Research Progress of Biological Feed in Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Classification and Function of Biological Feed
2.1. Classification of Biological Feed
2.1.1. Fermented Feed
2.1.2. Enzymatic Hydrolysis Feed
2.1.3. Cooperation of Bacteria and Enzyme
2.1.4. Biological Feed Additives
2.2. Biological Feed Function
2.2.1. Improve the Immune Function of Livestock and Poultry
2.2.2. Enhance the Gastrointestinal Microecological Environment and Production Environment of Livestock and Poultry
2.2.3. Improve Feed Utilization and Growth Performance
3. Biological Feed Strains and Enzyme Preparations
3.1. Classification and Characteristics of Strains
3.1.1. Yeast
3.1.2. Lactic Acid Bacteria
3.1.3. Mold
3.1.4. Bacillus
3.2. Enzyme Preparations
4. Application of Biological Feed in Cattle Breeding
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- China Standardization Commission. T/CSWSL 001—2018 Biological Feed Product Classification; Standards Press of China: Beijing, China, 2018. [Google Scholar]
- Meschiatti, M.A.; Gouvêa, V.N.; Pellarin, L.A.; Batalha, C.D.; Biehl, M.V.; Acedo, T.S.; Dórea, J.R.; Tamassia, L.F.; Owens, F.N.; Santos, F.A. Feeding the combination of essential oils and exogenous alpha amylase increases performance and carcass production of finishing beef cattle. J. Anim. Sci. 2019, 97, 456–471. [Google Scholar] [CrossRef]
- Bontempo, V.; Di Giancamillo, A.; Savoini, G.; Dell’Orto, V.; Domeneghini, C. Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Anim. Feed Sci. Technol. 2006, 129, 224–236. [Google Scholar] [CrossRef]
- Hancox, L.R.; Le Bon, M.; Richards, P.J.; Guillou, D.; Dodd, C.E.R.; Mellits, K.H. Effect of a single dose of Saccharomyces cerevisiae var. boulardii on the occurrence of porcine neonatal diarrhoea. Animal 2015, 9, 1756–1759. [Google Scholar] [CrossRef]
- Cheng, W.; Lv, Y. Application and development trend of fermentation engineering in feed industry. Hubei Anim. Husb. Vet. Med. 2008, 5, 34–35. [Google Scholar]
- Rajput, I.; Li, L.; Xin, X.; Wu, B.; Juan, Z.; Cui, Z.; Yu, D.; Li, W. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult. Sci. 2013, 92, 956–965. [Google Scholar] [CrossRef]
- Alugongo, G.M.; Xiao, J.; Wu, Z.; Li, S.; Wang, Y.; Cao, Z. Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. J. Anim. Sci. Biotechnol. 2017, 8, 34. [Google Scholar] [CrossRef]
- He, Z.; Ferlisi, B.; Eckert, E.; Brown, H.; Aguilar, A.; Steele, M. Supplementing a yeast probiotic to pre-weaning Holstein calves: Feed intake, growth and fecal biomarkers of gut health. Anim. Feed Sci. Technol. 2017, 226, 81–87. [Google Scholar] [CrossRef]
- Galvão, K.N.; Santos, J.E.; Coscioni, A.; Villaseñor, M.; Sischo, W.M.; Berge, A.C.B. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod. Nutr. Dev. 2005, 45, 427–440. [Google Scholar] [CrossRef]
- Timmerman, H.; Mulder, L.; Everts, H.; van Espen, D.; van der Wal, E.; Klaassen, G.; Rouwers, S.; Hartemink, R.; Rombouts, F.; Beynen, A. Health and Growth of Veal Calves Fed Milk Replacers with or without Probiotics. J. Dairy Sci. 2005, 88, 2154–2165. [Google Scholar] [CrossRef]
- Oikonomou, G.; Teixeira, A.G.V.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C. Fecal Microbial Diversity in Pre-Weaned Dairy Calves as Described by Pyrosequencing of Metagenomic 16S rDNA. Associations of Faecalibacterium Species with Health and Growth. PLoS ONE 2013, 8, e63157. [Google Scholar] [CrossRef]
- McFarland, L.V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol. 2010, 16, 2202. [Google Scholar] [CrossRef]
- Brousseau, J.-P.; Talbot, G.; Beaudoin, F.; Lauzon, K.; Roy, D.; Lessard, M. Effects of probiotics Pediococcus acidilactici strain MA18/5M and Saccharomyces cerevisiae ssp. boulardii strain SB-CNCM I-1079 on fecal and intestinal microbiota of nursing and weanling piglets. J. Anim. Sci. 2015, 93, 5313–5326. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Feng, D.; Bahl, A. Application of biological feed in livestock and poultry breeding. Guangdong Feed 2017, 26, 36–39. [Google Scholar]
- Fang, L.; Ge, X.; Tang, J.; Yao, X.; Wu, Y.; Sun, H. Preparation of small peptides by soybean meal co-processing with microbe and protease. China Feed 2011, 5, 17–20,27. [Google Scholar]
- Yang, J.; Liu, H.; Zhang, Y.; Yuan, W. Study on fermentation conditions of the soybean peptides by cooperation of bacteria and enzymeand its antioxidant activity. Sci. Technol. Food Ind. 2013, 34, 245–249. [Google Scholar] [CrossRef]
- Sun, H. The Nutritional Value of Cottonseed Meal Produced by Fermentation with Enzyme Addition and the Antioxidant Activity of Its Peptide Fractions; Zhejiang University: Hangzhou, China, 2013. [Google Scholar]
- Zhang, K. Research on Production of Protein Feedstuff from Miscellaneous Meal by Cooperation of Bacteria and Enzyme; Wuhan Institute of Technology: Wuhan, China, 2012. [Google Scholar]
- Zhang, Q.; An, X.; Wang, Y.; Wang, R.; Qi, J. Study on preparation of xylan by enzymatic fermentation of corncob. Chin. Feed 2017, 22, 23–26. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Haberer, P.; Geisen, R.; Björkroth, J.; Schillinger, U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 2001, 73, 365s–373s. [Google Scholar] [CrossRef]
- Scharek, L.; Guth, J.; Reiter, K.; Weyrauch, K.; Taras, D.; Schwerk, P.; Schierack, P.; Schmidt, M.; Wieler, L.; Tedin, K. Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Veter. Immunol. Immunopathol. 2005, 105, 151–161. [Google Scholar] [CrossRef]
- Guo, X.; Li, D.; Lu, W.; Piao, X.; Chen, X. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie Van Leeuwenhoek 2006, 90, 139–146. [Google Scholar] [CrossRef]
- Fujiwara, K.-I.; Yamazaki, M.; Abe, H.; Nakashima, K.; Yakabe, Y.; Otsuka, M.; Ohbayashi, Y.; Kato, Y.; Namai, K.; Toyoda, A.; et al. Effect of Bacillus subtilis var. natto Fermented Soybean on Growth Performance, Microbial Activity in the Caeca and Cytokine Gene Expression of Domestic Meat Type Chickens. J. Poult. Sci. 2009, 46, 116–122. [Google Scholar] [CrossRef]
- Jenny, B.; Vandijk, H.; Collins, J. Performance and Fecal Flora of Calves Fed a Bacillus subtilis Concentrate. J. Dairy Sci. 1991, 74, 1968–1973. [Google Scholar] [CrossRef]
- Kritas, S.K.; Morrison, R.B. Evaluation of probiotics as a substitute for antibiotics in a large pig nursery. Veter. Rec. 2005, 156, 447–448. [Google Scholar] [CrossRef]
- Jian, Z.; Liu, J.; Zhang, X.; Xia, L. Research and Application Progress of Biological Feed. Guizhou Anim. Husb. Vet. Med. 2021, 45, 4–8. [Google Scholar]
- Canibe, N.; Jensen, B.B. Fermented and nonfermented liquid feed to growing pigs: Effect on aspects of gastrointestinal ecology and growth performance. J. Anim. Sci. 2003, 81, 2019–2031. [Google Scholar] [CrossRef] [PubMed]
- Kiers, J.; Meijer, J.; Nout, M.; Rombouts, F.; Nabuurs, M.; Van Der Meulen, J. Effect of fermented soya beans on diarrhoea and feed efficiency in weaned piglets. J. Appl. Microbiol. 2003, 95, 545–552. [Google Scholar] [CrossRef]
- Mukherjee, R.; Chakraborty, R.; Dutta, A. Role of fermentation in improving nutritional quality of soybean meal—A review. Asian Australas. J. Anim. Sci. 2016, 29, 1523–1529. [Google Scholar] [CrossRef]
- Van Winsen, R.L.; Urlings, B.A.P.; Lipman, L.J.A.; Snijders, J.M.A.; Keuzenkamp, D.; Verheijden, J.H.M.; van Knapen, F. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl. Environ. Microbiol. 2001, 67, 3071–3076. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Zhao, J.Z.; Zhou, Z.J.; Fan, H. Consuming fermented distillers’ dried grains with solubles (DDGS) feed reveals a shift in the faecal microbiota of growing and fattening pigs using 454 pyrosequencing. J. Integr. Agric. 2017, 16, 900–910. [Google Scholar] [CrossRef]
- Koh, H.-W.; Kim, M.S.; Lee, J.-S.; Kim, H.; Park, S.-J. Changes in the Swine Gut Microbiota in Response to Porcine Epidemic Diarrhea Infection. Microbes Environ. 2015, 30, 284–287. [Google Scholar] [CrossRef]
- Valeriano, V.D.V.; Balolong, M.P.; Kang, D.K. Probiotic roles of Lactobacillus sp. in swine: Insights from gut microbiota. J. Appl. Microbiol. 2017, 122, 554–567. [Google Scholar] [CrossRef]
- Barnes, A.G.C.; Cerovic, V.; Hobson, P.S.; Klavinskis, L.S. Bacillus subtilis spores: A novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. Eur. J. Immunol. 2007, 37, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Suzuki, Y.; Guan, L.L. Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Veter. Immunol. Immunopathol. 2018, 205, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Fomenky, B.E.; Do, D.N.; Talbot, G.; Chiquette, J.; Bissonnette, N.; Chouinard, Y.P.; Lessard, M.; Ibeagha-Awemu, E.M. Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves. Sci. Rep. 2018, 8, 14147. [Google Scholar] [CrossRef] [PubMed]
- Abbeele, P.V.D.; Van de Wiele, T.; Verstraete, W.; Possemiers, S. The host selects mucosal and luminal associations of coevolved gut microorganisms: A novel concept. FEMS Microbiol. Rev. 2011, 35, 681–704. [Google Scholar] [CrossRef]
- Sterne, J.A.; Gavaghan, D.; Egger, M. Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature. J. Clin. Epidemiol. 2000, 53, 1119–1129. [Google Scholar] [CrossRef]
- Schwiertz, A.; Jacobi, M.; Frick, J.-S.; Richter, M.; Rusch, K.; Köhler, H. Microbiota in Pediatric Inflammatory Bowel Disease. J. Pediatr. 2010, 157, 240–244.e1. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Dowd, S.E.; Wilke, V.; Steiner, J.M.; Jergens, A.E. 16S rRNA Gene Pyrosequencing Reveals Bacterial Dysbiosis in the Duodenum of Dogs with Idiopathic Inflammatory Bowel Disease. PLoS ONE 2012, 7, e39333. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wright, K.; Davis, J.M.; Jeraldo, P.; Marietta, E.V.; Murray, J.; Nelson, H.; Matteson, E.L.; Taneja, V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016, 8, 43. [Google Scholar] [CrossRef]
- Nagashima, K.; Yasokawa, D.; Abe, K.; Nakagawa, R.; Kitamura, T.; Miura, T.; Kogawa, S. Effect of a Lactobacillus Species on Incidence of Diarrhea in Calves and Change of the Microflora Associated with Growth. Biosci. Microflora 2010, 29, 97–110. [Google Scholar] [CrossRef]
- Escobar-Páramo, P.; Grenet, K.; Le Menac’H, A.; Rode, L.; Salgado, E.; Amorin, C.; Gouriou, S.; Picard, B.; Rahimy, M.C.; Andremont, A.; et al. Large-Scale Population Structure of Human Commensal Escherichia coli Isolates. Appl. Environ. Microbiol. 2004, 70, 5698–5700. [Google Scholar] [CrossRef]
- Abu-Tarboush, H.M.; Al-Saiady, M.Y.; El-Din, A.H.K. Evaluation of diet containing Lactobacilli on performance, Fecal Coliform, and Lactobacilli of young dairy calves. Anim. Feed Sci. Technol. 1996, 57, 39–49. [Google Scholar] [CrossRef]
- Gilbert, E.R.; Wong, E.A.; Webb, K.E. Board-Invited Review: Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci. 2008, 86, 2135–2155. [Google Scholar] [CrossRef] [PubMed]
- Tajima, K.; Ohmori, H.; Aminov, R.I.; Kobashi, Y.; Kawashima, T. Fermented liquid feed enhances bacterial diversity in piglet intestine. Anaerobe 2010, 16, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.Y.; Zhang, Y.; Lu, Z.Q.; Wang, Y.Z. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef]
- Urlings, H.; Mug, A.; Klooster, A.v.; Bijker, P.; van Logtestijn, J.; van Gils, L. Microbial and nutritional aspects of feeding fermented feed (poultry by-products) to pigs. Veter. Q. 1993, 15, 146–151. [Google Scholar] [CrossRef]
- Demecková, V.; Kelly, D.; Coutts, A.G.P.; Brooks, P.H.; Campbell, A. The effect of fermented liquid feeding on the faecal microbiology and colostrum quality of farrowing sows. Int. J. Food Microbiol. 2002, 79, 85–97. [Google Scholar] [CrossRef]
- Wu, X.; Guo, C.; Wang, Z.; Peng, Z.; Bai, X.; Li, Y.; Zou, H. Microbiology Fermented Feed: Effects on Performance and Nutrient Apparent Digestibility of Lactating Dairy Cows. Chin. J. Anim. Nutr. 2014, 26, 2296–2302. [Google Scholar] [CrossRef]
- Song, D.; Wang, F.; Lu, Z.; Wang, Y. 385 Effects of supplementing sow diets with Saccharomyces cerevisiae refermented sorghum dried distiller’s grains with solubles from late gestation to weaning on the performance of sows and progeny. J. Anim. Sci. 2017, 95, 190–191. [Google Scholar] [CrossRef]
- Arevalo-Villena, M.; Briones-Perez, A.; Corbo, M.; Sinigaglia, M.; Bevilacqua, A. Biotechnological application of yeasts in food science: Starter cultures, probiotics and enzyme production. J. Appl. Microbiol. 2017, 123, 1360–1372. [Google Scholar] [CrossRef]
- Chaudhary, L.C.; Sahoo, A.; Agrawal, N.; Kamra, D.N.; Pathak, N.N. Effect of direct fed microbials on nutrient utilization, rumen fermentation, immune and growth response in crossbred cattle calves. Indian J. Anim. Sci. 2008, 78, 515–521. [Google Scholar]
- Maamouri, O.; Ben Salem, M. The effect of live yeast Saccharomyces cerevisiae as probiotic supply on growth performance, feed intake, ruminal pH and fermentation in fattening calves. Veter. Med. Sci. 2021, 8, 398–404. [Google Scholar] [CrossRef]
- Villot, C.; Ma, T.; Renaud, D.; Ghaffari, M.; Gibson, D.; Skidmore, A.; Chevaux, E.; Guan, L.; Steele, M. Saccharomyces cerevisiae boulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves. J. Dairy Sci. 2019, 102, 7011–7025. [Google Scholar] [CrossRef]
- Lee, J.-S.; Kacem, N.; Kim, W.-S.; Peng, D.Q.; Kim, Y.-J.; Joung, Y.-G.; Lee, C.; Lee, H.-G. Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions. Animals 2019, 9, 510. [Google Scholar] [CrossRef] [PubMed]
- Crossland, W.L.; Jobe, J.T.; Ribeiro, F.R.B.; Sawyer, J.E.; Callaway, T.R.; O Tedeschi, L. Evaluation of active dried yeast in the diets of feedlot steers—I: Effects on feeding performance traits, the composition of growth, and carcass characteristics. J. Anim. Sci. 2019, 97, 1335–1346. [Google Scholar] [CrossRef] [PubMed]
- Crossland, W.L.; Cagle, C.M.; Sawyer, J.E.; Callaway, T.R.; Tedeschi, L.O. Evaluation of active dried yeast in the diets of feedlot steers. II. Effects on rumen pH and liver health of feedlot steers. J. Anim. Sci. 2019, 97, 1347–1363. [Google Scholar] [CrossRef]
- Miettinen, M.; Vuopio-Varkila, J.; Varkila, K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 1996, 64, 5403–5405. [Google Scholar] [CrossRef] [PubMed]
- Missotten, J.A.; Michiels, J.; Degroote, J.; De Smet, S. Fermented liquid feed for pigs: An ancient technique for the future. J. Anim. Sci. Biotechnol. 2015, 6, 4. [Google Scholar] [CrossRef]
- Shi, C.; He, J.; Yu, J.; Yu, B.; Mao, X.; Zheng, P.; Huang, Z.; Chen, D. Physicochemical Properties Analysis and Secretome of Aspergillus Niger in Fermented Rapeseed Meal. PLoS ONE 2016, 11, e0153230. [Google Scholar] [CrossRef]
- Shi, C.Y.; He, J.; Wang, J.P.; Yu, J.; Yu, B.; Mao, X.B.; Zheng, P.; Huang, Z.Q.; Chen, D.W. Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance and serum parameters in growing pigs. Anim. Sci. J. 2016, 87, 557–563. [Google Scholar] [CrossRef]
- Han, B.Z.; Rombouts, F.M.; Nout, M.J.R. A Chinese fermented soybean food. Int. J. Food Microbiol. 2001, 65, 1–10. [Google Scholar] [CrossRef]
- Chi, C.-H.; Cho, S.-J. Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT 2016, 68, 619–625. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, M.; Zhang, R.; Sun, Z.; Wang, C.; Yang, F.; Huang, T.; Qu, S.; Zhao, L.; Li, Y.; et al. Effects of soybean meal fermented by L. plantarum, B. subtilis and S. cerevisieae on growth, immune function and intestinal morphology in weaned piglets. Microb. Cell Factories 2017, 16, 191. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, C.; Georgoulakis, I.E.; Tzivara, A.; Kyriakis, C.S.; Govaris, A.; Kyriakis, S.C. Field evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2004, 51, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, G.; Cimminiello, C.; Chianese, R.; Visconti, G.P.; Cova, D.; Uberti, T.; Gibelli, A. Bacillus subtilis selectively stimulates the synthesis of membrane bound and secreted IgA. Chemioterapia 1985, 4, 310–312. [Google Scholar]
- Yanagisawa, Y.; Sumi, H. Natto bacillus contains a large amount of water-soluble vitamin k (menaquinone-7). J. Food Biochem. 2005, 29, 267–277. [Google Scholar] [CrossRef]
- Renaud, D.; Kelton, D.; Weese, J.; Noble, C.; Duffield, T. Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves: A randomized clinical trial. J. Dairy Sci. 2019, 102, 4498–4505. [Google Scholar] [CrossRef]
- Andreeva, F.M.; Gafarova, F.A. Application of probiotic “Stimix Zoostim” in calves management. J. Eng. Appl. Sci. 2018, 3, 55–58. [Google Scholar] [CrossRef]
- Mousa, S.A.; Marwan, A.A. Growth performance, rumen fermentation and selected biochemical indices in buffalo calves fed on Basillis subtilus supplemented diet. Int. J. Vet Sci. 2019, 8, 151–156. [Google Scholar]
- Kim, E.-Y.; Kim, Y.-H.; Rhee, M.-H.; Song, J.-C.; Lee, K.-W.; Kim, K.-S.; Lee, S.-P.; Lee, I.-S.; Park, S.-C. Selection of Lactobacillus sp. PSC101 that produces active dietary enzymes such as amylase, lipase, phytase and protease in pigs. J. Gen. Appl. Microbiol. 2007, 53, 111–117. [Google Scholar] [CrossRef]
- Liu, S.; Xiong, Y.; Sun, L.; Wang, L. Research Progress of Application of Bacillus subtilis as Feed Additive in Pigs Production. Chin. J. Anim. Nutr. 2022, 34, 2105–2113. [Google Scholar] [CrossRef]
- Vigne, G.L.D.; Neumann, M.; Santos, L.C.; Stadler Júnior, E.S.; Pontarolo, G.B.; Petkowicz, K.; Cristo, F.B. Digestibility of starch and ingestive behavior of feedlot steers by effect of enzymatic complex doses in high-energy diets. Arq. Bras. Med. Veterinária Zootec. 2019, 71, 1015–1026. [Google Scholar] [CrossRef]
- Marwan, A.A.; Mousa, S.A.; Singer, A.M. Impact of Feeding Exogenous Fibrolytic Enzymes (EFE) on Digestibility, Rumen Fermentation, Haemobiochemical Profile and Productive Performance in Buffalo Calves. Int. J. Vet Sci. 2019, 8, 127–133. [Google Scholar]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.d.L.; Christensen, H.; Dusemund, B.; Kouba, M.; Durjava, M.K.; López-Alonso, M.; Puente, S.L.; et al. Efficacy of Bacillus subtilis DSM 28343 as a zootechnical additive (gut flora stabiliser) for calves for rearing. EFSA J. 2019, 17, e05793. [Google Scholar] [CrossRef] [PubMed]
- Broucek, J.; Kisac, P.; Uhrincat, M. Effect of hot temperature on the hematological parameters, health and performance of calves. Int. J. Biometeorol. 2009, 53, 201–208. [Google Scholar] [CrossRef]
- Chaudhary, S.S.; Singh, V.K.; Upadhyay, R.C.; Puri, G.; Odedara, A.B.; Patel, P.A. Evaluation of physiological and biochemical responses in different seasons in Surti buffaloes. Veter. World 2015, 8, 727–731. [Google Scholar] [CrossRef]
- Mohr, E.; Langbein, J.; Nurnberg, G. Heart rate variability: A non-invasive approach to measure stress in calves and cows. Physiol. Behav. 2002, 75, 251–259. [Google Scholar] [CrossRef]
- Haque, N.; Ludri, A.; Hossain, S.; Ashutosh, M. Impact on hematological parameters in young and adult Murrah buffaloes exposed to acute heat stress. Buffalo Bull. 2013, 32, 321–326. [Google Scholar] [CrossRef]
- Pinos-Rodríguez, J.; Robinson, P.; Ortega, M.; Berry, S.; Mendoza, G.; Bárcena, R. Performance and rumen fermentation of dairy calves supplemented with Saccharomyces cerevisiae 1077 or Saccharomyces boulardii 1079. Anim. Feed Sci. Technol. 2008, 140, 223–232. [Google Scholar] [CrossRef]
- Neuwirth, J.G.; Norton, J.K.; Rawlings, C.A.; Thompson, F.N.; Ware, G.O. Physiologic responses of dairy calves to environmental heat stress. Int. J. Biometeorol. 1979, 23, 243–254. [Google Scholar] [CrossRef]
- Magdub, A.; Johnson, H.; Belyea, R. Effect of Environmental Heat and Dietary Fiber on Thyroid Physiology of Lactating Cows. J. Dairy Sci. 1982, 65, 2323–2331. [Google Scholar] [CrossRef]
- Lemerle, C.; Goddard, M.E. Assessment of heat stress in dairy cattle in papua new guinea. Trop. Anim. Health Prod. 1986, 18, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Doyle, M.P.; Harmon, B.G.; Brown, C.A.; Mueller, P.O.E.; Parks, A.H. Reduction of Carriage of Enterohemorrhagic Escherichia coli O157:H7 in Cattle by Inoculation with Probiotic Bacteria. J. Clin. Microbiol. 1998, 36, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Collier, C.T.; Carroll, J.A.; Ballou, M.A.; Starkey, J.D.; Sparks, J.C. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs. J. Anim. Sci. 2011, 89, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Winder, C.B.; Kelton, D.F.; Duffield, T.F. Mortality risk factors for calves entering a multi-location white veal farm in Ontario, Canada. J. Dairy Sci. 2016, 99, 10174–10181. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.; Duffield, T.; LeBlanc, S.; Haley, D.; Kelton, D. Clinical and metabolic indicators associated with early mortality at a milk-fed veal facility: A prospective case-control study. J. Dairy Sci. 2018, 101, 2669–2678. [Google Scholar] [CrossRef]
- Berge, A.; Lindeque, P.; Moore, D.; Sischo, W. A Clinical Trial Evaluating Prophylactic and Therapeutic Antibiotic Use on Health and Performance of Preweaned Calves. J. Dairy Sci. 2005, 88, 2166–2177. [Google Scholar] [CrossRef]
- Li, S.; Hui, X.; Li, H.; Wang, Q.; Zhu, B. Effects of Multifunctional Complex Microbial Agent Fermented Corn Straw on Energy Metabolism of Fattening Sheep. Chin. J. Anim. Nutr. 2015, 27, 2231–2240. [Google Scholar] [CrossRef]
- Phipps, R.H.; Sutton, J.D.; Beever, D.E.; Jones, A.K. The effect of crop maturity on the nutritional value of maize silage for lactating dairy cows. 3. Food intake and milk production. Anim. Sci. 2000, 71, 401–409. [Google Scholar] [CrossRef]
- Keady, T.; Kilpatrick, D.; Mayne, C.; Gordon, F. Effects of replacing grass silage with maize silages, differing in maturity, on performance and potential concentrate sparing effect of dairy cows offered two feed value grass silages. Livest. Sci. 2008, 119, 1–11. [Google Scholar] [CrossRef]
- Angulo, J.; Mahecha, L.; Yepes, S.A.; Yepes, A.M.; Bustamante, G.; Jaramillo, H.; Valencia, E.; Villamil, T.; Gallo, J. Nutritional evaluation of fruit and vegetable waste as feedstuff for diets of lactating Holstein cows. J. Environ. Manag. 2012, 95, S210–S214. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Fang, X.; Cai, Y.; Zhang, Y. Lactation performance, nitrogen utilization, and profitability in dairy cows fed fermented total mixed ration containing wet corn gluten feed and corn stover in combination replacing a portion of alfalfa hay. Anim. Feed Sci. Technol. 2020, 269, 114687. [Google Scholar] [CrossRef]
- Kim, M.; Yun, C.; Lee, C.; Ha, J. The effects of fermented soybean meal on immunophysiological and stress-related parameters in Holstein calves after weaning. J. Dairy Sci. 2012, 95, 5203–5212. [Google Scholar] [CrossRef] [PubMed]
- Pilajun, R.; Wanapat, M. Growth performance and carcass characteristics of feedlot Thai native × Lowline Angus crossbred steer fed with fermented cassava starch residue. Trop. Anim. Health Prod. 2016, 48, 719–726. [Google Scholar] [CrossRef]
- Harris, T.; Liang, Y.; Sharon, K.; Sellers; Yoon, I.; Scott, M.; Carroll, J.; Ballou, M. Influence of Saccharomyces cerevisiae fermentation products, SmartCare in milk replacer and Original XPC in calf starter, on the performance and health of preweaned Holstein calves challenged with Salmonella enterica serotype Typhimurium. J. Dairy Sci. 2017, 100, 7154–7164. [Google Scholar] [CrossRef]
- Kazemi-Bonchenari, M.; Khodaei-Motlagh, M.; Ghasemi, H.A.; Hajkhodadadi, I. Performance, growth status, rumen fermentation and some blood metabolites in blood of Holstein bull calves fed starch or fermented fiber based diets. J. Livest. Sci. Technol. 2017, 5, 19–24. [Google Scholar] [CrossRef]
- Teixeira, A.; Ribeiro, B.; Junior, P.; Korzec, H.; Bicalho, R. Prophylactic use of a standardized botanical extract for the prevention of naturally occurring diarrhea in newborn Holstein calves. J. Dairy Sci. 2017, 100, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, M.; Elgendy, R.; Giantin, M.; Martino, C.; Giansante, D.; Ianni, A.; Dacasto, M.; Martino, G. RNA Sequencing-Based Whole-Transcriptome Analysis of Friesian Cattle Fed with Grape Pomace-Supplemented Diet. Animals 2018, 8, 188. [Google Scholar] [CrossRef]
- Kargar, S.; Kanani, M. Reconstituted versus dry alfalfa hay in starter feed diets of Holstein dairy calves: Effects on growth performance, nutrient digestibility, and metabolic indications of rumen development. J. Dairy Sci. 2019, 102, 4051–4060. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, X.; Liu, S.; Li, Y.; Zhao, H.; Zhang, Y. Growth, rumen fermentation and plasma metabolites of Holstein male calves fed fermented corn gluten meal during the postweaning stage. Anim. Feed Sci. Technol. 2019, 249, 1–9. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, G.; Cui, Z.; Li, Y.; Zhang, Y. Effects of fermented corn gluten meal on growth performance, plasma metabolites, rumen fermentation and bacterial community of Holstein calves during the pre-weaning period. Livest. Sci. 2019, 231, 103866. [Google Scholar] [CrossRef]
- Deng, B.; Chen, Y.; Gong, X.; Dai, Y.; Zhan, K.; Lin, M.; Wang, L.; Zhao, G. Effects of Bacillus megatherium 1259 on Growth Performance, Nutrient Digestibility, Rumen Fermentation, and Blood Biochemical Parameters in Holstein Bull Calves. Animals 2021, 11, 2379. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Lv, J.; Dou, X.; Zhang, Y. Effects of Dietary Supplementation with Clostridium butyricum on the Amelioration of Growth Performance, Rumen Fermentation, and Rumen Microbiota of Holstein Heifers. Front. Nutr. 2021, 8, 763700. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Huang, S.; Si, J.; Zhang, J.; Gaowa, N.; Sun, X.; Lv, J.; Liu, G.; He, Y.; Wang, W.; et al. Effects of Paper Mulberry Silage on the Milk Production, Apparent Digestibility, Antioxidant Capacity, and Fecal Bacteria Composition in Holstein Dairy Cows. Animals 2020, 10, 1152. [Google Scholar] [CrossRef] [PubMed]
Items | Levels | Ruminants | Main Influences | References |
---|---|---|---|---|
S. cerevisiae (SC), spp. Boulardii (SCSB) | 0.5 g/d | Holstein calves | Calves on SC had higher grain intake, weight gain pre-weaning, and plasma glucose levels than controls. Feeding live yeast to calves reduced diarrhea days, but antibiotic resistance in fecal E. coli was highest in 3-day-old calves and not affected by other treatments except for SCSB, which increased resistance levels compared to controls. Improvements in calf performance with failed passive transfer were observed by adding live yeast only to the grain. | Klibs et al., 2005 [9] |
Fermented soybean meal | 5% | Holstein calves | Calves fed fermented soybean meal (FSBM) exhibited enhanced feed intake, growth performance, and health during the preweaning period, as well as reduced levels of stress-related serum variables (proinflammatory cytokines, acute-phase proteins [APP], and cortisol) following weaning. The incorporation of FSBM in their diet may prove advantageous in mitigating stress responses experienced by calves during the weaning process. | Kim et al., 2014 [95] |
Cassava chips or fermented cassava starch residue (FCSR) | 100% | Thai native x Lowline Angus crossbred steers | The substitution of FCSR for cassava chips in the concentrate resulted in a decrease in feed digestibility; however, it had no detrimental effects on growth performance and carcass characteristics. | Pilajun et al., 2016 [96] |
SmartCare (SC), Saccharomyces cerevisiae (XPC) | 1 g/d SC; 1 g/d SC + 0.5 g/d XPC | Holstein calves | Supplementing pre-weaned Holstein calves with both SC in milk replacer and XPC in calf starter not only improved starter intake, but also enhanced fecal consistency immediately after a mild Salmonella enterica challenge. However, further data are required to fully comprehend the impact of these yeast fermentation products on immune responses to Salmonella enterica. | Harris et al., 2017 [97] |
Saccharomyces cerevisiae var boulardii (SCB) | 10 × 109 cfu/d | Holstein calves | Supplementation of SCB did not yield any discernible effects on the performance, health, or fecal microbial groups in healthy calves. | He et al., 2017 [8] |
Fermented fiber (FFS) | Holstein bull calves | The findings revealed that despite the reduction in feed intake and increased water content in feces, the high starch diet exhibited a remarkable enhancement in the energy status of the calves by reducing BHB levels, elevating propionate concentration, and optimizing glucose concentrations. Notably, when compared to FFS, the SS-based diet demonstrated superior efficiency in bull calves. | Kazemi-Bonchenari et al., 2017 [98] | |
SB-300 (Croton lechleri standardized botanical extract) | 1000 mg/d | Holstein calves | The inclusion of 500 mg SB-300 in milk for a duration of 15 days can effectively mitigate the incidence of diarrhea and alleviate severe dehydration in calves that are fed with milk. | Teixeira et al., 2017 [99] |
Grape pomace | 10% | Cattle | Reflects antioxidant activity. | Iannaccone et al., 2018 [100] |
Saccharomyces cerevisiae boulardii CNCM I-1079 (SCB) | 10 × 109 cfu/d | Holstein calves | SCB has beneficial effects on health parameters of milk-fed calves raised in a commercial veal farm environment. | Villot et al., 2019 [55] |
Saccharomyces boulardii CNCM I-1079 (SB) | 10 × 109 cfu/d | Holstein calves | Supplementation of SB in milk replacer can mitigate the effects of heat stress on Holstein dairy calves, as evidenced by lowered rectal temperature, heart rate, and potential incidence of diarrhea. | Lee et al., 2019 [56] |
10% dry (AH) or reconstituted alfalfa hay (RAH) | 91.2 and 83.8% dry matter for AH and RAH, respectively | Holstein dairy calves | Reconstitution of alfalfa hay did not have an impact on dry matter intake, growth performance, and metabolic indications of rumen development during the calf phase. However, it did lead to improvement. | Kargar et al., 2019 [101] |
B. subtilis | 0.3 gm/1 kg | Buffalo calves | The findings of this study suggest that B. subtilis has the potential to serve as a beneficial probiotic for buffalo calves, enhancing their dry matter intake, digestibility, average weight gain, and feed conversion ratio when administered at an effective daily dose of 0.3 gm/1 kg in their diet. | Sa et al., 2019 [71] |
Fermented corn gluten meal (FCGM) | 5% | Holstein male calves | The inclusion of FCGM in the diet resulted in increased growth rate and feed efficiency, enhanced rumen fermentation, diversified bacterial community composition within the rumen, as well as improved antioxidant and immune functions of postweaning calves. | Jiang et al., 2019 [102] |
Fermented corn gluten meal (FCGM) | 6% | Holstein calves | The findings suggest that pre-weaning feeding of FCGM in calves resulted in enhanced growth performance, reduced incidence of diarrhea, increased antioxidant and immune capacity, improved rumen function, as well as altered bacterial community composition in both rumen fluids and feces. | Jiang et al., 2020 [103] |
Bacillus Megaterium (BM) | 1259 powder (1 × 1010 cfu/g) | Holstein bull calves | This study demonstrates that BM1259 has the potential to serve as a microecological agent for enhancing growth performance, nutrient digestibility, rumen fermentation, and nitrogen utilization in Holstein bull calves. | Deng et al., 2021 [104] |
Live yeast S. cerevisiae | 28 g/d | Holstein calves | This supplementation significantly improves the mean daily gain during the trial (ADG) by 400 g/calf (p < 0.003). A notable increase in final body weight gain (FWG) of 39.1 kg/calf was observed (p < 0.004). The live yeast supplementation reduces feed intake and significantly lowers the average feed conversion rate (FCR) (p < 0.05). The use of S. cerevisiae as a probiotic supplement in ruminant feed enhances growth performance and feed efficiency in fattening calves. | Maamouri et al., 2021 [54] |
Clostridium butyricum (CB) | 2 × 108 cfu | Holstein heifers | Supplementation with CB resulted in a significant decrease in the proportion of acetate and the ratio of acetate to propionate, while increasing the proportion of butyrate and propionate. Compared to the control group, the CB group had higher levels of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminobacter amylophilus, Ruminococcus flavefaciens, and Streptococcus bovis during the trial period. However, CB failed to elicit a significant impact on blood parameters in Holstein heifers. In conclusion, these findings evince that the administration of CB can augment growth performance and rumen fermentation without any deleterious effects on blood parameters in Holstein heifers. | Yang et al., 2021 [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Wang, L.; Zhang, Z.; Xiao, D. Research Progress of Biological Feed in Beef Cattle. Animals 2023, 13, 2662. https://doi.org/10.3390/ani13162662
Ma L, Wang L, Zhang Z, Xiao D. Research Progress of Biological Feed in Beef Cattle. Animals. 2023; 13(16):2662. https://doi.org/10.3390/ani13162662
Chicago/Turabian StyleMa, Longteng, Lifen Wang, Zixi Zhang, and Dingfu Xiao. 2023. "Research Progress of Biological Feed in Beef Cattle" Animals 13, no. 16: 2662. https://doi.org/10.3390/ani13162662
APA StyleMa, L., Wang, L., Zhang, Z., & Xiao, D. (2023). Research Progress of Biological Feed in Beef Cattle. Animals, 13(16), 2662. https://doi.org/10.3390/ani13162662