Genome-Wide Association Analysis of Muscle pH in Texel Sheep × Altay Sheep F2 Resource Population
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sample Collection
2.3. Phenotypic Determination and Correlation Analysis
2.4. Processing of the Genetic Data
2.5. Phenotypic Variation Explained (PVE)
2.6. Population Structure Analysis
2.7. Genome-Wide Association Analysis
2.8. Gene Annotation and Candidate Gene Data Mining for Candidate Genes
3. Results
3.1. Phenotypic Statistics Analysis
3.2. Quality Control
3.3. PVE
3.4. PCA
3.5. Analysis of Population Stratification
3.6. Genome-Wide Association Analysis
3.7. GO Function Analysis and KEGG Pathway Analysis
4. Discussion
4.1. pH Statisticals Results and Correlation Analysis
4.2. Analysis of Significant Sites’ Rate and the Population Structure
4.3. pH Function and Signal Pathway Analysis
4.4. Analysis of the Candidate Gene of pH45min
4.5. Analysis of the Candidate Gene of pH24h
4.6. Analysis of the Candidate Gene of pH48h
4.7. Analysis of the Candidate Gene of pH72h
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suzuki, K.; Irie, M.; Kadowaki, H.; Shibata, T.; Kumagai, M.; Nishida, A. Genetic parameter estimates of meat quality traits in duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J. Anim. Sci. 2005, 83, 2058–2065. [Google Scholar] [CrossRef]
- Matika, O.; Riggio, V.; Anselmemoizan, M.; Law, A.S.; Pong-Wong, R.; Archibald, A.L.; Bishop, S.C. Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs. Genet. Sel. Evol. 2016, 48, 11. [Google Scholar] [CrossRef] [PubMed]
- Demars, J.; Fabre, S.; Sarry, J.; Rossetti, R.; Gilbert, H.; Persani, L.; Tosser-Klopp, G.; Mulsant, P.; Nowak, Z.; Drobik, W.; et al. Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genet. 2013, 9, e1003482. [Google Scholar] [CrossRef]
- Esmaeili-FardID, S.M.; Gholizadeh, M.; Hafezian, S.H.; Abdollahi-Arpanahi, R. Genome-wide association study and pathway analysis identify NTRK2 as a novel candidate gene for litter size in sheep. PLoS ONE 2021, 16, e0244408. [Google Scholar] [CrossRef]
- García-Gámez, E.; Gutiérrez-Gil, B.; Sahana, G.; Juan-Pablo, S.; Bayón, Y.; Arranz, J.-J. GWA Analysis for Milk Production Traits in Dairy Sheep and Genetic Support for a QTL Influencing Milk Protein Percentage in the LALBA Gene. PLoS ONE 2012, 7, e47782. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Palhière, I.; Tosser-Klopp, G.; Rupp, R. Heritability and genome-wide association mapping for supernumerary teats in French Alpine and Saanen dairy goats. J. Dairy Sci. 2016, 99, 8891–8900. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.; Tiirikka, T.; Kantanen, J. A genome-wide scan study identifies a single nucleotide substitution in ASIP associated with white versus non-white coat-colour variation in sheep (Ovis aries). Heredity 2014, 112, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.M.; Palhière, I.; Ricard, A.; Tosser-Klopp, G.; Rupp, R. Genome wide association study identifies new loci associated with undesired coat color phenotypes in Saanen goats. PLoS ONE 2016, 11, e0152426. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Rahimimianji, G.; Nejatijavaremi, A. Genomewide association study of body weight traits in Baluchi sheep. J. Genet. 2015, 94, 143–146. [Google Scholar] [CrossRef]
- Pasandideh, M.; Gholizadeh, M.; Rahimi-Mianji, G. A genome-wide association study revealed five SNPs affecting 8-month weight in sheep. Anim. Genet. 2020, 51, 973–976. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Zhao, F.; Ren, H.; Xu, L.; Lu, J.; Zhang, S.; Zhang, X.; Wei, C.; Lu, G.; et al. Genome-wide association studies for growth and meat production traits in sheep. PLoS ONE 2013, 8, e66569. [Google Scholar] [CrossRef]
- Cao, Y.; Song, X.; Shan, H.; Jiang, J.; Xiong, P.; Wu, J.; Shi, F.; Jiang, Y. Genome-Wide Association Study of Body Weights in Hu Sheep and Population Verification of Related Single-Nucleotide Polymorphisms. Front. Genet. 2020, 11, 00588. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Yue, Y.; Yuan, C.; Liu, J.; Chen, Z.; Niu, C.; Sun, X.; Zhu, S.; Zhao, H.; Guo, T.; et al. Genome-Wide Association Study of Body Weight Traits in Chinese Fine-Wool Sheep. Animals 2020, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Sunduimijid, B.; Xiang, R.; Behrendt, R.; Knight, M.I.; Mason, B.A.; Reich, C.M.; Prowse-Wilkins, C.; Vander Jagt, C.J.; Chamberlain, A.J.; et al. Expression quantitative trait loci in sheep liver and muscle contribute to variations in meat traits. Genet. Sel. Evol. 2021, 53, 8. [Google Scholar] [CrossRef]
- Ma, J.; Yang, J.; Zhou, L.; Zhang, Z.; Ma, H.; Xie, X.; Zhang, F.; Xiong, X.; Cui, L.; Yang, H.; et al. Genome-Wide Association Study of Meat Quality Traits in a White Duroc6Erhualian F2 Intercross and Chinese Sutai Pigs. PLoS ONE 2013, 8, e64047. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Lagler, D.K.; Hannemann, E.; Eck, K.; Klawatsch, J.; Seichter, D.; Russ, I.; Mendel, C.; Lühken, G.; Krebs, S.; Blum, H.; et al. Fine-mapping and identification of candidate causal genes for tail length in the Merinolandschaf breed. Commun. Biol. 2022, 5, 918. [Google Scholar] [CrossRef]
- Nudel, R.; Thompson, W.K.; Børglum, A.D.; Hougaard, D.M.; Mortensen, P.B.; Werge, T.; Nordentoft, M.; Benros, M.E. Maternal pregnancy-related infections and autism spectrum disorder—The genetic perspective. Transl. Psychiatry 2022, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.; Ankersmit-Udy, A.; Turner, S.; Scholtens, M.; Littlejohn, M.D.; Lopez-Villalobos, N.; Proser, C.G.; Snell, R.G.; Lehnert, K. A Capra hircus chromosome 19 locus linked to milk production influences mammary conformation. J. Anim. Sci. Biotechnol. 2022, 13, 4. [Google Scholar] [CrossRef]
- Yu, J.; Pressoir, G.; Briggs, W.; Bi, I.V.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef]
- Zhou, X.; Stephens, M. Genome-wide Efficient Mixed Model Analysis for Association Studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Aulchenko, Y.S.; Ripke, S.; Isaacs, A.; Van Duijn, C.M. GenABEL: An R library for genome-wide association analysis. Bioinformatics 2007, 23, 1294–1296. [Google Scholar] [CrossRef]
- Turkmen, A.S.; Yuan, Y.; Billor, N. Evaluation of methods for adjusting population stratification in genome-wide association studies: Standard versus categorical principal component analysis. Ann. Hum. Genet. 2019, 83, 454–464. [Google Scholar] [CrossRef]
- Yang, H.; Wang, K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat. Protoc. 2015, 10, 1556–1566. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Li, B.; Dong, J.; Yu, J.; Fan, Y.; Shang, L.; Zhou, X.; Bai, Y. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies. BMC Med. Genom. 2020, 13, 191. [Google Scholar] [CrossRef]
- Carbon, S.; Dietze, H.; Lewis, S.E.; Mungall, C.J.; Munoz-Torres, M.C.; Basu, S.; Chisholm, R.L.; Dodson, R.J.; Fey, P.; Thomas, P.D.; et al. Expansion of the gene ontology knowledgebase and resources: The gene ontology consortium. Nucleic Acids Res. 2017, 45, D331–D338. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- Ouali, A.; Herrera-Mendez, C.H.; Coulis, G.; Becila, S.; Boudjellal, A.; Aubry, L.; Sentandreu, M.A. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci. 2006, 74, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Ablikim, B.; Liu, Y.; Kerim, A.; Shen, P.; Abdurerim, P.; Zhou, G.H. Effects of Breed, Muscle type and Frozen Storage on Physico-chemical Characteristics of Lamb Meat and its Relationship with Tenderness. CyTA-J. Food 2015, 14, 109–116. [Google Scholar] [CrossRef]
- Li, Y.; Cao, K.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; Zhao, P.; Guo, J.; Ding, T.; Guan, L.; et al. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history. Genome Biol. 2019, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. J. Open Source Softw. 2018, 3, 2. [Google Scholar] [CrossRef]
- Copenhafe, T.L.; Richert, B.T.; Schinckel, A.P.; Grant, A.L.; Gerrard, D.E. Augmented postmortem glycolysis does not occur early postmortem in AMPKγ3-mutated porcine muscle of halothane positive pigs. Meat Sci. 2006, 73, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Lei, H.; Zhang, S.; Li, X.; LI, M.; Jiang, X.; Zhu, K.; Zhu, L. The comparison of energy metabolism and meat quality among three pig breeds. Anim. Sci. J. 2014, 85, 770–779. [Google Scholar] [CrossRef]
- Scheffler, T.L.; Gerrard, D.E. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci. 2007, 77, 7–16. [Google Scholar] [CrossRef]
- Harmegnies, N.; Davin, F.; Smet, S.D.; Buys, N.; Georges, M.; Coppieters, W. Results of a whole genome quantitative trait locus scan for growth, carcass composition and meat quality in a porcine four-way cross. Anim. Genet. 2006, 37, 543–553. [Google Scholar] [CrossRef]
- Hamoen, J.R.; Vollebregt, H.M.; Van dsr Sman, R.G.M. Prediction of the time evolution of pH in meat. Food Chem. 2013, 141, 2363–2372. [Google Scholar] [CrossRef]
- O’Neill, D.J.; Lynch, P.B.; Troy, D.J.; Buckley, D.J.; Kerry, J.P. Influence of the time of year on the incidence of PSE and DFD in Irish pigmeat. Meat Sci. 2003, 64, 105–111. [Google Scholar] [CrossRef]
- Melody, J.L.; Lonergan, S.M.; Rowe, L.J.; Huiatt, T.W.; Mayes, M.S.; Huff-Lonergan, E. Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J. Anim. Sci. 2004, 82, 1195–1205. [Google Scholar] [CrossRef]
- Shen, Q.W.; Means, W.J.; Thompson, S.A.; Underwood, K.R.; Zhu, M.J.; McCormick, R.J.; Ford, S.P.; Du, M. Pre-slaughter transport, AMP-activated protein kinase, glycolysis, and quality of pork loin. Meat Sci. 2006, 74, 388–395. [Google Scholar] [CrossRef]
- Shen, Q.W.; Gerrard, D.E.; Du, M. Compound C, an inhibitor of AMP-activated protein kinase, inhibits glycolysis in mouse longissimus dorsi postmortem. Meat Sci. 2008, 78, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Rosenvold, K.; Andersen, H.J. Factors of significance for pork quality-a review. Meat Sci. 2003, 64, 219–237. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.W.; Du, M. Effects of dietary α-lipoic acid on glycolysis of postmortem muscle. Meat Sci. 2005, 71, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.W.; Means, W.J.; Underwood, K.R.; Thompson, S.A.; Zhu, M.J.; Mccormick, R.J.; Ford, S.P.; Ellis, M.; Du, M. Early Post-mortem AMP-Activated Protein Kinase (AMPK) Activation Leads to Phosphofructokinase-2 and -1 (PFK-2 and PFK-1) Phosphorylation and the Development of Pale, Soft, and Exudative (PSE) Conditions in Porcine Longissimus Muscle. J. Agric. Food Chem. 2006, 54, 5583–5589. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Larsen, M.R.; Karlsson, A.H.; Pomponio, L.; Costa, L.N.; Lametsch, R. Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with p H decline rate and time differences. Proteomics 2011, 11, 4063–4076. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Larsen, M.R.; Lametsch, R. Changes in phosphorylation of myofibrillar proteins during postmortem development of porcine muscle. Food Chem. 2012, 134, 1999–2006. [Google Scholar] [CrossRef]
- Delahay, R.M.; Frankel, G. Coiled—Coil proteins associated with type Ⅲ secretion systems: A versatile domain revisited. Mol. Microbiol. 2002, 45, 905–916. [Google Scholar] [CrossRef]
- Burkhard, P.; Stetefeld, J.; Strelkov, S.V. Coiled coils: A highly versatile protein folding motif. Trends Cell Biol. 2001, 11, 82–88. [Google Scholar] [CrossRef]
- Zhao, W.; Rasheed, A.; Tikkanen, E.; Lee, J.J.; Butterworth, A.S.; Howson, J.M.M.; Assimes, T.L.; Chowdhury, R.; Orho-Melander, M.; Damrauer, S.; et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 2017, 49, 1450–1457. [Google Scholar] [CrossRef]
- Lotta, L.A.; Gulati, P.; Day, F.R.; Payne, F.; Ongen, H.; Bunt, M.V.D.; Gaulton, K.J.; Eicher, J.D.; Sharp, S.J.; Luan, J.; et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat. Genet. 2017, 49, 17–26. [Google Scholar] [CrossRef]
- Klarin, D.; Zhu, Q.M.; Emdin, C.A.; Chaffin, M.; Horner, S.; McMillan, B.J.; Leed, A.; Weale, M.E.; Spencer, C.C.A.; Aguet, F.; et al. Genetic analysis in UK biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nat. Genet. 2017, 49, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Larson, K.; Bundy, A.; Alvine, T.; Lance, E.B.; Roemmich, J. Offspring Exercise Modulates Beige Adipocyte Numbers by Differential Regulation of H3K9 Methyltransferase G9a and Demethylase KDM4C in Mice Fed a Maternal High Fat Diet (P21-067-19). Curr. Dev. Nutr. 2019, 3, nzz041. [Google Scholar] [CrossRef]
- Zhang, H.; Zhuang, Z.; Yang, M.; Ding, R.; Quan, J.; Zhou, S.; Gu, T.; Xu, Z.; Zheng, E.; Cai, G.; et al. Genome-Wide Detection of Genetic Loci and Candidate Genes for Body Conformation Traits in Duroc × Landrace × Yorkshire Crossbred Pigs. Front. Genet. 2021, 12, 664343. [Google Scholar] [CrossRef]
- Yamagishi, T.; Ando, K.; Nakamura, H.; Nakajima, Y. Expression of the Tgfβ2 gene during chick embryogenesis. Anat. Rec. 2012, 295, 257–267. [Google Scholar] [CrossRef]
- Schabort, E.J.; Van Der Merwe, M.; Loos, B.; Moorea, F.P.; Niesler, C.U. TGF-beta’s delay skeletal muscle progenitor cell differentiation in an isoform-independent manner. Exp. Cell Res. 2009, 315, 373–384. [Google Scholar] [CrossRef]
- Li, H.; Deeb, N.; Zhou, H.; Mitchell, A.D.; Ashwell, C.M.; Lamont, S.J. Chicken quantitative trait loci for growth and body composition associated with transforming growth factor-beta genes. Poult. Sci. 2003, 82, 347–356. [Google Scholar] [CrossRef]
- Ueda, S.; Hosoda, M.; Ken-ichi, Y.; Yamanoue, M.; Shirai, Y. Gene Expression Analysis Provides New Insights into the Mechanism of Intramuscular Fat Formation in Japanese Black Cattle. Genes 2021, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Nie, J.; Wang, X.; DuBois, D.C.; Jusko, W.J.; Almon, R.R. Effects of High Fat Feeding on Adipose Tissue Gene Expression in Diabetic Goto-Kakizaki Rats. Gene Regultion Syst. Biol. 2015, 9, 15–26. [Google Scholar] [CrossRef]
- Du, B.; Cawthorn, W.P.; Su, A.; Doucette, C.R.; Yao, Y.; Hemati, N.; Kampert, S.; McCoin, C.; Broome, D.T.; Rosen, C.J.; et al. The transcription factor paired-related homeo-box 1 (Prrx1) inhibits adipogenesis by activating transforming growth factor-beta (TGFbeta) signaling. J. Biol. Chem. 2013, 288, 3036–3047. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, L.; Shi, Q.; Zhao, Y.; Lin, H.; Zhang, M.; Zhao, S.; Yang, Y.; Ling, Z.-Q.; Guan, K.-L.; et al. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J. 2015, 34, 1110–1125. [Google Scholar] [CrossRef]
- Smith, L.R.; Kok, H.J.; Zhang, B.; Chung, D.; Spradlin, R.A.; Rakoczy, K.D.; Lei, H.; Boesze-Battaglia, K.; Barton, E.R. Matrix Metalloproteinase 13 from Satellite Cells is Required for Efficient Muscle Growth and Regeneration. Cell. Physiol. Biochem. 2020, 11, 54, 333–353. [Google Scholar] [CrossRef]
- Lei, H.; Leong, D.; Smith, L.R.; Barton, E.R. Matrix metalloproteinase 13 is a new contributor to skeletal muscle regeneration and critical for myoblast migration. Am. J. Physiol. Cell Physiol. 2013, 305, C529–C538. [Google Scholar] [CrossRef] [PubMed]
- Kahlert, C.; Fiala, M.; Musso, G.; Halama, N.; Keim, S.; Mazzone, M.; Lasitschka, F.; Pecqueux, M.; Klupp, F.; Schmidt, T.; et al. Prognostic impact of a compartment-specific angiogenic marker profile in patients with pancreatic cancer. Oncotarget 2014, 5, 12978–12989. [Google Scholar] [CrossRef] [PubMed]
- Moyer, A.L.; Wagnera, K.R. Regeneration versus fibrosis in skeletal muscle. Curr. Opin. Rheumatol. 2001, 23, 568–573. [Google Scholar] [CrossRef]
- Chung, J.H.; Seo, J.Y.; Lee, M.K.; Eun, H.C.; Lee, J.H.; Kang, S.; Fisher, G.J.; Voorhees, J.J. Ultraviolet modulation of human macrophage metalloelastase in human skin in vivo. J. Investig. Dermatol. 2002, 119, 507–512. [Google Scholar] [CrossRef]
- Jing, L.; Yang, M.; He, S.; Li, Z.; Li, H.; Niu, T.; Xie, D.; Mei, Y.; He, X.; Wei, L.; et al. MMP12 knockout prevents weight and muscle loss in tumorbearing mice. BMC Cancer 2021, 21, 1297. [Google Scholar] [CrossRef]
- Huang, T.L.; Chang, C.R.; Chien, C.Y.; Huang, G.K.; Chen, Y.F.; Su, L.J.; Tsai, H.T.; Lin, Y.S.; Fang, F.M.; Chen, C.H. DRP1 contributes to head and neck cancer progression and induces glycolysis through modulated FOXM1/MMP12 axis. Mol. Oncol. 2022, 16, 2585–2606. [Google Scholar] [CrossRef]
- Mattijssen, F.; Georgiadi, A.; Andasarie, T.; Szalowska, E.; Zota, A.; Krones-Herzig, A.; Heier, C.; Ratman, D.; Bosscher, K.D.; Qi, L.; et al. Hypoxia-inducible lipid droplet-associated (HILPDA) is a novel peroxisome proliferatoractivated receptor (PPAR) target involved in hepatic triglyceride secretion. J. Biol. Chem. 2014, 289, 19279–19293. [Google Scholar] [CrossRef]
- Schübel, R.; Sookthai, D.; Greimel, J.; Johnson, T.S.; Grafetstätter, M.E.; Kirsten, R.; Kratz, M.; Ulrich, C.M.; Kaaks, R.; Kühn, T. Key genes of lipid metabolism and WNT-signaling are downregulated in subcutaneous adipose tissue with moderate weight loss. Nutrients 2019, 11, 639. [Google Scholar] [CrossRef]
- VandeKopple, M.J.; Wu, J.; Auer, E.N.; Giaccia, A.J.; Denko, N.C.; Papandreou, I. HILPDA regulates lipid metabolism, lipid droplet abundance, and response to microenvironmental stress in solid tumors. Mol. Cancer Res. 2019, 17, 2089–2101. [Google Scholar] [CrossRef]
- Padmanabha Das, K.M.; Wechselberger, L.; Liziczai, M.; Rodriguez, M.D.l.R.; Grabner, G.F.; Heier, C.; Viertlmayr, R.; Radler, C.; Lichtenegger, J.; Zimmermann, R.; et al. Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase. J. Lipid Res. 2018, 59, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Gimm, T.; Wiese, M.; Teschemacher, B.; Deggerich, A.; Schödel, J.; Knaup, K.X.; Hackenbeck, T.; Hellerbrand, C.; Amann, K.; Wiesener, M.S.; et al. Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1. FASEB J. 2010, 24, 4443–4458. [Google Scholar] [CrossRef]
- De la Rosa Rodriguez, M.A.; Kersten, S. Regulation of lipid droplet homeostasis by hypoxia inducible lipid droplet associated HILPDA. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2020, 1865, 158738–158744. [Google Scholar] [CrossRef] [PubMed]
- Northcott, P.A.; Korshunov, A.; Witt, H.; Hielscher, T.; Eberhart, C.G.; Mack, S.; Bouffet, E.; Clifford, S.C.; Hawkins, C.E.; French, P.; et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 2011, 29, 1408–1414. [Google Scholar] [CrossRef]
- Kijima, N.; Kanemura, Y. Molecular Classification of Medulloblastoma. Neurol. Med. Chir. 2016, 56, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, T.; Takeich, M. Mammalian Fat1 cadherin regulates actin dynamics and cell-cell contact. J. Cell Biol. 2004, 165, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Kang, J.X.; Li, R.; Wang, J.; Witt, W.T.; Yong, H.Y.; Hao, Y.; Wax, D.M.; Murphy, C.N.; Rieke, A.; et al. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat. Biotechnol. 2006, 24, 435–436. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.H.; Tang, J.; Kim, Y.J.; Lee, J.H.; Eui-Cheol, S.; Zhao, J.; Kee-Hong, K.; Hwang, K.A.; Huang, Y.; Kim, J.K. 4IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle. Int. J. Mol. Sci. 2020, 21, 5596. [Google Scholar] [CrossRef]
Trait | Individuals (n) | Mean | Standard Deviation | Maximum | Minimum | Coefficient of Variable |
---|---|---|---|---|---|---|
pH45min | 461 | 5.98 | 0.14 | 7.05 | 5.54 | 2.34 |
pH24h | 462 | 5.66 | 0.17 | 6.66 | 4.61 | 3.00 |
pH48h | 462 | 5.63 | 0.18 | 6.57 | 5.02 | 3.20 |
pH72h | 461 | 5.47 | 0.17 | 6.65 | 4.54 | 3.11 |
pH45min | pH24h | pH48h | pH72h | |
---|---|---|---|---|
pH45min | 1 | |||
pH24h | 0.126 ** | 1 | ||
pH48h | −0.073 | 0.451 ** | 1 | |
pH72h | 0.001 | 0.458 ** | 0.580 ** | 1 |
Trait | SNP | Genetic Variance (VG) | Residual Variance (VE) | Phenotypic Variance (VP) | Phenotypic Variation Explained (VG/Vp) |
---|---|---|---|---|---|
pH45min | 5 | 0.0335 | 0.0693 | 0.1029 | 0.3259 |
pH24h | 10 | 0.0374 | 0.0983 | 0.1358 | 0.2754 |
pH48h | 6 | 0.0646 | 0.0805 | 0.1451 | 0.4452 |
pH72h | 7 | 0.0714 | 0.0452 | 0.1165 | 0.6129 |
Trait | Chromosome | Location a | p-Value | Nearest Gene Name b | Distance |
---|---|---|---|---|---|
pH45min | 1 | 156943874 | 4.21 × 10−6 | NSUN3 | within |
13 | 60319420 | 8.17 × 10−6 | LOC101123139, LOC105611319 | 50 kb | |
17 | 51353307 | 2.81 × 10−6 | CCDC92 | within | |
18 | 10181225 | 6.72 × 10−6 | LOC105603046, LOC105603047 | 100 kb | |
25 | 4816881 | 7.86 × 10−6 | DISC1 | within | |
pH24h | 2 | 74191733 | 6.71 × 10−6 | KDM4C | within |
2 | 74212523 | 5.48 × 10−6 | KDM4C | within | |
3 | 200982308 | 8.44 × 10−6 | GRIN2B | within | |
3 | 200982636 | 8.44 × 10−6 | GRIN2B | within | |
8 | 24764513 | 4.71 × 10−6 | LOC105615845, LOC105609596 | 1 Mb | |
12 | 20003596 | 1.51 × 10−6 | TGFB2 | within | |
12 | 20013208 | 1.51 × 10−6 | TGFB2 | within | |
12 | 22099281 | 5.02 × 10−6 | RAB3GAP2, MARK1 | 50 kb | |
14 | 15539367 | 3.29 × 10−6 | PHKB | within | |
14 | 25937544 | 3.15 × 10−6 | GOT2, LOC105611954 | 50 kb | |
pH48h | 3 | 178286132 | 8.17 × 10−6 | LOC105608627, TRNAR-CCU | 1 Mb |
15 | 5271378 | 8.53 × 10−6 | MMP13, MMP12 | 100 kb | |
15 | 9099535 | 5.94 × 10−6 | CNTN5 | within | |
15 | 36890512 | 5.93 × 10−6 | LOC105602233, INSC | 100 kb | |
20 | 38742466 | 1.33 × 10−6 | NUP153 | within | |
23 | 680144 | 4.36 × 10−6 | LOC105604591 | within | |
pH72h | 3 | 76238035 | 1.29 × 10−6 | LOC105613977, LOC101113750 | 200 kb |
3 | 76238358 | 1.29 × 10−6 | LOC105613977, LOC101113750 | 200 kb | |
4 | 25686591 | 4.23 × 10−6 | LOC105609497, AHR | 100 kb | |
4 | 92689824 | 5.14 × 10−6 | IMPDH1, HILPDA | 50 kb | |
6 | 65142470 | 3.96 × 10−6 | GABRA2, LOC101121518 | 500 kb | |
16 | 39886318 | 4.49 × 10−6 | ADAMTS12 | within | |
26 | 15183899 | 7.72 × 10−6 | FAT1 | within |
Gene Name | Term | Database | ID | p-Value |
---|---|---|---|---|
GRIN2B, TGFB2, RAB3GAP2, MARK1 | Regulation of the processes of protein modification. | Gene Ontology | GO:0031399 | 0.010966194 |
GRIN2B, TGFB2, RAB3GAP2, GOT2 | Activity of protein dimerization. | Gene Ontology | GO:0046983 | 0.011199421 |
GRIN2B, PHKB | Calcium signaling pathway. | KEGG pathway | map04020 | 0.035660879 |
MMP13, MMP12, INSC, NUP153, LOC105604591 | Obsolete multi-organism process. | Gene Ontology | GO:0051704 | 0.042182781 |
MMP13, MMP12, CNTN5, INSC, NUP153, LOC105604591 | Cellular component organization. | Gene Ontology | GO:0016043 | 0.038462380 |
MMP13, MMP12, LOC105604591 | Hydrolase activity. | Gene Ontology | GO:0016787 | 0.027560590 |
MMP13, MMP12 | Parathyroid hormone synthesis, secretion and action. | KEGG pathway | map04928 | 0.035660879 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; He, S.; Huang, J.; Liu, M. Genome-Wide Association Analysis of Muscle pH in Texel Sheep × Altay Sheep F2 Resource Population. Animals 2023, 13, 2162. https://doi.org/10.3390/ani13132162
Zhao Y, He S, Huang J, Liu M. Genome-Wide Association Analysis of Muscle pH in Texel Sheep × Altay Sheep F2 Resource Population. Animals. 2023; 13(13):2162. https://doi.org/10.3390/ani13132162
Chicago/Turabian StyleZhao, Yilong, Sangang He, Jinfeng Huang, and Mingjun Liu. 2023. "Genome-Wide Association Analysis of Muscle pH in Texel Sheep × Altay Sheep F2 Resource Population" Animals 13, no. 13: 2162. https://doi.org/10.3390/ani13132162
APA StyleZhao, Y., He, S., Huang, J., & Liu, M. (2023). Genome-Wide Association Analysis of Muscle pH in Texel Sheep × Altay Sheep F2 Resource Population. Animals, 13(13), 2162. https://doi.org/10.3390/ani13132162