Current Insights in the Repeat Breeder Cow Syndrome
Abstract
:Simple Summary
Abstract
1. Introduction
2. Literature Selection and Evaluation
3. Importance of Subclinical Endometritis in RBC Syndrome
4. New OMICs and Technologies to Understand the RBC Syndrome
5. Anatomical Defects Associated with RBC Syndrome
6. Nutrition
7. Steroid Hormones, Biochemical Components, and Gametes/Embryo Competence in RBC
8. Therapeutic Control of the Estrous Cycle
9. Risk Factors Associated with RBC
10. Economic Impact of RBC Syndrome
11. Conclusions
- (a)
- The herd should focus on reducing the occurrence of periparturient diseases and minimizing the depth and duration of NEB (or nutrient deficit) in recently calved cows.
- (b)
- Hormonal treatments for estrus and ovulation induction (such as GnRH, hCG, PGF2α, and/or progesterone) can help maintain a favorable hormonal environment in cows. This approach can overcome issues like anovulation, mistimed AI, inadequate LH production, or the formation of a subfunctional CL, among others.
- (c)
- The presence of CL at the beginning of the hormonal treatment increases pregnancy rates in RBCs compared to cows without functional luteal structures.
- (d)
- Reproductive management practices, such as AI skills, hygiene during AI, and semen quality, should be regularly checked and improved.
- (e)
- Implementing a protocol for diagnosing, treating, and preventing SCE is important, as it is considered a “silent cause” of RBC syndrome.
- (f)
- Nutrition plays a role in this syndrome, so it is recommended to monitor the body condition score (BCS) and/or body weight as indicators of nutritional status.
- (g)
- In vitro production and ET are valuable technologies for preserving the genetic merit of certain RBCs. However, the use of “therapeutic embryos” in RBC recipients should be carefully evaluated, as the profitability of this practice depends on whether these cows are suitable recipients.
- (h)
- If RBCs fail to conceive around 300 days after parturition, the likelihood of resolving the syndrome becomes significantly low, and culling should be considered.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casida, L.E. Present status of the repeat-breeder cow problem. J. Dairy Sci. 1961, 44, 2323–2329. [Google Scholar] [CrossRef]
- Heuwieser, W.; Oltenacu, P.A.; Lednor, A.J.; Foote, R.H. Evaluation of different protocols for prostaglandin synchronization to improve reproductive performance in dairy herds with low estrus detection efficiency. J. Dairy Sci. 1997, 80, 2766–2774. [Google Scholar] [CrossRef]
- Gustafsson, H.; Emanuelson, U. Characterisation of the repeat breeding syndrome in Swedish dairy cattle. Acta Vet. Scand. 2002, 43, 115–125. [Google Scholar] [CrossRef]
- Pérez-Marín, C.C.; España, F. Oestrus expression and ovarian function in repeat breeder cows, monitored by ultrasonography and progesterone assay. Reprod. Dom. Anim. 2007, 42, 449–456. [Google Scholar] [CrossRef]
- Ayalon, N. The repeat breeder problem. In Proceedings of the 10th International Congress Animal Reproduction and AI, Urbana, IL, USA, 10–14 June 1984; Volume 4, pp. 111–141. [Google Scholar]
- Bartlett, P.C.; Kirk, J.H.; Mather, E.C. Repeated insemination in Michigan Holstein-Friesian cattle: Incidence, descriptive epidemiology and estimated economic impact. Theriogenology 1986, 26, 309–322. [Google Scholar] [CrossRef]
- Asaduzzaman, K.M.; Bhuiyan, M.M.U.; Rahman, M.M.; Bhattacharjee, J. Prevalence of repeat breeding and its effective treatment in cows at selected areas of Bangladesh. Bangladesh J. Vet. Med. 2016, 14, 183–190. [Google Scholar] [CrossRef]
- Yusuf, M.; Nakao, T.; Ranasinghe, R.B.; Gautam, G.; Long, S.T.; Yoshida, C.; Koike, K.; Hayashi, A. Reproductive performance of repeat breeders in dairy herds. Theriogenology 2010, 73, 1220–1229. [Google Scholar] [CrossRef]
- Bullman, D.C.; Lamming, G.E. Milk progesterone levels in relation to conception, repeat breeding and factors influencing acyclicity in dairy cows. J. Reprod. Fert. 1978, 54, 447–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, N.; Lean, I.J.; Reid, S.W.J.; Hodgon, D.R. Risk factors for repeat-breeder syndrome in New South Wales dairy cows. Prev. Vet. Med. 2002, 54, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Deka, R.P.; Magnusson, U.; Grace, D.; Randolph, T.F.; Shome, R.; Lindahl, J.F. Estimates of the economic cost caused by five major reproductive problems in dairy animals in Assam and Bihar, India. Animals 2021, 11, 3116. [Google Scholar] [CrossRef] [PubMed]
- García-Ispierto, I.; López-Gatius, F. Progesterone supplementation in the early luteal phase after artificial insemination improves conception rates in high-producing dairy cows. Theriogenology 2017, 90, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, A.; Avila, O.; Albi, E. La repetición de servicio de IA en el ganado vacuno y su repercusión económica. In Proceedings of the ISCAB, La Habana, Cuba, 1982. [Google Scholar]
- Eshete, T.; Demisse, T.; Yilma, T.; Tamir, B. Repeat breeding and its’ associated risk factors in crossbred dairy cattle in Northern Central Highlands of Ethiopia. Vet. Med. Int. 2023, 2023, 1176924. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, M.; Rahim, L.; Asja, M.A.; Wahyudi, A. The incidence of repeat breeding in dairy cows under tropical condition. Media Peternak. 2012, 35, 28–31. [Google Scholar] [CrossRef] [Green Version]
- De Vries, M.; Bokkers, E.A.; Dijkstra, T.; Van Schaik, G.; De Boer, I.J. Invited review: Associations between variables of routine herd data and dairy cattle welfare indicators. J. Dairy Sci. 2011, 94, 3213–3228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salasel, B.; Mokhtari, A.; Taktaz, T. Prevalence, risk factors for and impact of subclinical endometritis in repeat breeder dairy cows. Theriogenology 2010, 74, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, D.J.; Papori, T.; Ahmed, K. Minerals and its impact on fertility of livestock: A review. Agr. Rev. 2016, 4, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Cummins, S.B.; Lonergan, P.; Evans, A.C.; Butler, S.T. Genetic merit for fertility traits in Holstein cows: II. Ovarian follicular and corpus luteum dynamics, reproductive hormones, and estrus behavior. J. Dairy Sci. 2012, 95, 3698–3710. [Google Scholar] [CrossRef] [Green Version]
- Sood, P.; Zachut, M.; Dube, H.; Moallem, U. Behavioral and hormonal pattern of repeat breeder cows around estrus. Reproduction 2015, 149, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Walsh, S.W.; Williams, E.J.; Evans, A.C. A review of the causes of poor fertility in high milk producing dairy cows. Anim. Reprod. Sci. 2011, 123, 127–138. [Google Scholar] [CrossRef]
- Kafi, M.; Azari, M.; Chashnigir, O.; Gharibzadeh, S.; Aghabozorgi, Z.; Asaadi, A.; Divar, M.R. Inherent inferior quality of follicular fluid in repeat breeder heifers as evidenced by low rates of in vitro production of bovine embryos. Theriogenology 2017, 102, 29–34. [Google Scholar] [CrossRef]
- Bage, R.; Gustafsson, H.; Larsson, B.; Forsberg, M.; Rodriguez-Martinez, H. Repeat breeding in dairy heifers: Follicular dynamics and estrous cycle characteristics in relation to sexual hormone patterns. Theriogenology 2002, 57, 2257–2269. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Wagener, K.; Gabler, C.; Drillich, M. A review of the ongoing discussion about definition, diagnosis and pathomechanism of subclinical endometritis in dairy cows. Theriogenology 2017, 94, 21–30. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Duffield, T.F.; Foster, R.A.; Gartley, C.J.; Leslie, K.E.; Walton, J.S.; Johnson, W.H. Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology 2004, 62, 9–23. [Google Scholar] [CrossRef]
- Madoz, L.V.; Giuliodori, M.J.; Jaureguiberry, M.; Plontzke, J.; Drillich, M.; de la Sota, R.L. The relationship between endometrial cytology during estrous cycle and cutoff points for the diagnosis of subclinical endometritis in grazing dairy cows. J. Dairy Sci. 2013, 96, 4333–4339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascottini, O.B.; Hostens, M.; Dini, P.; Van Eetvelde, M.; Vercauteren, P.; Opsomer, G. Prevalence of cytological endometritis and effect on pregnancy outcomes at the time of insemination in nulliparous dairy heifers. J. Dairy Sci. 2016, 99, 9051–9056. [Google Scholar] [CrossRef] [Green Version]
- Wendt, H.; Zerbe, H.; Michelmann, H.W.; Schuberth, H.J.; Rath, D. Immunological response in the bovine uterus after artificial insemination. Reprod. Domest. Anim. 2006, 41, 40. [Google Scholar]
- Kaufmann, T.B.; Drillich, M.; Tenhagen, B.A.; Forderung, D.; Heuwieser, W. Prevalence of bovine subclinical endometritis 4h after insemination and its effects on first service conception rate. Theriogenology 2009, 71, 385–391. [Google Scholar] [CrossRef]
- Drillich, M.; Tesfaye, D.; Rings, F.; Schellander, K.; Heuwieser, W.; Hoelker, M. Effects of polymorphonuclear neutrophile infiltration into the endometrial environment on embryonic development in superovulated cows. Theriogenology 2012, 77, 570–578. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Kasimanickam, V.; Kastelic, J.P. Mucin 1 and cytokines mRNA in endometrium of dairy cows with postpartum uterine disease or repeat breeding. Theriogenology 2014, 81, 952–959. [Google Scholar] [CrossRef]
- Meseguer, M.; Aplin, J.D.; Caballero-Campo, P.; O’Connor, J.E.; Martín, J.C.; Remohí, J.; Pellicer, A.; Simón, C. Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol. Reprod. 2001, 64, 590–601. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.S.; Wheeler, T.T.; Peterson, A.J. Large-format, two-dimensional polyacrylamide gel electrophoresis of ovine periimplantation uterine luminal fluid proteins: Identification of aldose reductase, cytoplasmic actin, and transferrin as conceptus-synthesized proteins. Biol. Reprod. 1998, 59, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagener, K.; Pothmann, H.; Prunner, I.; Peter, S.; Erber, R.; Aurich, C.; Drillich, M.; Gabler, C. Endometrial mRNA expression of selected pro-inflammatory factors and mucins in repeat breeder cows with and without subclinical endometritis. Theriogenology 2017, 90, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Janowski, T.; Kaleczyc, J.; Zduńczyk, S.; Podlasz, P.; Barański, W. Preliminary studies on the expression of macrophages (CD14) and lymphocytes (CD4, CD8) in the endometrium of repeat breeder cows reproductive. Biology 2013, 13, 51. [Google Scholar]
- Pothmann, H.; Prunner, I.; Wagener, K.; Jaureguiberry, M.; de la Sota, R.L.; Erber, R.; Aurich, C.; Ehling-Schulz, M.; Drillich, M. The prevalence of subclinical endometritis and intrauterine infections in repeat breeder cows. Theriogenology 2015, 83, 1249–1253. [Google Scholar] [CrossRef]
- Kasimanickam, R.K.; Kasimanickam, V.R.; Kumar, N.; Reisenauer, C. Day 7 embryo quality and suboptimal uterine environment influence morphometry of Day 16 conceptus in dairy cows. Theriogenology 2021, 163, 10–17. [Google Scholar] [CrossRef]
- Katagiri, S.; Takahashi, Y. Changes in EGF concentrations during estrous cycle in bovine endometrium and their alterations in repeat breeder cows. Theriogenology 2004, 62, 103–112. [Google Scholar] [CrossRef]
- Levine, H.D. The repeat breeder cow. Bov. pract. 1999, 33, 97–105. [Google Scholar] [CrossRef]
- Katagiri, S.; Takahashi, Y. Potential relationship between normalization of endometrial epidermal growth factor profile and restoration of fertility in repeat breeder cows. Anim. Reprod. Sci. 2006, 95, 54–66. [Google Scholar] [CrossRef]
- Kyaw, H.M.; Sato, H.; Tagami, T.; Yanagawa, Y.; Nagano, M.; Katagiri, S. Effects of milk osteopontin on the endometrial epidermal growth factor profile and restoration of fertility in repeat breeder dairy cows. Theriogenology 2022, 184, 26–33. [Google Scholar] [CrossRef]
- Clemente, N.; Raineri, D.; Cappellano, G.; Boggio, E.; Favero, F.; Soluri, M.F.; Dianzani, C.; Comi, C.; Dianzani, U.; Chiocchetti, A. Osteopontin bridging innate and adaptive immunity in autoimmune diseases. J. Immunol. Res. 2016, 2016, 7675437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaureguiberry, M.; Giuliodori, M.J.; Mang, A.V.; Madoz, L.V.; Pothmann, H.; Drillich, M.; de la Sota, R.L. Repeat breeder cows with fluid in the uterine lumen had poorer fertility. J. Dairy Sci. 2017, 100, 3083–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González Moreno, C.; Torres Luque, A.; Galvao, K.N.; Otero, M.C. Bacterial communities from vagina of dairy healthy heifers and cows with impaired reproductive performance. Res. Vet. Sci. 2022, 142, 15–23. [Google Scholar] [CrossRef] [PubMed]
- González Moreno, C.; Torres Luque, A.; Oliszewski, R.; Rosa, R.J.; Otero, M.C. Characterization of native Escherichia coli populations from bovine vagina of healthy heifers and cows with postpartum uterine disease. PLoS ONE 2020, 15, e0228294. [Google Scholar] [CrossRef] [PubMed]
- Miranda-CasoLuengo, R.; Lu, J.; Williams, E.J.; Miranda-CasoLuengo, A.A.; Carrington, S.D.; Evans, A.C.O.; Meijer, W.G. Delayed differentiation of vaginal and uterine microbiomes in dairy cows developing postpartum endometritis. PLoS ONE 2019, 14, e0200974. [Google Scholar] [CrossRef] [Green Version]
- Onizawa, Y.; Katoh, T.; Miura, R.; Konda, K.; Noguchi, T.; Iwata, H.; Kuwayama, T.; Hamano, S.; Shirasuna, K. Acetoacetate is a trigger of NLRP3 inflammasome activation in bovine peripheral blood mononuclear cells. Vet. Immunol. Immunopathol. 2022, 244, 110370. [Google Scholar] [CrossRef]
- Funeshima, N.; Miura, R.; Katoh, T.; Yaginuma, H.; Kitou, T.; Yoshimura, I.; Konda, K.; Hamano, S.; Shirasuna, K. Metabolomic profiles of plasma and uterine luminal fluids from healthy and repeat breeder Holstein cows. BMC Vet. Res. 2021, 17, 54. [Google Scholar] [CrossRef]
- Saito, S.; Nakashima, A.; Ito, M.; Shima, T. Clinical implication of recent advances in our understanding of IL-17 and reproductive immunology. Expert Rev. Clin. Immunol. 2011, 7, 649–657. [Google Scholar] [CrossRef]
- Kalagiri, R.R.; Carder, T.; Choudhury, S.; Vora, N.; Ballard, A.R.; Govande, V.; Drever, N.; Beeram, M.R.; Uddin, M.N. Inflammation in complicated pregnancy and its outcome. Am. J. Perinatol. 2016, 33, 1337–1356. [Google Scholar] [CrossRef]
- Dirandeh, E.; Sayyar, M.A.; Ansari-Pirsaraei, Z.; Deldar, H.; Thatcher, W.W. Peripheral leucocyte molecular indicators of inflammation and oxidative stress are altered in dairy cows with embryonic loss. Sci. Rep. 2021, 11, 12771. [Google Scholar] [CrossRef]
- D’Ippolito, S.; Tersigni, C.; Marana, R.; Di Nicuolo, F.; Gaglione, R.; Rossi, E.D.; Castellani, R.; Scambia, G.; Di Simone, N. Inflammosome in the human endometrium: Further step in the evaluation of the “maternal side”. Fertil. Steril. 2016, 105, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puglisi, R.; Cambuli, C.; Capoferri, R.; Giannino, L.; Lukaj, A.; Duchi, R.; Lazzari, G.; Galli, C.; Feligini, M.; Galli, A.; et al. Differential gene expression in cumulus oocyte complexes collected by ovum pick up from repeat breeder and normally fertile Holstein Friesian heifers. Anim. Reprod. Sci. 2013, 141, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Kasimanickam, R.K.; Kasimanickam, V.R. IFNT, ISGs, PPARs, RXRs and MUC1 in day 16 embryo and endometrium of repeat-breeder cows, with or without subclinical endometritis. Theriogenology 2020, 158, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Forde, N.; O’Gorman, A.; Whelan, H.; Duffy, P.; O’Hara, L.; Kelly, A.K.; Havlicek, V.; Besenfelder, U.; Brennan, L.; Lonergan, P. Lactation-induced changes in metabolic status and follicular-fluid metabolomic profile in postpartum dairy cows. Reprod. Fertil. Dev. 2016, 28, 1882–1892. [Google Scholar] [CrossRef]
- Moore, S.G.; O’Gorman, A.; Brennan, L.; Fair, T.; Butler, S.T. Follicular fluid and serum metabolites in Holstein cows are predictive of genetic merit for fertility. Reprod. Fertil. Dev. 2017, 29, 658–669. [Google Scholar] [CrossRef]
- Christenson, L.K.; Gunewardena, S.; Hong, X.; Spitschak, M.; Baufeld, A.; Vanselow, J. Preovulatory LH surge effects on follicular theca and granulosa transcriptomes. Mol. Endocrinol. 2013, 27, 1153–1171. [Google Scholar] [CrossRef] [Green Version]
- Heidari, M.; Kafi, M.; Mirzaei, A.; Asaadi, A.; Mokhtari, A. Effects of follicular fluid of preovulatory follicles of repeat breeder dairy cows with subclinical endometritis on oocyte developmental competence. Anim. Reprod. Sci. 2019, 205, 62–69. [Google Scholar] [CrossRef]
- Lavon, Y.; Leitner, G.; Klipper, E.; Moallem, U.; Meidan, R.; Wolfenson, D. Subclinical, chronic intramammary infection lowers steroid concentrations and gene expression in bovine preovulatory follicles. Domest. Anim. Endocrinol. 2011, 40, 98–109. [Google Scholar] [CrossRef]
- Mendoza, C.; Ruiz-Requena, E.; Ortega, E.; Cremades, N.; Martinez, F.; Bernabeu, R.; Greco, E.; Tesarik, J. Follicular fluid markers of oocyte developmental potential. Hum. Reprod. 2002, 17, 1017–1022. [Google Scholar] [CrossRef] [Green Version]
- Kawano, Y.; Fukuda, J.; Nasu, K.; Nishida, M.; Narahara, H.; Miyakawa, I. Production of macrophage inflammatory protein-3alpha in human follicular fluid and cultured granulosa cells. Fertil. Steril. 2004, 82, 1206–1211. [Google Scholar] [CrossRef]
- Zachut, M.; Sood, P.; Levin, Y.; Moallem, U. Proteomic analysis of preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy cows. J. Proteom. 2016, 139, 122–129. [Google Scholar] [CrossRef]
- Ambekar, A.S.; Kelkar, D.S.; Pinto, S.M.; Sharma, R.; Hinduja, I.; Zaveri, K.; Pandey, A.; Keshava Prasad, T.S.; Gowda, H.; Mukherjee, S. Proteomics of follicular fluid from women with polycystic ovary syndrome suggests molecular defects in follicular development. J. Clin. Endocrinol. Metab. 2015, 100, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Strongin, A.Y.; Collier, I.; Bannikov, G.; Marmer, B.L.; Grant, G.A.; Goldberg, G.I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 1995, 270, 5331–5338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vick, M.M.; Sessions, D.R.; Murphy, B.A.; Kennedy, E.L.; Reedy, S.E.; Fitzgerald, B.P. Obesity is associated with altered metabolic and reproductive activity in the mare: Effects of metformin on insulin sensitivity and reproductive cyclicity. Reprod. Fertil. Dev. 2006, 18, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Garrido, M.R.; Peña, A.I.; Herradon, P.G.; Becerra, J.J.; Sande, J.; Quintela, L.A. Evaluation of tubal patency in repeat breeder Holstein cows. Span. J. Agric. Res. 2020, 17, e04SC02. [Google Scholar] [CrossRef]
- Kessy, B.M.; Noakes, D.E. The use of the starch grain and phenolsulphonphthalein tests to investigate infertile cows. Vet. Rec. 1979, 24, 489–491. [Google Scholar] [CrossRef]
- Kauffold, J.; Groeger, S.; Bergmann, K.; Wehrend, A. Use of contrast sonography to test for tubal patency in dairy cows. J. Reprod. Dev. 2009, 55, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Itoh, K.; Endo, N.; Kataoka, S.I.; Tanaka, T. Assessment of tubal patency by hysterosalpingo–contrast sonography in cow. J. Anim. Sci. 2016, 94, 56–57. [Google Scholar] [CrossRef]
- Hartmann, D.; Rohkohl, J.; Merbach, S.; Heilkenbrinker, T.; Klindworth, H.P.; Schoon, H.A.; Hoedemaker, M. Prevalence of cervicitis in dairy cows and its effect on reproduction. Theriogenology 2016, 85, 247–253. [Google Scholar] [CrossRef]
- Dhara, S.; Mahajan, M.; Arya, D.; Kumar, S. Surgical management of pneumovagina in a cross bred cow: A case report. Indian J. Anim. Health 2022, 61, 368–370. [Google Scholar] [CrossRef]
- Amirkalali, B.; Sharifi, F.; Fakhrzadeh, H.; Mirarefein, M.; Ghaderpanahi, M.; Badamchizadeh, Z.; Larijani, B. Low serum leptin serves as a biomarker of malnutrition in elderly patients. Nutr. Res. 2010, 30, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Guzel, S.; Tanriverdi, M. Comparison of serum leptin, glucose, total cholesterol and total protein levels in fertile and repeat breeder cows. Rev. Bras. Zootec. 2014, 43, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Widayati, D.T.; Bintara, S.; Natawihardja, I.; Maharani, D. Blood biochemical profile in fertile and repeat breeder Ongole crossbreed cows. Pak. J. Biol. Sci. 2018, 21, 166–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, M.Y.; Kang, S.; Lim, D.-H.; Kim, T.-I.; Lee, K.; Ha, S. Serum biochemical profiles of repeat breeder holstein friesian cows. Korean J. Vet. Serv. 2021, 44, 239–246. [Google Scholar] [CrossRef]
- Rodríguez, I.; Pérez, C.C.; España, F.; Dorado, J.; Hidalgo, M.; Sanz, J. Niveles qímicos plasmáticos en vacas repetidoras tras la I.A. Arch. Zootec. 2004, 53, 59–68. [Google Scholar]
- Mann, G.E.; Mann, S.J.; Blache, D.; Webb, R. Metabolic variables and plasma leptin concentrations in dairy cows exhibiting reproductive cycle abnormalities identified through milk progesterone monitoring during the post partum period. Anim. Reprod. Sci. 2005, 88, 191–202. [Google Scholar] [CrossRef]
- Odle, A.K.; Akhter, N.; Syed, M.M.; Allensworth-James, M.L.; Beneš, H.; Melgar Castillo, A.I.; MacNicol, M.C.; MacNicol, A.M.; Childs, G.V. Leptin regulation of gonadotrope gonadotropin-releasing hormone receptors as a metabolic checkpoint and gateway to reproductive competence. Front. Endocrinol. 2018, 8, 367. [Google Scholar] [CrossRef] [Green Version]
- Simpson, R.B.; Chase, C.C., Jr.; Spicer, L.J.; Vernon, R.K.; Hammond, A.C.; Rae, D.O. Effect of exogenous insulin on plasma and follicular insulin-like growth factor-I, insulin-like growth factor binding protein activity, follicular oestradiol and progesterone, follicular oestradiol and progesterone, and follicular growth in superovulated Angus and Brahman cows, and follicular growth in superovulated Angus and Brahman cows. J. Reprod. Fertil. 1994, 102, 483–492. [Google Scholar]
- Selvaraju, S.; Agarwal, S.K.; Karche, S.D.; Srivastava, S.K.; Majumdar, A.C.; Shanker, U. Fertility responses and hormonal profiles in repeat breeding cows treated with insulin. Anim. Reprod. Sci. 2002, 73, 141–149. [Google Scholar] [CrossRef]
- Teeli, A.S.; Sheikh, P.A.; Patra, M.K.; Singh, D.; Kumar, B.; Kumar, H.; Singh, S.K.; Verma, M.R.; Krishnaswamy, N. Effect of dietary n-3 polyunsaturated rich fish oil supplementation on ovarian function and interferon stimulated genes in the repeat breeding cow. Anim. Reprod. Sci. 2019, 211, 106230. [Google Scholar] [CrossRef]
- Santos, J.E.P.; Rutigliano, H.M.; Sá Filho, M.F. Risk factors for resumption of postpartum cyclicity and embryonic survival in lactating dairy cows. Anim. Reprod. Sci. 2009, 110, 207–221. [Google Scholar] [CrossRef]
- Bisinotto, R.S.; Greco, L.F.; Ribeiro, E.S.; Martinez, N.; Lima, F.S.; Staples, C.R.; Thatcher, W.W.; Santos, J.E.P. Influences of nutrition and metabolism on fertility of dairy cows. Anim. Reprod. 2012, 9, 260–272. [Google Scholar]
- Lacetera, N.; Scalia, D.; Franci, O.; Bernabucci, U.; Ronchi, B.; Nardone, A. Effects of non-esterified fatty acids on lymphocyte function in dairy heifers. J. Dairy Sci. 2004, 87, 1012–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinberg, N.; Elazar, S.; Rosenshine, I.; Shpigel, N.Y. β-hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli. Infect. Immun. 2008, 76, 2802–2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBlanc, S.J.; Herdt, T.H.; Seymour, W.M.; Duffield, T.F.; Leslie, K.E. Peripartum serum vitamin E, retinol, and beta-carotene in dairy cattle and their associations with disease. J. Dairy Sci. 2004, 87, 609–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, J.L.M.R.; Rizos, D.; Sutmey, R.; Bossaert, P.; Gutierrez-Adan, A.; Van Hoeck, V.; Valckx, S.; Bols, P.E.J. Intrafollicular conditions as a major link between maternal metabolism and oocyte quality: A focus on dairy cow fertility. Reprod. Nutr. Dev. 2012, 24, 1–12. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Saif, L.J. Bovine immunology: Implications for dairy cattle. Front. Immunol. 2021, 12, 643206. [Google Scholar] [CrossRef]
- Pérez-Marín, C.C.; Molina, L.; Vizuete, G. Clinical approach to the repeat breeder cow syndrome. In A Birds-Eye View of Veterinary Medicine; Pérez-Marín, C.C., Ed.; InTech: London, UK, 2012; pp. 337–362. [Google Scholar]
- Ohtani, S.; Okuda, K. Histological observation of the endometrium in repeat breeder cows. J. Vet. Med. Sci. 1995, 2, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Sood, P.; Zachut, M.; Dekel, I.; Dube, H.; Jacoby, S.; Moallem, U. Preovulatory follicle characteristics and oocyte competence in repeat breeder dairy cows. J. Dairy Sci. 2017, 100, 9372–9381. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.; Minoia, G.; Trisolini, C.; Manca, R.; Sciorsci, R.L. Concentrations of free radicals and beta-endorphins in repeat breeder cows. Anim. Reprod. Sci. 2007, 100, 257–263. [Google Scholar] [CrossRef]
- Akbarinejad, V.; Gharagozlou, F.; Vojgani, M.; Ranji, A. Evidence for quadratic association between serum anti-Müllerian hormone (AMH) concentration and fertility in dairy cows. Anim. Reprod. Sci. 2020, 218, 10645. [Google Scholar] [CrossRef] [PubMed]
- Tenley, S.C.; Gomes, R.S.; Rosasco, S.L.; Northrop, E.J.; Rich, J.J.J.; McNeel, A.K.; Summers, A.F.; Miles, J.R.; Chase, C.C., Jr.; Lents, C.A.; et al. Maternal age influences the number of primordial follicles in the ovaries of yearling. Angus heifers. Anim. Reprod. Sci. 2019, 200, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarroel, A.; Martino, A.; BonDurant, R.H.; Dèletang, F.; Sischo, W.M. Effect of post-insemination supplementation with PRID on pregnancy in repeat-breeder Holstein cows. Theriogenology 2004, 61, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Dochi, O.; Takahashi, K.; Hirai, T.; Hayakawa, H.; Tanisawa, M.; Yamamoto, Y.; Koyama, H. The use of embryo transfer to produce pregnancies in repeat-breeding dairy cattle. Theriogenology 2008, 69, 124–128. [Google Scholar] [CrossRef]
- Rodrigues, C.A.; Ferreira, R.M.; Vieira, L.M.; Ranieri, A.L.; Silva, P.R.L.; Baruselli, P.S. How FTAI and FTET impact reproductive efficiency of Brazilian dairy herds. Acta Sci. Vet. 2011, 39, s3–s13. [Google Scholar]
- Baruselli, P.S.; Ferreira, R.M.; Vieira, L.M.; Souza, A.H.; Bo, G.A.; Rodrigues, C.A. Use of embryo transfer to alleviate infertility caused by heat stress. Theriogenology 2020, 155, 1–11. [Google Scholar] [CrossRef]
- Maurer, R.R.; Echternkamp, S.E. Repeat breeder females in beef cattle: Influences and causes. J. Anim. Sci. 1985, 61, 624–636. [Google Scholar] [CrossRef]
- Jayaganthan, P.; Vijayarajan, A.; Prabaharan, V.; Sivakumar, A.; Raja, S. Synchronization of ovulation in repeat breeding crossbred Jersey cows using GnRH and PGF2α. Int. J. Sci. Environ. Technol. 2016, 5, 2377–2381. [Google Scholar]
- Karki, B.; Raut, R.; Sankhi, K.P.; Mandal, U.; Gautam, G. Fertility improvement by Ovsynch protocol in repeat breeder cattle of Kathmandu valley. Int. J. Appl. Sci. Biotechnol. 2018, 6, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Reshma, A.; Veerapandian, C.; Sathiamoorthy, T.; Arunmozhi, N.; Vairamuthu, S. Comparison of conception rate following CIDR ±post insemination treatment with CIDR in repeat breeder cows. J. Entomol. Zool. Stud. 2020, 8, 500–504. [Google Scholar]
- Alnimer, M.A.; Husein, M.Q. The effect of progesterone and oestradiol benzoate on fertility of artificially inseminated repeat-breeder dairy cows during summer. Reprod. Dom. Anim. 2007, 42, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Amiridis, G.S.; Tsiligianni, T.; Dovolou, E.; Rekkas, C.; Vouzaras, D.; Menegatos, I. Combined administration of gonadotropin-releasing hormone, progesterone, and meloxicam is an effective treatment for the repeat-breeder cow. Theriogenology 2009, 72, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Chaikol, W.; Yadmak, C.; Yama, P.; Jitjumnong, J.; Sangkate, M.; U-krit, W.; Promsao, N.; Suriard, A.; Mektrirat, R.; Panatuk, J.; et al. Ovarian luteal category at the time of exogenous progesterone treatment alters pre-ovulatory follicle size and pregnancy outcome but not initial GnRH treatment in repeat-breeder crossbred dairy heifers submitted to the 7-day fixed-time AI protocol. Vet. Anim. Sci. 2022, 17, 100257. [Google Scholar] [CrossRef]
- Rodrigues, C.A.; Teixeira, A.A.; Ferreira, R.M.; Ayres, H.; Mancilha, R.F.; Souza, A.H.; Baruselli, P.S. Effect of fixed-time embryo transfer on reproductive efficiency in high-producing repeat-breeder Holstein cow. Anim. Reprod. Sci. 2010, 118, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Mellado, M.; Zuñiga, A.; Veliz, F.G.; de Santiago, A.; García, J.E.; Mellado, J. Factors influencing pregnancy per artificial insemination in repeat-breeder cows induced to ovulate with a CIDR-based protocol. Anim. Reprod. Sci. 2012, 134, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Khoramian, B.; Farzaneh, N.; Talebkhan Garoussi, M.; Mohri, M. Comparison of the effects of gonadotropin-releasing hormone, human chorionic gonadotropin or progesterone on pregnancy per artificial insemination in repeat-breeder dairy cows. Res. Vet. Sci. 2011, 90, 312–315. [Google Scholar] [CrossRef]
- Kendall, N.R.; Flint, A.P.F.; Mann, G.E. Incidence and treatment of inadequate postovulatory progesterone concentrations in repeat breeder cows. Vet. J. 2009, 181, 158–162. [Google Scholar] [CrossRef]
- Alnimer, M.A.; Shamoun, A.I. Treatment with hCG 4 or 6 days after TAI to improve pregnancy outcomes in repeat-breeding dairy cows. Anim. Reprod. Sci. 2015, 157, 63–70. [Google Scholar] [CrossRef]
- Barnes, F.L. The effects of the early uterine environment on the subsequent development of embryo and fetus. Theriogenology 2000, 53, 649–658. [Google Scholar] [CrossRef]
- De Rensis, F.; López-Gatius, F.; García-Ispierto, I.; Techakumpu, M. Clinical use of human chorionic gonadotropin in dairy cows: An update. Theriogenology 2010, 73, 1001–1008. [Google Scholar] [CrossRef]
- Yama, P.; Yadmak, C.; Sangkate, M.; Jitjumnong, J.; U-krit, W.; Promsao, N.; Montha, N.; Sudwan, P.; Mektrirat, R.; Panatuk, J.; et al. In vivo follicular and uterine arterial indices as an indicator of successful hormonal stimulation for inactive ovaries in repeat-breeder crossbred dairy cows using a short-term progesterone-based programme. Animals 2022, 12, 292. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.S.; Call, E.P.; Scoby, R.K. Double insemination and gonadotropin-releasing hormone treatment of repeat-breeding dairy cattle. J. Dairy Sci. 1990, 73, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- Kharche, S.D.; Srivastava, S.K. Dose dependent effect of GnRH analogue on pregnancy rate of repeat breeder crossbred cows. Anim. Reprod. Sci. 2007, 99, 196–201. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, A.; Kumar, P. Repeat breeding and its treatment in dairy cattle of Himachal Pradesh (India)—A review. Indian J. Anim. Reprod. 2017, 38, 1–5. [Google Scholar]
- Hanlon, D.W.; Jarratt, G.M.; Davidson, P.J.; Millar, A.J.; Douglas, V.L. The effect of hCG administration five days after insemination on the first service conception rate of anestrous dairy cows. Theriogenology 2005, 63, 1938–1945. [Google Scholar] [CrossRef]
- López-Gatius, F.; García-Ispierto, I. Treatment with an elevated dose of the GnRH analogue dephereline in the early luteal phase improves pregnancy rates in repeat-breeder dairy cow. Theriogenology 2020, 155, 12–16. [Google Scholar] [CrossRef]
- Borş, S.-I.; Borş, A.; Abdoon, A.S.S. Economics of treatment with GnRH agonist 7–14 days after artificial insemination in repeat breeder lactating dairy cows. Reprod. Dom. Anim. 2023, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sangsritavong, S.; Combs, D.K.; Sartori, R.; Armentano, L.E.; Wiltbank, M.C. High feed intake increases liver blood flow and metabolism of progesterone and estradiol-17β in dairy cattle. J. Dairy Sci. 2002, 85, 2831–2842. [Google Scholar] [CrossRef] [Green Version]
- Mann, G.E.; Lamming, G.E.; Fray, M.D. Plasma oestradiol and progesterone during early pregnancy in the cow and the effects of treatment with buserelin. Anim. Reprod. Sci. 1995, 37, 121–131. [Google Scholar] [CrossRef]
- Rodrigues, C.A.; Ayres, H.; Ferreira, R.M.; Teixeira, A.A.; Mancilha, R.F.; Oliveira, M.E.F.; Souza, A.H.; Baruselli, P.S. Comparison of pregnancy rates after artificial insemination or embryo transfer in high-producing repeat breeder Holstein cows. Annual meeting Brazilian embryo technology society, Costa do Sauípe. Acta Sci. Vet. 2007, 35, 1255. [Google Scholar]
- Warriach, H.M.; Ahmad, N.; Ahmad, G.; Khan, M.S.; Rabbani, M.; Ahmad, I. Effect of antibiotic treatment on pregnancy rate of repeat breeder dairy cross bred cows with sub-clinical uterine infection. Pakistan Vet. J. 2008, 28, 40–42. [Google Scholar]
- Rizzo, A.; Lillo, E.; Ceci, E.; Maggiolino, A.; Cicirelli, V.; Sciorsci, R.L. Scopolamine administration in repeat breeder cows on the day of heat. Theriogenology 2023, 195, 1–6. [Google Scholar] [CrossRef]
- Hasib, F.M.Y.; Reza, M.M.B.; Alam, M.M.; Hasan, T.; Azizunnesa. Occurrence and risk factors of repeat breeding on household dairy cows of Hathazari in Chattogram. Bangladesh J. Vet. Anim. Sci. 2020, 8, 102–111. [Google Scholar]
- Alvarez, R.H.; Bayeux, B.M.; Watanabe, Y.F.; Mingoti, R.D.; Carvalho, J.B.P.; Baruselli, P.S. Oocyte quality and in vitro embryo production of aged Nellore cows selected for fertility. In Proceedings of the 10th International Ruminant Reproduction Symposium (IRRS 2018), Foz do Iguaçu, Brazil, 16–20 September 2018. [Google Scholar]
- Nishi, S.; Sarder, J.; Islam, H.; Kamruzzaman, S.; Islam, A.; Khaton, R. Factors affecting the incidence of repeat breeding in dairy cows in Rajshahi district, Bangladesh. Int. J. Livest. Res. 2018, 8, 90–96. [Google Scholar] [CrossRef]
- Tanimura, K.; Uematsu, M.; Kitahara, G.; Osawa, T.; Sasaki, Y. Longitudinal effect of repeat breeding in Japanese Black beef cattle at a low parity on subsequent fertility in commercial cow-calf operations. Theriogenology 2022, 189, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-K.; Kim, I.-H. Risk factors for repeat breeder dairy cows and their impacts on reproductive performance. Korean J. Vet. Res. 2022, 62, e15. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Ayres, H.; Chiaratti, M.R.; Ferraz, M.L.; Araújo, A.B.; Rodrigues, C.A.; Watanabe, Y.F.; Vireque, A.A.; Joaquim, D.C.; Smith, L.C.; et al. The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. J. Dairy Sci. 2011, 94, 2383–2392. [Google Scholar] [CrossRef] [Green Version]
- Badinga, L.; Thatcher, W.W.; Diaz, T.; Drost, M.; Wolfenson, D. Effect of environmental heat stress on follicular development and steroidogenesis in lactating Holstein cows. Theriogenology 1993, 39, 797–810. [Google Scholar] [CrossRef]
- Wolfenson, D.; Thatcher, W.W.; Badinga, L.; Savio, J.D.; Meidan, R.; Lew, B.J.; Braw-Tal, R.; Berman, A. Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol. Reprod. 1995, 52, 1106–1113. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.M.; Chiaratti, M.R.; Macabelli, C.H.; Rodrigues, C.A.; Ferraz, M.L.; Watanabe, Y.F.; Smith, L.C.; Meirelles, F.V.; Baruselli, P.S. The infertility of repeat-breeder cows during summer is associated with decreased mitochondrial DNA and increased expression of mitochondrial and apoptotic genes in oocytes. Biol. Reprod. 2016, 94, 66. [Google Scholar] [CrossRef]
- Mandefro, M.; Negash, G. Repeat breeder syndrome in dairy cows: Influence of breed and age on its prevalence. World J. Agric. Sci. 2014, 10, 200–203. [Google Scholar]
- Khair, A.; Asaduzzaman, M.; Sultana, Z.; Talukder, A.K.; Das, Z.C.; Alam, M.G.S.; Shamsuddin, M. Economic benefit in repeat breeder cows using intrauterine infusion of penicillin and estrus synchronization followed by timed artificial insemination. J. Adv. Vet. Anim. Res. 2018, 5, 454–458. [Google Scholar] [CrossRef]
- Lean, I.J.; Webster, G. Previous calving to conception intervals and current reproductive performance. In Proceedings of the Australian Society of Animal Production; La Trobe University: Melbourne, FL, USA, 1992; pp. 431–432. [Google Scholar]
- Morton, J. The InCalf project—Describing reproductive performance in Australian dairy herds. In Proceedings of the Australian and New Zealand Combined Dairy Veterinarians Conference, Vanuatu, Veterinary Continuing Education, Palmerston North, New Zealand, 15–19 May 2000; pp. 5–22. [Google Scholar]
- Butler, W.R. Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. Livest. Prod. Sci. 2003, 83, 211–218. [Google Scholar] [CrossRef]
- Westwood, C.T.; Lean, I.J.; Garvin, J.K. Factors influencing fertility of Holstein dairy cows: A multivariate description. J. Dairy Sci. 2002, 85, 3225–3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdalla, H.; del Elghafghuf, A.; Elsohaby, I. Evaluating sire effects on cow fertility: Timed AI and repeat-breeder dairy cows. Anim. Reprod. Sci. 2019, 209, 106147. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Arnold, L.M.; Stowe, C.J.; Harmon, R.J.; Bewley, J.M. Estimating US dairy clinical disease costs with a stochastic simulation model. J. Dairy Sci. 2017, 100, 1472–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafi, S.Q.; Kaneene, J.B.; Black, J.R.; Lloyd, J.W. Epidemiological and economic study of the repeat breeder syndrome in Michigan dairy cattle. II. Economic modeling. Prev. Vet. Med. 1992, 14, 99–114. [Google Scholar] [CrossRef]
- Lafi, S.Q.; Kaneene, J.B. Epidemiological and economic study of the repeat breeder syndrome in Michigan dairy cattle. I. Epidemiological modelling. Prev. Vet. Med. 1992, 14, 87–98. [Google Scholar] [CrossRef]
- De Vries, A.; Marcondes, M. Review: Overview of factors affecting productive lifespan of dairy cows. Animal 2020, 14, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Ott, T.; Tricarico, J.; Rotz, A.; Waghorn, G.; Adesogan, A.; Dijkstra, J.; Montes, F.; Oh, J.; Kebreab, E.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J. Anim. Sci. 2013, 91, 5095–5113. [Google Scholar] [CrossRef] [Green Version]
- Grandl, F.; Amelchanka, S.L.; Furger, M.; Clauss, M.; Zeitz, J.O.; Kreuzer, M.; Schwarm, A. Biological implications of longevity in dairy cows: 2. Changes in methane emissions and efficiency with age. J. Dairy Sci. 2016, 99, 3472–3485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments | ||||||
---|---|---|---|---|---|---|
RBC | Control | p Value | Cites | |||
n | PR/CR | n | PR/CR | |||
Pg from d5 to d19 after AI | 143 | 36.4 1 | 148 | 33.8 1 | >0.05 | 96 |
CIDR from d10 to d19 + PFG2α on d18 +AI | 30 | 43.3 b 2 | 30 | 20.0 c 2 | <0.05 | 103 |
Similar + other CIDR from d5 to d13 after AI | 30 | 63.3 a 2 | <0.01 | |||
GnRH before AI + Pg on d4, 5 and 6 + meloxican on d16, 17, and 18 | 98 | 37.7 2 | 107 | 20.6 2 | <0.05 | 105 |
GnRH (single dose between day 7 and 14 after AI) | 98 | 49.0 1 | 90 | 37.8 1 | <0.001 | 120 |
Dephereline on d5 after AI 250 µg | 271 | 39.1 a 1 | 269 | 28.6 b 1 | <0.05 | 119 |
100 µg | 270 | 39.1 a 1 | ||||
GnRH + 7-day P4-GnRH-PGF2α CL | 191 | 70.0 1 | - | - | 106 | |
no CL | 52 | 28.9 1 | <0.001 | |||
GnRH + CIDR + PGF2α + EB + GnRH | 498 | 32.0 1 | no control | 107 | ||
GnRH 20 µg buserelin | 55 | 87.0 a 1 | 42 | 48.0 b 1 | <0.05 | 116 |
10 µg buserelin | 40 | 58.0 b 1 | >0.05 | |||
1500 UI HCG on day 4 | 136 | 32.4 a,b 1 | 139 | 30.9 b 1 | >0.05 | 112 |
on day 6 | 131 | 38.9 a 1 | = 0.05 | |||
Treatment 5–6 days after AI re-used CIDR | 25 | 56.0 b 1 | 27 | 29.6 a 1 | 108 | |
hCG | 25 | 60.0 b 1 | ||||
GnRH | 26 | 26.9 a 1 | ||||
Milk osteopontin 1.3 mg into vagina at AI | 100 | 43.5 2 | 100 | 22.2 2 | <0.05 | 42 |
Scopolamine 40 mg/100 kg on heat | 20 | 80.0 2 | 20 | 25.0 2 | <0.0001 | 125 |
Insulin on d8, 9, and 10 + PGF2α on d12 | 11 | 63.6 1 | 10 | 40.0 1 | >0.05 | 81 |
Antibiotics Gentamycin one month before AI | 10 | 80.0 a 1 | 14 (no RBC) | 93.0 a 1 | <0.05 | 124 |
Enrofloxacin one month before AI | 12 | 33.0 b 1 | ||||
FTET in recipient RBC CL | 208 | 32.2 1 | - | - | 0.01 | 109 |
no CL | 214 | 23.4 1 | ||||
PGF2α-estrus | 229 | 18.3 1 | ||||
ET in RBCs also inseminated or not | IA and ET | ET | 97 | |||
Heifers | 61 | 49.2 b 1 | 61 | 29.5 a 1 | <0.05 | |
Cows | 273 | 41.5 b 1 | 137 | 20.4 a 1 | <0.05 |
Risk Factor | Groups | Effect (Yes/No) | Authors | ||
---|---|---|---|---|---|
Parity | <2 | 3–4 | >5 | ||
Ref. | 3.3 | 4.8 | yes | 14 | |
9% | 21% | 13% | yes | 128 | |
33.1% (1 parity) | 29.1% (2–3 parities) | 47.7% (>4 parities) | yes | 7 | |
15% | 9.8% | 11.2% | yes | 8 | |
Ref. | 8.5 (>4 parities) | yes | 129 | ||
no | 130 | ||||
no | 126 | ||||
Age | <4 | 5–6 | >6 | ||
Ref. | 1.7 | 7.6 | yes | 14 | |
14.4% | 17.0% | 14.1% | yes | 128 | |
29.7% | 33.1% | 37.1% | yes | 7 | |
* | yes | 10 | |||
Ref. | 2.7 | 9.2 | yes | 14 | |
21.9% | 12.5% | 33.9% | yes | 126 | |
BCS | Poor | Medium | Good | ||
9.7 | Ref | 1.1 | yes | 14 | |
42.3% | 31.4% | 26.3% | yes | 7 | |
no | 130 | ||||
Milk yield | <10 | 10–20 | >20 | ||
Ref | 1.6 | 5.5 | yes | 14 | |
21.1% (1–2 l) | 26.3% (2–5 l) | 52.6% (>5 l) | yes | 7 | |
no | 130 | ||||
Herd size | <10 | 10–20 | >20 | ||
Ref. | 1.1 | 2 | yes | 14 | |
no | 130 | ||||
Breeding method | AI | Natural | Both | ||
4.1 | 1.4 | Ref. | yes | 14 | |
Metabolic disorder | Yes | No | |||
2.47 | Ref. | yes | 130 | ||
* | yes | 126 | |||
* | yes | 10 | |||
Previous RBC condition | Yes | No | |||
* | yes | 10 | |||
* | yes | 129 | |||
Breed | Local | Others | |||
* | yes | 128 | |||
* | yes | 17 | |||
Interval calving-1st AI | <80 days | >80 days | |||
Ref. | 0.78 | yes | 130 | ||
* | yes | 10 | |||
* | yes | 129 | |||
Endometritis | Yes | No | |||
1.35 | Ref. | yes | 130 | ||
* | yes | 10 | |||
* | yes | 17 | |||
2.0 | Ref. | yes | 14 | ||
Sire | no | 141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Marín, C.C.; Quintela, L.A. Current Insights in the Repeat Breeder Cow Syndrome. Animals 2023, 13, 2187. https://doi.org/10.3390/ani13132187
Pérez-Marín CC, Quintela LA. Current Insights in the Repeat Breeder Cow Syndrome. Animals. 2023; 13(13):2187. https://doi.org/10.3390/ani13132187
Chicago/Turabian StylePérez-Marín, Carlos Carmelo, and Luis Angel Quintela. 2023. "Current Insights in the Repeat Breeder Cow Syndrome" Animals 13, no. 13: 2187. https://doi.org/10.3390/ani13132187