 *** | 0.036 | −0.843 | 1.814 | −0.184 | 0.501 | −0.021 | 0.041 |
Surv3 | −0.437 *** | 0.044 | −2.859 | 2.249 | −1.491 * | 0.621 | −0.014 | 0.051 |
Surv5 | −0.349 *** | 0.038 | −4.102 * | 1.898 | −0.953 | 0.524 | −0.003 | 0.043 |
Surv7 | −0.139 *** | 0.025 | −2.237 | 1.241 | −0.240 | 0.343 | −0.013 | 0.028 |
Surv9 | −0.042 ** | 0.013 | −1.369 * | 0.656 | −0.310 | 0.181 | −0.015 | 0.015 |
CulCL | −0.101 ** | 0.032 | 0.561 | 1.639 | 0.095 | 0.453 | −0.055 | 0.037 |
CulINF | 0.377 *** | 0.042 | 3.225 | 2.142 | 0.098 | 0.592 | 0.051 | 0.048 |
CulUD | −0.119 *** | 0.032 | −0.814 | 1.629 | 0.624 | 0.450 | −0.082 * | 0.037 |
Only Ahc in Model 1 | Ahc and F Simultaneously in Model 2 | |||||
---|---|---|---|---|---|---|
Ahc | SE | F | SE | Ahc | SE | |
HL (years) | −0.88 ** | 0.28 | −1.99 *** | 0.19 | −0.88 ** | 0.28 |
LPL (years) | −0.87 ** | 0.28 | −2.11 *** | 0.19 | −0.88 ** | 0.28 |
NC | −0.70 ** | 0.27 | −2.48 *** | 0.19 | −0.70 * | 0.27 |
LMY (kg) | −4866 * | 1904 | −18,559 *** | 1318 | −4888 * | 1904 |
LFY (kg) | −169 * | 79 | −791 *** | 55 | −169 * | 79 |
LPY (kg) | −160 * | 68 | −666 *** | 47 | −161 * | 68 |
EffLMY (kg/day) | −0.660 | 0.358 | −3.916 *** | 0.248 | −0.665 | 0.358 |
EffLFY (kg/day) | −0.018 | 0.015 | −0.170 *** | 0.010 | −0.018 | 0.015 |
EffLPY (kg/day) | −0.019 | 0.013 | −0.140 *** | 0.009 | −0.019 | 0.013 |
Surv1 | −0.031 | 0.048 | −0.266 *** | 0.009 | −0.028 * | 0.013 |
Surv3 | −0.128 * | 0.060 | −0.457 *** | 0.042 | −0.128 * | 0.060 |
Surv5 | −0.101 * | 0.051 | −0.377 *** | 0.035 | −0.101 * | 0.051 |
Surv7 | −0.058 | 0.033 | −0.154 *** | 0.023 | −0.058 | 0.033 |
Surv9 | −0.029 | 0.017 | −0.052 *** | 0.012 | −0.029 | 0.017 |
CulCL | −0.015 | 0.044 | −0.097 ** | 0.030 | −0.015 | 0.044 |
CulINF | −0.012 | 0.057 | 0.399 *** | 0.040 | 0.012 | 0.057 |
CulUD | 0.028 | 0.043 | −0.125 *** | 0.030 | 0.028 | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wirth, A.; Duda, J.; Distl, O. Impact of Inbreeding and Ancestral Inbreeding on Longevity Traits in German Brown Cows. Animals 2023, 13, 2765. https://doi.org/10.3390/ani13172765
Wirth A, Duda J, Distl O. Impact of Inbreeding and Ancestral Inbreeding on Longevity Traits in German Brown Cows. Animals. 2023; 13(17):2765. https://doi.org/10.3390/ani13172765
Chicago/Turabian StyleWirth, Anna, Jürgen Duda, and Ottmar Distl. 2023. "Impact of Inbreeding and Ancestral Inbreeding on Longevity Traits in German Brown Cows" Animals 13, no. 17: 2765. https://doi.org/10.3390/ani13172765
APA StyleWirth, A., Duda, J., & Distl, O. (2023). Impact of Inbreeding and Ancestral Inbreeding on Longevity Traits in German Brown Cows. Animals, 13(17), 2765. https://doi.org/10.3390/ani13172765