Biogenic Elements and Heavy Metals in Hermann’s Tortoises—Testudo hermanni: Effect on Serum Biochemistry and Oxidative Status Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Blood Collection and Processing
2.2. Biochemical Analysis of Blood Serum
2.3. Total Oxidant Status (TOS)
2.4. Ferric Reducing Ability of Plasma (FRAP)
2.5. Superoxide Dismutase (SOD)
2.6. Glutathione Peroxidase (GPx)
2.7. Total Antioxidant Status (TAS)
2.8. Detection of Essential and Heavy Metals in Blood Serum
2.9. Statistical Analysis
3. Results
3.1. Concentrations of Biochemical Parameters in Blood Serum
3.2. Parameters of Oxidative Stress in Blood Serum
3.3. Chemical Composition of Blood Serum
3.4. Correlation Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, H.F.; Laitman, J.T. Turtles creep through the pages of The Anatomical Record. Anat. Rec. 2023, 306, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, R.; Kirchnerova, S. Po stopách korytnačiek. Chovateľ 2020, 56. [Google Scholar]
- Timbrell, J.A. Biomarkers in toxicology. Toxicology 1998, 129, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kovacik, A.; Tvrda, E.; Miskeje, M.; Arvay, J.; Tomka, M.; Zbynovska, K.; Andreji, J.; Hleba, L.; Kovacikova, E.; Fik, M.; et al. Trace Metals in the Freshwater Fish Cyprinus carpio: Effect to Serum Biochemistry and Oxidative Status Markers. Biol. Trace Elem. Res. 2019, 188, 494–507. [Google Scholar] [CrossRef]
- Gadd, G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar] [CrossRef]
- Massanyi, P.; Stawarz, R.; Halo, M.; Formicki, G.; Lukac, N.; Cupka, P.; Schwarz, P.; Kovacik, A.; Tusimova, E.; Kovacik, J. Blood concentration of copper, cadmium, zinc and lead in horses and its relation to hematological and biochemical parameters. J. Environ. Sci. Health 2014, 49, 973–979. [Google Scholar] [CrossRef]
- Waisberg, M.; Joseph, P.; Hale, B.; Beyersmann, D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 2023, 192, 95–117. [Google Scholar] [CrossRef]
- Wang, W.X. Dietary toxicity of metals in aquatic animals: Recent studies and perspectives. Chin. Sci. Bull. 2013, 58, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef]
- Alissa, E.M.; Ferns, G.A. Heavy metal poisoning and cardiovascular disease. J. Toxicol. 2011, 2011, 870125. [Google Scholar] [CrossRef]
- Kovacik, A.; Arvay, J.; Tusimova, E.; Harangozo, L.; Tvrda, E.; Zbynovska, K.; Cupka, P.; Andrascikova, S.; Tomas, J.; Massanyi, P. Seasonal variations in the blood concentration of selected heavy metals in sheep and their effects on the biochemical and hematological parameters. Chemosphere 2017, 168, 365–371. [Google Scholar] [CrossRef]
- Theron, A.J.; Tintinger, G.R.; Anderaon, R. Harmful interactions of non-essential heavy metals with cells of the innate immune system. J. Clin. Toxicol. 2012, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cuypers, A.; Plusquin, T.; Jozefczak, M.; Keunen, E.; Gielen, H.; Opdenakker, K.; Nair, A.R.; Munters, E.; Artois, T.J.; Nawrot, T.; et al. Cadmium stress: An oxidative challenge. Biometals 2010, 23, 927–940. [Google Scholar] [CrossRef]
- Huo, J.F.; Dong, A.G.; Wang, Y.H.; Ma, C.G.; Wang, L. Cadmium induces histopathological injuries and ultrastructural changes in the liver of freshwater turtle (Chinemys reevesii). Chemosphere 2017, 186, 459–465. [Google Scholar] [CrossRef]
- Huo, J.F.; Dong, A.G.; Yan, J.J.; Wang, L.; Ma, C.G.; Lee, S.Q. Cadmium toxicokinetics in the freshwater turtle, Chinemys reevesii. Chemosphere 2017, 182, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.F.; Dong, A.G.; Niu, X.; Lee, S.Q.; Ma, C.G.; Wang, L. Effects of cadmium on oxidative stress activities in plasma of freshwater turtle Chinemys reevesii. Environ. Sci. Pollut. Res. 2018, 25, 8027–8034. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.F.; Dong, A.G.; Yan, J.J. Effects of cadmium on the activities of ALT and AST as well as the content of TP in plasma of freshwater turtle Mauremys reevesii. Environ. Sci. Pollut. Res. 2020, 27, 18025–18028. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.F.; Dong, A.G.; Yan, J.J. Effects of cadmium on the gene transcription of the liver in the freshwater turtle (Chinemys reevesii). Environ. Sci. Pollut. Res. 2020, 27, 8431–8438. [Google Scholar] [CrossRef]
- Adel, M.; Cortes-Gomez, A.A.; Dadar, M.; Riyahi, H.; Girondot, M. A comparative study of inorganic elements in the blood of male and female Caspian pond turtles (Mauremys caspica) from the southern basin of the Caspian Sea. Environ. Sci. Pollut. Res. 2017, 24, 24965–24979. [Google Scholar] [CrossRef]
- Nicolau, L.; Monteiro, S.S.; Pereira, A.T.; Marcelo, A.; Ferreira, M.; Torres, J.; Vingada, J.; Eira, C. Trace elements in loggerhead turtles (Caretta caretta) stranded in mainland Portugal: Bioaccumulation and tissue distribution. Chemosphere 2017, 179, 120–126. [Google Scholar] [CrossRef]
- Manuel, E.O.; Antonio, R.; Pareja-Carrerra, J. Tools for non-invasive sampling of metal accumulation and its effects in Mediterranean pond turtle populations inhabiting mining areas. Chemosphere 2019, 231, 194–206. [Google Scholar] [CrossRef]
- Dong, A.; Dong, H.; He, H.; Dong, A.; Yan, J.; Huo, J. Effects of Cadmium on Kidney function of the Freshwater turtles Mauremys reevesii. Biol. Trace Elem. Res. 2022, 201, 3000–3005. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.M.; Nislow, K.H.; Folt, C.L. Bioaccumulation syndrome: Identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Ann. N. Y. Acad. Sci. 2010, 1195, 62–83. [Google Scholar] [CrossRef] [Green Version]
- Griboff, J.; Horace, M.; Wunderlin, D.A.; Monferran, M.V. Bioaccumulation and trophic transfer of metals, As and Se through a freshwater food web affected by anthropic pollution in Córdoba Argentina. Ecotoxicol. Environ. Saf. 2018, 148, 275–284. [Google Scholar] [CrossRef]
- Juncos, R.; Arcagni, M.; Squadrone, S.; Rizzo, A.; Arrimbere, M.; Barriga, J.P.; Battini, M.A.; Campbell, L.M.; Brizio, P.; Abete, M.C.; et al. Interspecific differences in the bioaccumulation of arsenic of three Patagonian top predator fish: Organ distribution and arsenic speciation. Ecotoxicol. Environ. Saf. 2019, 168, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Marschang, R.E.; Pasmans, F.; Hyndman, T.; Mitchell, M.; Martel, A. Diagnostic Testing. In Reptile Medicine and Surgery in Clinical Practice, 1st ed.; Wiley Blackwell: Hoboken, NJ, USA, 2018; ISBN 9781118977699. [Google Scholar]
- Kirchner, R. Korytnačky. Chovateľ 2018, 54, 29–30. [Google Scholar]
- Barbanti, A.; Martin, C.; Blumenthal, J.M.; Boyle, J.; Broderick, A.C.; Collyer, L.; Ebanks-Petrie, G.; Godley, B.J.; Mustin, W.; Ordonez, V.; et al. How many came home? Evaluating ex situ conservation of green turtles in the Cayman Islands. Mol. Ecol. 2019, 28, 1637–1651. [Google Scholar] [CrossRef]
- Siskova, K. Voľné Radikály a Oxidačný Stress, 1st ed.; Lékářská fakulta Univerzity Karlovy: Plzeň, Czechia, 2015; pp. 19–49. ISBN 978-80-88120-07-0. [Google Scholar]
- Ruas, C.B.G.; dos Santos Carvalho, C.; de Araújo, H.S.S.; Espíndola, E.L.G.; Fernandes, M.N. Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicol. Environ. Saf. 2008, 71, 86–93. [Google Scholar] [CrossRef]
- Mohanty, D.; Samanta, L. Multivariate analysis of potential biomarkers of oxidative stress in Notopterus notopterus tissues from Mahanadi River as a function of concentration of heavy metals. Chemosphere 2016, 155, 28–38. [Google Scholar] [CrossRef]
- Eyckmans, M.; Celis, N.; Horemans, N.; Blust, R.; De Boeck, G. Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquat. Toxicol. 2011, 103, 112–120. [Google Scholar] [CrossRef]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Abarikwu, S.O.; Essien, E.B.; Iyede, O.O.; John, K.; Mgbudom-Okah, C. Biomarkers of oxidative stress and health risk assessment of heavy metal contaminated aquatic and terrestrial organisms by oil extraction industry in Ogale, Nigeria. Chemosphere 2017, 185, 412–422. [Google Scholar] [CrossRef]
- Kirchner, R. Korytnačka zelenkastá. Chovateľ 2018, 54, 30. [Google Scholar]
- Tirpak, F.; Halo, M.; Massani, P.; Lukac, N.; Slanina, T.; Tokarova, K.; Blaszczyk-Altman, M.; Dianova, L.; Ivanic, P.; Gren, A.; et al. Sperm Quality Affected by Naturally Occurring Chemical Elements in Bull Seminal Plasma. Antioxidants 2022, 11, 1796. [Google Scholar] [CrossRef]
- Massanyi, M.; Kohut, L.; Argente, M.J.; Halo, M.; Kovacik, A.; Kovacikova, E.; Ondruska, L.; Formicki, G.; Massanyi, P. The effect of different sample collection methods on rabbit blood parameters. Saudi J. Biol. Sci. 2020, 27, 3157–3160. [Google Scholar] [CrossRef] [PubMed]
- Massanyi, M.; Halo Jr, M.; Massanyi, P.; Mlynekova, E.; Gren, A.; Formicki, G.; Halo, M. Changes in haematological and biochemical parameters in blood serum of horses during exposition to workload stress. Heliyon 2022, 8, e12241. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Tirpak, F.; Halo Jr, M.; Tokarova, K.; Binkowski, L.J.; Vasicek, J.; Svoradova, A.; Blaszcyk-Altman, M.; Kovacik, A.; Tvrda, E.; Chrenek, P.; et al. Composition of Stallion Seminal Plasma and Its Impact on Oxidative Stress Markers and Spermatozoa Quality. Life 2021, 1, 1238. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Tokarova, K.; Vasicek, J.; Jurcik, R.; Balazi, A.; Kovacikova, E.; Kovacik, A.; Chrenek, P.; Capcarova, M. Low dose exposure of patulin and protective effect of epicatechin on blood cells in vitro. J. Environ. Sci. Health 2019, 54, 459–466. [Google Scholar] [CrossRef]
- Vizzari, F.; Massanyi, M.; Knizatova, N.; Corino, C.; Rossi, R.; Ondruska, L.; Tirpak, F.; Halo, M.; Massanyi, P. Effects of dietary plant polyphenols and seaweed extract mixture on male-rabbit semen: Quality traits and antioxidant markers. Saudi J. Biol. Sci. 2021, 28, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Tvrda, E.; Knazicka, Z.; Lukac, N. Selected heavy metals versus antioxidant parameters in bull seminal plasma-a comparative study. J. Environ. Sci. Health Part A 2012, 47, 1261–1266. [Google Scholar] [CrossRef]
- Tvrdá, E.; Schneidgenová, M.; Jambor, T.; Paál, D.; Szabó, C.; Lukáč, N. Comparison of two colorimetric antioxidant capacity assessment methods in bovine semen fractions. J. Microbiol. Biotechnol. Food Sci. 2016, 5, 47–49. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, V.M.; Jarchow, J.I.; Trueblood, M.H. Hematology and plasma biochemistry reference range values for free-ranging desert tortoises in Arizona. J. Wildl. Dis. 2002, 38, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Perez, J.P.; Lewbart, G.A.; Hirschfeld, M.; Denkinger, J.; Castaneda, J.G.; Cargia, J.; Lohmann, K.J. Blood gases, biochemistry, and haematology of Galápagos hawksbill turtles (Eretmochelys imbricata). Conserv. Physiol. 2007, 5, cox028. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Lindenmayer, D.B. An assessment of the published results of animal relocations. Biol. Conserv. 2000, 96, 1–11. [Google Scholar] [CrossRef]
- Storfer, A. Gene flow and endangered species translocations: A topic revisited. Biol. Conserv. 1999, 87, 173–180. [Google Scholar] [CrossRef]
- Hamooda, E.A.F.; El-Mansoury, A.M.; Mehdi, A.R. Some Blood Indexes of the Tortoise (Testudo graeca, Linnaeus 1758), from Benghazi Province, Libya. Sci. Res. J. 2014, 2, 36–44. [Google Scholar]
- Nieto-Claudin, A.; Palmer, J.L.; Esperon, F.; Deem, S.L. Haematology and plasma biochemistry reference intervals for the critically endangered western Santa Cruz Galapagos tortoise (Chelonoidis porteri). Conserv. Physiol. 2021, 9, coab019. [Google Scholar] [CrossRef]
- Chitty, J.; Raftery, A. Essential of Tortoise Medicine and Surgery, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; p. 338. ISBN 9781405195447. [Google Scholar]
- Mitchell, M.A.; Tully, T.N. Manual of Exotic Pet Practice, 3rd ed.; Saunders/Elsevier: St. Louis, MO, USA, 2009; p. 546. ISBN 978-1-4160-0119-5. [Google Scholar]
- Knotek, Z.; Halouzka, R.; Knotkova, Z.; Modry, D.; Hajkova, P. Nemoci Plazú; Česká Asociace Veterináních Lekařu: Brno, Czech Republic, 1999; pp. 13–16. ISBN 80-902595-1-0. [Google Scholar]
- Andreani, G.; Carpene, E.; Canavacciuolo, A.; Di Giralomo, N.; Ferlizza, E.; Isani, G. Reference values for hematology and plasma biochemistry variables, and protein electrophoresis of healthy Hermann’s tortoises (Testudo hermanni ssp.). Vet. Clin. Pathol. 2014, 43, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Deem, S.L.; Norton, T.M.; Mitchell, M.; Segars, A.; Alleman, R.A.; Cray, C.; Poppenga, R.H.; Dodd, M.; Karesh, W.B. Comparison of blood values in foraging, nesting, and stranded loggerhead turtles (Caretta caretta) along the coast of Georgia, USA. J. Wildl. Dis. 2009, 45, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Boers, K.L.; Allender, M.C.; Novak, K.L.; Palmer, J.; Adamovicz, L.; Deem, S.L. Assessment of hematologic and corticosterone response in freeliving eastern box turtles (Terrapene carolina carolina) at capture and after handling. Zoo Biol. 2020, 39, 13–22. [Google Scholar] [CrossRef]
- Atkins, A.; Jacobson, E.; Hernandez, J.; Bolten, A.; Lu, X. Use of a Portable Point-of-Care (Vetscan Vs2) Biochemical Analyzer for Measuring Plasma Biochemical Levels in Free-Living Loggerhead Sea Turtles (Caretta caretta). J. Zoo Wildl. Med. 2010, 41, 585–593. [Google Scholar] [CrossRef]
- Divers, S.J.; Stahl, S.J. Mader’s Reptile and Amphibian Medicine and Surgery-e-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018; ISBN 978-0-323-48253-0. [Google Scholar]
- Blake, S.; Wikelski, M.; Cabrera, F.; Guezou, A.; Silva, M.; Sadeghayobi, E.; Yackulic, C.B.; Jaramillo, P. Seed dispersal by Galapagos tortoises. J. Biogeogr. 2012, 39, 1961–1972. [Google Scholar] [CrossRef]
- Ellis-Soto, D.; Blake, S.; Soultan, A.; Guezou, A.; Cabrera, F.; Lotters, S. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change. PLoS ONE 2017, 12, e0181333. [Google Scholar] [CrossRef] [Green Version]
- Bastille-Rousseau, G.; Yackulic, C.B.; Gibbs, J.P.; Frair, J.L.; Cabrera, F.; Blake, S. Migration triggers in a large herbivore: Galápagos giant tortoises navigating resource gradients on volcanoes. Ecology 2009, 100, e02658. [Google Scholar] [CrossRef]
- Cortes-Gomez, A.; Ruiz-Agudelo, C.; Valencia-Aguilar, A.; Ladle, R. Ecological functions of neotropical amphibians and reptiles: A review. Univ. Sci. 2015, 20, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Macedo, D.G.; Ribeiro, D.A.; Coutinho, H.D.M.; Menezes, I.R.A.; Soura, M.M.A. Therapeutic traditional practices: Usage and knowledge of cerrado plants in the state of Pernambuco (northeastern Brazil). Bol. Latinoam. Caribe Plantas Med. Aromat. 2015, 14, 491–508. Available online: http://www.blacpma.usach.cl/images/docs/014-006/008_articulo_7.pdf (accessed on 20 May 2023).
- De Coninck, D.I.; Asselman, J.; Glaholt, S.; Janssen, C.R.; Colbourne, J.K.; Shaw, J.R.; De Schamphelaere, K.A. Genome-wide transcription profiles reveal genotype-dependent responses of biological pathways and gene-families in Daphnia exposed to single and mixed stressors. Environ. Sci. Technol. 2014, 48, 3513–3522. [Google Scholar] [CrossRef]
- Mehinto, A.C.; Prucha, M.S.; Colli-Dula, R.C.; Kroll, K.J.; Lavalle, C.M.; Barber, D.S.; Vulpe, C.D.; Denslow, N.D. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides). Aquat. Toxicol. 2014, 152, 186–194. [Google Scholar] [CrossRef]
- Novelli, F.; Novelli, E.; Manzano, M.A.; Cataneo, A.C.; Barbosa, L.L.; Ribas, B.O. Effect of alpha-tocopherol on superoxide radical and toxicity of cadmium exposure. Intern. J. Environ. Health Res. 2000, 10, 125–134. [Google Scholar] [CrossRef]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef] [Green Version]
- Guirlet, E.; Das, K. Cadmium toxicokinetics and bioaccumulation in turtles: Trophic exposure of Trachemys scripta elegans. Ecotoxicology 2012, 21, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Liu, L.; Zhang, S.; He, R.; Wu, Y.; Chen, G.; Fu, Z. Cadmium exposure to murine macrophages decreases their inflammatory responses and increases their oxidative stress. Chemosphere 2016, 144, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Perrault, J.R.; Stacy, N.I.; Lehner, A.F.; Poor, S.K.; Buchweitz, J.P.; Walsh, C.J. Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida. Environ. Pollut. 2017, 231, 1398–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonsignore, M.; Messina, C.M.; Bellante, A.; Manuguerra, S.; Arena, R.; Santulli, A.; Maricchiolo, G.; Del Core, M.; Sprovieri, M. Chemical and biochemical responses to sub−lethal doses of mercury and cadmium in gilthead seabream (Sparus aurata). Chemosphere 2022, 307, 135822. [Google Scholar] [CrossRef]
- Morao, I.F.C.; Lemos, M.F.L.; Félix, R.; Vieira, S.; Barata, C.; Novais, S.C. Stress response markers in the blood of São Tomé green sea turtles (Chelonia mydas) and their relation with accumulated metal levels. Environ. Pollut. 2022, 293, 118490. [Google Scholar] [CrossRef]
- Jakimska, A.; Konieczka, P.; Skóra, K.; Namiesnik, J. Bioaccumulation of metals in tissues of marine animals, part II: Metal concentrations in animal tissues. Pol. J. Environ. Stud. 2011, 20, 1127–1146. [Google Scholar]
- Bystrom, L.M.; Guzman, M.L.; Rivella, S. Iron and Reactive Oxygen Species: Friends or Foes of Cancer Cells? Antioxid. Redox Signal. 2014, 20, 1917–1924. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C.P. Role of Iron (Fe) in Body. IOSR J. Appl. Chem. 2014, 7, 38–46. [Google Scholar] [CrossRef]
- Pietrangelo, A. Iron and the liver. Liver Int. 2016, 36, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Gozzelino, R.; Arosio, P. Iron homeostasis in health and disease. Int. J. Mol. Sci. 2016, 17, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinya, S.; Renga, E.; Fernández, G.; Mateu-Vicens, G.; Tajeda, S.; Capó, X.; Sureda, A. Physiological biomarkers in loggerhead turtles (Caretta caretta) as a tool for monitoring sanitary evolution in marine recovery centres. Sci. Total Environ. 2021, 757, 143930. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, B.; Niu, C.; Yuan, L.; Jia, H.; Storey, K.B. Response of the Chinese Soft-Shelled Turtle to Acute Heat Stress: Insights from the Systematic Antioxidant Defense. Front. Physiol. 2019, 10, 710. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hongxin, W.; Admassu, H.; Mahdi, A.A.; Chaoyang, M.; Wei, F.A. In vitro antioxidant, cytotoxic and antidiabetic activities of protein hydrolysates prepared from Chinese pond turtle (Chinemys reevesii). Food Technol. Biotechnol. 2021, 59, 360–375. [Google Scholar] [CrossRef]
Chemical Element | LOQs (µg·L) |
---|---|
Ag | 0.3 |
Al | 0.2 |
As | 1.5 |
Ba | 0.03 |
Ca | 0.01 |
Cd | 0.05 |
Co | 0.15 |
Cu | 0.3 |
Fe | 0.1 |
Li | 0.06 |
Mg | 0.01 |
Mn | 0.03 |
Mo | 0.5 |
Ni | 0.3 |
Pb | 0.8 |
Sb | 2.0 |
Se | 2.0 |
Sr | 0.01 |
Zn | 0.2 |
Parameter | Average | SD | Minimum | Maximum |
---|---|---|---|---|
Na (mmol/L) | 130.40 | 8.00 | 118.10 | 142.40 |
K (mmol/L) | 5.47 | 0.88 | 4.27 | 7.48 |
Cl (mmol/L) | 107.10 | 7.60 | 97.2 | 124.50 |
P (mmol/L) | 1.98 | 2.04 | 0.91 | 9.50 |
Ca (mmol/L) | 3.03 | 0.90 | 1.18 | 4.59 |
Mg (mmol/L) | 1.93 | 0.72 | 0.40 | 3.59 |
Urea (mmol/L) | 3.44 | 4.85 | 0.16 | 17.99 |
Cholesterol (mmol/L) | 6.94 | 3.78 | 2.50 | 17.01 |
Total proteins (g/L) | 54.91 | 24.12 | 16.02 | 96.84 |
Albumin (g/dL) | 2.13 | 0.90 | 0.68 | 4.10 |
ALT (µkat/L) | 0.14 | 0.05 | 0.05 | 0.21 |
AST (µkat/L) | 1.32 | 0.54 | 0.02 | 2.37 |
ALP (µkat/L) | 19.84 | 7.37 | 7.55 | 35.51 |
Glucose (mmol/L) | 3.14 | 0.44 | 2.37 | 3.99 |
Uric acid (mg/dL) | 6.75 | 4.86 | 0.67 | 16.71 |
Triacylglyceride (mmol/L) | 2.27 | 3.05 | 0.11 | 11.54 |
Parameter | Average | SD | Minimum | Maximum |
---|---|---|---|---|
TOS (µmoL H2O2/g TP) | 4.96 | 2.05 | 2.96 | 9.82 |
FRAP (µmoL Fe2+/g TP) | 297.70 | 159.00 | 134.10 | 602.40 |
SOD (U/mL TP) | 1.33 | 0.88 | 0.00 | 3.20 |
GPx (U/L TP) | 32.29 | 13.92 | 14.56 | 72.98 |
TAS (mmol/L TP) | 0.49 | 0.27 | 0.00 | 1.14 |
Parameter | Average | SD | Minimum | Maximum |
---|---|---|---|---|
Ag (µg/L) | 9.31 | 10.97 | 0.30 | 38.60 |
As (µg/L) | 139.10 | 310.60 | 1.50 | 1026.00 |
Ba (µg/L) | 54.60 | 55.35 | 0.60 | 164.00 |
Cd (µg/L) | 98.20 | 63.77 | 0.05 | 199.90 |
Cu (µg/L) | 1322.00 | 579.40 | 834.60 | 2813.00 |
Fe (mg/L) | 382.10 | 116.40 | 196.90 | 577.80 |
Li (µg/L) | 13.62 | 9.14 | 3.60 | 34.60 |
Mn (µg/L) | 54.04 | 21.22 | 33.50 | 120.90 |
Ni (µg/L) | 237.70 | 389.20 | 0.30 | 1490.00 |
Sr (µg/L) | 167.70 | 78.88 | 35.50 | 298.60 |
Zn (µg/L) | 6447.00 | 1552.00 | 3995.00 | 8804.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirchner, R.; Kirchnerová, S.; Tirpák, F.; Halo, M., Jr.; Slanina, T.; Tokárová, K.; Kováčik, A.; Miškeje, M.; Komárňanská, V.; Greń, A.; et al. Biogenic Elements and Heavy Metals in Hermann’s Tortoises—Testudo hermanni: Effect on Serum Biochemistry and Oxidative Status Parameters. Animals 2023, 13, 2218. https://doi.org/10.3390/ani13132218
Kirchner R, Kirchnerová S, Tirpák F, Halo M Jr., Slanina T, Tokárová K, Kováčik A, Miškeje M, Komárňanská V, Greń A, et al. Biogenic Elements and Heavy Metals in Hermann’s Tortoises—Testudo hermanni: Effect on Serum Biochemistry and Oxidative Status Parameters. Animals. 2023; 13(13):2218. https://doi.org/10.3390/ani13132218
Chicago/Turabian StyleKirchner, Róbert, Soňa Kirchnerová, Filip Tirpák, Marko Halo, Jr., Tomáš Slanina, Katarína Tokárová, Anton Kováčik, Michal Miškeje, Veronika Komárňanská, Agnieszka Greń, and et al. 2023. "Biogenic Elements and Heavy Metals in Hermann’s Tortoises—Testudo hermanni: Effect on Serum Biochemistry and Oxidative Status Parameters" Animals 13, no. 13: 2218. https://doi.org/10.3390/ani13132218
APA StyleKirchner, R., Kirchnerová, S., Tirpák, F., Halo, M., Jr., Slanina, T., Tokárová, K., Kováčik, A., Miškeje, M., Komárňanská, V., Greń, A., Formicki, G., & Massányi, P. (2023). Biogenic Elements and Heavy Metals in Hermann’s Tortoises—Testudo hermanni: Effect on Serum Biochemistry and Oxidative Status Parameters. Animals, 13(13), 2218. https://doi.org/10.3390/ani13132218