The Impact of a Phytobiotic Mixture on Broiler Chicken Health and Meat Safety
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phytoncides Mixture
2.2. Animals and Experimental Design
2.3. Phytobiotic Product Distribution
2.4. Tissue Samples Collection
2.5. Meat Analysis
2.5.1. pH Value
2.5.2. Meat Colour
2.5.3. Natural and Thermal Leakage
2.6. Histopathological Evaluation
2.7. GC-MS Analysis
2.8. Statistical Analysis
3. Results
3.1. Effect of Phytogenic Product
3.2. Effect of Phytogenic Combination on Meat Parameters and Quality
3.2.1. Carcass Parameters
3.2.2. Meat Colour
3.2.3. pH Values and Natural and Thermal Leakage
3.3. Histopathology
3.4. Residues in Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alghirani, M.M.; Chung, E.L.T.; Jesse, F.F.A.; Sazili, A.Q.; Loh, T.C. Could phytobiotics replace antibiotics as feed additives to stimulate production performance and health status in poultry? An overview. J. Adv. Vet. Res. 2021, 11, 254–265. [Google Scholar]
- Chodkowska, K.A.; Iwiński, H.; Wódz, K.; Nowak, T.; Różański, H. In Vitro Assessment of Antimicrobial Activity of Phytobiotics Composition towards of Avian Pathogenic Escherichia coli (APEC) and Other E. coli Strains Isolated from Broiler Chickens. Antibiotics 2022, 11, 1818. [Google Scholar] [CrossRef] [PubMed]
- Soyadı, Y.; El-Ghany, W. Phytobiotics in Poultry Industry as Growth Promoters, Antimicrobials and Immunomodulators—A Review. J. World’s Poult. Res. 2020, 10, 571–579. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Assessing Quality and Safety of Animal Feeds; Food and Agriculture Organization: Rome, Italy, 2004. [Google Scholar]
- Plata, G.; Baxter, N.T.; Susanti, D.; Volland-Munson, A.; Gangaiah, D.; Nagireddy, A.; Mane, S.P.; Balakuntla, J.; Hawkins, T.B.; Kumar Mahajan, A. Growth promotion and antibiotic induced metabolic shifts in the chicken gut microbiome. Commun. Biol. 2022, 5, 293. [Google Scholar] [CrossRef]
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic Use in Livestock and Residues in Food-A Public Health Threat: A Review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef]
- Bartkiene, E.; Ruzauskas, M.; Bartkevics, V.; Pugajeva, I.; Zavistanaviciute, P.; Starkute, V.; Zokaityte, E.; Lele, V.; Dauksiene, A.; Grashorn, M.; et al. Study of the antibiotic residues in poultry meat in some of the EU countries and selection of the best compositions of lactic acid bacteria and essential oils against Salmonella enterica. Poult. Sci. 2020, 99, 4065–4076. [Google Scholar] [CrossRef] [PubMed]
- Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J. Food Prot. 2018, 81, 619–627. [Google Scholar] [CrossRef]
- Purwanti, S.; Agustina, L.; Jamilah; Syamsu, J.A.; Putra, R.D. Histology of the liver and small intestine broiler using phytobiotic in the ration infected Salmonella pullorum. IOP Conf. Ser. Earth Environ. Sci. 2019, 247, 012054. [Google Scholar] [CrossRef]
- Chodkowska, K.A.; Abramowicz-Pindor, P.A.; Tuśnio, A.; Gawin, K.; Taciak, M.; Barszcz, M. Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens. Animals 2022, 12, 2625. [Google Scholar] [CrossRef]
- Al-Yasiry, A.R.M.; Kiczorowska, B.; Samolińska, W.; Kowalczuk-Vasilev, E.; Kowalczyk-Pecka, D. The effect of Boswellia serrata resin diet supplementation on production, hematological, biochemical and immunological parameters in broiler chickens. Animal 2017, 11, 1890–1898. [Google Scholar] [CrossRef] [Green Version]
- Aljumaah, M.R.; Suliman, G.M.; Abdullatif, A.A.; Abudabos, A.M. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poult. Sci. 2020, 99, 5744–5751. [Google Scholar] [CrossRef] [PubMed]
- Ghazalah, A.A.; Ali, A.M. Rosemary Leaves as a Dietary Supplement for Growth in Broiler Chickens. Int. J. Poult. Sci. 2008, 7, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhang, J.; Li, Q.; Xiang, X.; Yang, Z.; Wang, T. Effects of trans-anethole supplementation on serum lipid metabolism parameters, carcass characteristics, meat quality, fatty acid, and amino acid profiles of breast muscle in broiler chickens. Poult. Sci. 2021, 100, 101484. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.H.; Abbas, W.; Huang, J.; He, Q.; Zhen, W.; Guo, Y.; Wang, Z. Effect of blending encapsulated essential oils and organic acids as an antibiotic growth promoter alternative on growth performance and intestinal health in broilers with necrotic enteritis. Poult. Sci. 2022, 101, 101563. [Google Scholar] [CrossRef]
- Emili Vinolya, R.; Balakrishnan, U.; Yasir, B.; Chandrasekar, S. Effect of dietary supplementation of acidifiers and essential oils on growth performance and intestinal health of broiler. J. Appl. Poult. Res. 2021, 30, 100179. [Google Scholar] [CrossRef]
- Lekeshmanaswamy, M.; Anusiyadevi, K. Biosynthesis of silver nanoparticles using Pergularia daemia (Hamilton, 1822) leaf extract and its enhanced antibacterial activity against gram negative bacteria (Escherichia coli). Mater. Today Proc. 2022, 48, 201–206. [Google Scholar] [CrossRef]
- Galli, G.M.; Gerbet, R.R.; Griss, L.G.; Fortuoso, B.F.; Petrolli, T.G.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Mesadri, J.; Wagner, R.; et al. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb. Pathog. 2020, 139, 103916. [Google Scholar] [CrossRef]
- Aleksic Sabo, V.; Knezevic, P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind. Crops Prod. 2019, 132, 413–429. [Google Scholar] [CrossRef]
- Cai, Z.-M.; Peng, J.-Q.; Chen, Y.; Tao, L.; Zhang, Y.-Y.; Fu, L.-Y.; Long, Q.-D.; Shen, X.-C. 1,8-Cineole: A review of source, biological activities, and application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
- Chandorkar, N.; Tambe, S.; Amin, P.; Madankar, C. A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus. Phytomedicine Plus 2021, 1, 100089. [Google Scholar] [CrossRef]
- Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Terpenoids: Natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cell. Mol. Life Sci. 2008, 65, 2979–2999. [Google Scholar] [CrossRef] [PubMed]
- Sudhoff, H.; Klenke, C.; Greiner, J.F.W.; Müller, J.; Brotzmann, V.; Ebmeyer, J.; Kaltschmidt, B.; Kaltschmidt, C. 1,8-Cineol Reduces Mucus-Production in a Novel Human Ex Vivo Model of Late Rhinosinusitis. PLoS ONE 2015, 10, e0133040. [Google Scholar] [CrossRef] [PubMed]
- Mohebodini, H.; Jazi, V.; Ashayerizadeh, A.; Toghyani, M.; Tellez-Isaias, G. Productive parameters, cecal microflora, nutrient digestibility, antioxidant status, and thigh muscle fatty acid profile in broiler chickens fed with Eucalyptus globulus essential oil. Poult. Sci. 2021, 100, 100922. [Google Scholar] [CrossRef] [PubMed]
- Ritter, A.M.V.; Ames, F.Q.; Otani, F.; de Oliveira, R.M.W.; Cuman, R.K.N.; Bersani-Amado, C.A. Effects of Anethole in Nociception Experimental Models. Evid.-Based Complement. Altern. Med. 2014, 2014, 345829. [Google Scholar] [CrossRef] [Green Version]
- Chainy, G.B.N.; Manna, S.K.; Chaturvedi, M.M.; Aggarwal, B.B. Anethole blocks both early and late cellular responses transduced by tumor necrosis factor: Effect on NF-κB, AP-1, JNK, MAPKK and apoptosis. Oncogene 2000, 19, 2943–2950. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Yu, C.; Xie, Z.; Zhang, X.; Yang, Z.; Wang, T. Trans-anethole ameliorates lipopolysaccharide-induced acute liver inflammation in broilers via inhibiting NF-κB signaling pathway. Poult. Sci. 2022, 101, 101962. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Samber, N.; Manzoor, N. Antimicrobial activity of Mentha piperita essential oil in combination with silver ions. Synergy 2014, 1, 92–98. [Google Scholar] [CrossRef]
- Costa, C.M.d.S.; da Cruz, M.G.; Lima, T.B.C.; Ferreira, L.C.; Ventura, A.S.; Brandão, F.R.; Chagas, E.C.; Chaves, F.C.M.; Martins, M.L.; Jerônimo, G.T. Efficacy of the essential oils of Mentha piperita, Lippia alba and Zingiber officinale to control the acanthocephalan Neoechinorhynchus buttnerae in Colossoma macropomum. Aquac. Rep. 2020, 18, 100414. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Yousefi, M.; Hoseinifar, S.H.; Van Doan, H. Antioxidant, enzymatic and hematological responses of common carp (Cyprinus carpio) fed with myrcene- or menthol-supplemented diets and exposed to ambient ammonia. Aquaculture 2019, 506, 246–255. [Google Scholar] [CrossRef]
- Nanekarani, S.; Goodarzi, M.; Heidari, M.; Landy, N. Efficiency of ethanolic extract of peppermint (Mentha piperita) as an antibiotic growth promoter substitution on performance, and carcass characteristics in broiler chickens. Asian Pac. J. Trop. Biomed. 2012, 2, S1611–S1614. [Google Scholar] [CrossRef]
- Bouyahya, A.; Lagrouh, F.; El Omari, N.; Bourais, I.; El Jemli, M.; Marmouzi, I.; Salhi, N.; Faouzi, M.E.A.; Belmehdi, O.; Dakka, N.; et al. Essential oils of Mentha viridis rich phenolic compounds show important antioxidant, antidiabetic, dermatoprotective, antidermatophyte and antibacterial properties. Biocatal. Agric. Biotechnol. 2020, 23, 101471. [Google Scholar] [CrossRef]
- Alam, F.; Hanif, M.; Rahman, A.U.; Ali, S.; Jan, S. In vitro, in vivo and in silico evaluation of analgesic, anti-inflammatory, and anti-pyretic activity of salicylate rich fraction from Gaultheria trichophylla Royle (Ericaceae). J. Ethnopharmacol. 2023, 301, 115828. [Google Scholar] [CrossRef] [PubMed]
- Iwiński, H.; Różański, H.; Pachura, N.; Wojciechowska, A.; Gębarowski, T.; Szumny, A. In Vitro Evaluation of Antiprotozoal Properties, Cytotoxicity Effect and Anticancer Activity of New Essential-Oil Based Phytoncide Mixtures. Molecules 2023, 28, 1395. [Google Scholar] [CrossRef] [PubMed]
- Szymczak, J.; Sobotta, L.; Dlugaszewska, J.; Kryjewski, M.; Mielcarek, J. Menthol modified zinc(II) phthalocyanine regioisomers and their photoinduced antimicrobial activity against Staphylococcus aureus. Dye Pigment. 2021, 193, 109410. [Google Scholar] [CrossRef]
- van Eerden, E.; Santos, R.R.; Molist, F.; Dardi, M.; Pantoja-Millas, L.A.; Molist-Badiola, J.; Baratelli, M.; Pages, M. Efficacy of an attenuated vaccine against avian coccidiosis in combination with feed additives based on organic acids and essential oils on production performance and intestinal lesions in broilers experimentally challenged with necrotic enteritis. Poult. Sci. 2022, 101, 101848. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Yan, F.; Yang, C.; Yang, X. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poult. Sci. 2019, 98, 2858–2865. [Google Scholar] [CrossRef]
- Ferdous, M.F.; Arefin, M.S.; Rahman, M.M.; Ripon, M.M.R.; Rashid, M.H.; Sultana, M.R.; Hossain, M.T.; Ahammad, M.U.; Rafiq, K. Beneficial effects of probiotic and phytobiotic as growth promoter alternative to antibiotic for safe broiler production. J. Adv. Vet. Anim. Res. 2019, 6, 409–415. [Google Scholar] [CrossRef]
- Ulrich, E. Study of Quality and Safety Parameters of Phytobiotics Based on Medicinal Plant Extracts. In Proceedings of the XIX International Scientific and Practical Conference “Current Trends of Agricultural Industry in Global Economy”, Kemerowo, Russia, 8–9 December 2020. [Google Scholar]
- Purwanti, S.; Zuprizal, Z.; Yuwanta, T.; Supadmo, S. Physical and Sensory Quality of Broiler Meat as Influenced by Dietary Supplementation of Turmeric (Curcuma longa), Garlic (Allium sativum) and in Combinations as a Feed Additive. Anim. Prod. 2019, 20, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Kiczorowska, B.; Samolińska, W.; Al-Yasiry, A.; Zając, M. Immunomodulant feed supplement Boswellia serrata to support broiler chickens’ health and dietary and technological meat quality. Poult. Sci. 2020, 99, 1052–1061. [Google Scholar] [CrossRef]
- Popović, S.; Puvača, N.; Peulić, T.; Ikonić, P.; Spasevski, N.; Kostadinović, L.; Đuragić, O. The usefulness of dietary essential oils mixture supplementation on quality aspect of poultry meat. J. Agron. Technol. Eng. Manag. 2019, 2, 335–343. [Google Scholar]
- Zaidi, S.; Dahiya, P. In vitro antimicrobial activity, phytochemical analysis and total phenolic content of essential oil from Mentha spicata and Mentha piperita. Int. Food Res. J. 2015, 22, 2440–2445. [Google Scholar]
- Seidavi, A.; Tavakoli, M.; Asroosh, F.; Scanes, C.G.; Abd El-Hack, M.E.; Naiel, M.A.E.; Taha, A.E.; Aleya, L.; El-Tarabily, K.A.; Swelum, A.A. Antioxidant and antimicrobial activities of phytonutrients as antibiotic substitutes in poultry feed. Environ. Sci. Pollut. Res. Int. 2022, 29, 5006–5031. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.; Arzani, A.; Arzani, V.; Roberts, T.H. Phenolic compounds and antimicrobial properties of mint and thyme. J. Herb. Med. 2022, 36, 100604. [Google Scholar] [CrossRef]
- Bampidis, V.; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Dusemund, B.; Durjava, M.F.; Kouba, M.; López-Alonso, M.; López Puente, S.a.M. Safety and efficacy of a feed additive consisting of a preparation of carvacrol, thymol, d-carvone, methyl salicylate and l-menthol (Biomin® DC-P) for all poultry species (Biomin GmbH). EFSA J. 2022, 20, 07429. [Google Scholar]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.D.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J. Efficacy of Liderfeed® (eugenol) for chickens for fattening. EFSA J. 2017, 157, 04931. [Google Scholar]
- Bostami, A.B.M.R.; Khan, M.R.I.; Selim, A.S.M.; Hossain, M.D.; Khairunnesa, M. Physico-chemical parameters and sensory attributes of different chicken meat of consumer’s choice from poultry market. Meat Res. 2022, 2. [Google Scholar] [CrossRef]
- Iwiński, H.; Wódz, K.; Chodkowska, K.; Nowak, T.; Różański, H. In Vitro Evaluation of Antimicrobial Effect of Phytobiotics Mixture on Salmonella spp. Isolated from Chicken Broiler. Antibiotics 2022, 11, 868. [Google Scholar] [CrossRef]
- Council Directive 2007/43/EC of 28 June 2007 Laying Down Minimum Rules for the Protection of Chickens Kept for Meat Production. Off. J. Eur. Union 2007, 50, 19–28. Available online: https://www.legislation.gov.uk/eudr/2007/43/introduction (accessed on 28 February 2023).
- Hahn, G.; Spindler, M. Method of dissection of turkey carcases. World’s Poult. Sci. J. 2002, 58, 179–197. [Google Scholar] [CrossRef]
- International Commission on Illumination (Commission Internationale de l´Eclairage CIE). Recommendations on Uniform Colour Spaces, Colour Difference Equations, Psychometric Color Terms Supplement 2 to CIE Publication 15 (E1.3.1) 1971 TC 1; Central Bureau of the Commission Internationale de l’Éclairage: Vienna, Austria, 1978. [Google Scholar]
- Clydesdale, F.M. Instrumental techniques for color measurement of foods. Food Technol. 1976, 30, 52–59. [Google Scholar]
- Grau, R.; Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel. Naturwissenschaften 2004, 40, 29–30. [Google Scholar] [CrossRef]
- Łyczko, J.; Pawlak, A.; Augustyński, I.; Okińczyc, P.; Szperlik, J.; Kulma, A.; Różański, H.; Obmińska-Mrukowicz, B.; Szumny, A. Chemical profiling and cytotoxic activity of 150-year old original sample of Jerusalem Balsam. Food Chem. Toxicol. 2020, 138, 111183. [Google Scholar] [CrossRef]
- Lucero, M.; Estell, R.; Tellez, M.; Fredrickson, E. A retention index calculator simplifies identification of plant volatile organic compounds. Phytochem. Anal. 2009, 20, 378–384. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils by Ion Trap Mass Spectroscopy; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Łyczko, J.; Kiełtyka-Dadasiewicz, A.; Skrzyński, M.; Klisiewicz, K.; Szumny, A. Chemistry behind quality—The usability of herbs and spices essential oils analysis in light of sensory studies. Food Chem. 2023, 411, 135537. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. SPSS Statistics for Windows, version 24.0; IBM Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- Schlemper, V.; Molinetti, W.; Prando, D.; Weber, J.; Schlemper, S. Phytobiotic effect of Marrubium vulgare and Leonurus sibiricus on productive performance of griller-type broilers. Ciência Rural. 2021, 51. [Google Scholar] [CrossRef]
- Nm, J.; Joseph, A.; Maliakel, B.; Im, K. Dietary addition of a standardized extract of turmeric (TurmaFEED(TM)) improves growth performance and carcass quality of broilers. J. Anim. Sci. Technol. 2018, 60, 8. [Google Scholar] [CrossRef] [Green Version]
- Ashour, E.; El-Hack, M.; Swelum, A.; Osman, A.; Taha, A.; Alhimaidi, A.; Ismail, I.; Attia, I.E. Does the dietary graded levels of herbal mixture powder impact growth, carcase traits, blood indices and meat quality of the broilers? Ital. J. Anim. Sci. 2020, 19, 1228–1237. [Google Scholar] [CrossRef]
- Irawan, D.W.P.; Prihastini, L.; Indraswati, D.; Handayati, A. Comparison of Organoleptic Aspects and Germs Between Healthy Broiler Chicken Meat with Raised Broiler Chicken Meat (Syringe Meat or Wet Meat). Sci. J. Health Sci. 2020, 2, 08–15. [Google Scholar]
- Adikari, A.; Illippangama, I.; Gunawardana, G.; Palliyeguru, M.; Jayasena, D. Effect of Dietary Probiotic and Phytobiotic Combination on Growth Performance and Meat Quality Traits of Commercial Broilers. In Proceedings of the International Research Conference of UWU-2019, Badulla, Sri Lanka, 7–8 February 2019. [Google Scholar]
- Wideman, N.; O’bryan, C.; Crandall, P. Factors affecting poultry meat colour and consumer preferences-A review. World’s Poult. Sci. J. 2016, 72, 353–366. [Google Scholar] [CrossRef]
- Tugiyanti, E.; Susanti, E. Effect of Various Feed Additives on Carcass and Meat Quality of Two Different Strains of Chickens. In Proceedings of the IOP Conference Series: Earth and Environmental Science, online, 24–26 March 2022; p. 012076. [Google Scholar]
- Pashtetsky, V.; Ostapchuk, P.; Il’Yazov, R.; Zubochenko, D.; Kuevda, T. Use of antioxidants in poultry farming. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Moscow, Russia, 27 May–6 June 2019; p. 012042. [Google Scholar]
- Gluchowski, N.L.; Becuwe, M.; Walther, T.C.; Farese Jr, R.V. Lipid droplets and liver disease: From basic biology to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Okumura, T. Role of lipid droplet proteins in liver steatosis. J. Physiol. Biochem. 2011, 67, 629–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age (Days) | Group | SEM | |||
---|---|---|---|---|---|
C Control | D1 0.5 mL/L | D2 1 mL/L | D3 2 mL/L | ||
0 | 44.99 | 43.01 | 43.44 | 43.90 | 0.254 |
7 | 215.31 | 217.35 | 215.49 | 207.99 | 2.743 |
14 | 520.28 | 523.65 | 522.83 | 540.47 | 6.712 |
21 | 1058.27 | 1074.53 | 1059.07 | 1066.53 | 14.129 |
28 | 1770.67 | 1676.67 | 1608.30 | 1741.33 | 26.822 |
35 | 2435.12 | 2480.03 | 2597.33 | 2596.10 | 41.151 |
42 | 3109.17 | 3314.33 | 3286.67 | 3251.33 | 60.820 |
Trait | Group | SEM | ||||
---|---|---|---|---|---|---|
C Control | D1 0.5 mL/L | D2 1 mL/L | D3 2 mL/L | |||
Body Weight (kg) | 2.93 a | 3.44 b | 3.35 ab | 3.22 ab | 0.064 | |
Proportions in body weight (%) | Heart | 0.371 | 0.368 | 0.383 | 0.398 | 0.010 |
Liver | 1.841 | 1.689 | 1.749 | 1.544 | 0.043 | |
Gizzard | 0.930 | 0.788 | 0.878 | 1.114 | 0.051 | |
Abdominal fat pad | 0.988 | 0.929 | 0.856 | 0.770 | 0.053 | |
Carcass yield (%) | 80.01 | 80.04 | 79.42 | 80.19 | 0.210 | |
Proportions in carcass (%) | Breast muscles | 35.88 | 35.89 | 35.68 | 35.39 | 0.334 |
Thighs | 15.39 | 15.69 | 15.00 | 14.91 | 0.154 | |
Drumstics | 12.85 | 12.99 | 13.19 | 12.83 | 0.141 | |
Wings | 9.28 | 8.80 | 9.18 | 9.54 | 0.121 | |
Trunk | 25.35 | 25.46 | 25.86 | 26.35 | 0.295 |
Type of Muscle | Trait | Group | SEM | ||||
---|---|---|---|---|---|---|---|
C Control | D1 0.5 mL/L | D2 1 mL/L | D3 2 mL/L | ||||
Breast | Raw | L* | 55.76 | 56.05 | 59.87 | 55.76 | 1.041 |
a* | −1.24 | −1.00 | −0.66 | −1.13 | 0.183 | ||
b* | 10.34 | 10.47 | 10.81 | 10.45 | 0.401 | ||
C | 10.55 | 10.67 | 12.91 | 10.40 | 0.459 | ||
H | 96.99 | 95.72 | 94.43 | 96.57 | 0.808 | ||
Cooked | L* | 84.73 | 84.33 | 85.47 | 85.50 | 0.258 | |
a* | 0.54 | 0.88 | 0.55 | 0.32 | 0.113 | ||
b* | 15.25 | 15.44 | 15.40 | 14.97 | 0.173 | ||
C | 15.27 | 15.47 | 15.41 | 14.97 | 0.174 | ||
H | 88.02 | 87.67 | 88.05 | 88.78 | 0.306 | ||
ΔE | 29.48 | 28.83 | 26.37 | 30.19 | 1.077 | ||
Thigh | Raw | L* | 53.89 | 56.96 | 56.85 | 56.75 | 0.736 |
a* | 6.15 | 3.08 | 3.64 | 2.85 | 0.493 | ||
b* | 13.74 | 13.55 | 13.66 | 13.20 | 0.337 | ||
C | 14.28 | 14.10 | 14.23 | 13.13 | 0.420 | ||
H | 73.41 | 77.67 | 76.02 | 82.37 | 1.476 | ||
Cooked | L* | 78.34 | 78.62 | 80.36 | 79.71 | 0.543 | |
a* | 2.39 | 2.36 | 1.88 | 1.72 | 0.164 | ||
b* | 16.66 | 16.71 | 16.47 | 16.45 | 0.177 | ||
C | 16.87 | 16.89 | 16.59 | 16.57 | 0.189 | ||
H | 81.97 | 82.04 | 83.57 | 83.74 | 0.503 | ||
ΔE | 25.11 | 22.07 | 23.95 | 23.45 | 0.799 |
Type of Muscle | Trait | Group | SEM | |||
---|---|---|---|---|---|---|
C Control | D1 0.5 mL/L | D2 1 mL/L | D3 2 mL/L | |||
Breast | pH15 | 5.67 | 5.75 | 5.63 | 5.72 | 0.030 |
pH60 | 5.43 | 5.40 | 5.44 | 5.39 | 0.023 | |
pH24 | 5.46 | 5.41 | 5.45 | 5.40 | 0.022 | |
WHC (%) | 45.81 | 45.69 | 40.11 | 49.66 | 1.807 | |
Natural leakage (%) | 1.50 | 2.26 | 1.60 | 1.33 | 0.156 | |
Thermal leakage (%) | 36.39 c | 33.13 bc | 27.66 a | 28.44 ab | 0.894 | |
Tenderness (N) | 49.42 | 49.46 | 50.08 | 50.16 | 0.207 | |
Thigh | pH15 | 5.84 | 5.74 | 5.79 | 5.70 | 0.029 |
pH60 | 5.70 | 5.63 | 5.77 | 5.80 | 0.033 | |
pH24 | 5.76 | 5.76 | 5.72 | 5.72 | 0.019 | |
WHC (%) | 39.00 | 34.76 | 39.31 | 42.63 | 1.840 | |
Natural leakage (%) | 1.27 | 0.78 | 0.84 | 1.44 | 0.120 | |
Thermal leakage (%) | 30.14 b | 28.10 ab | 23.99 a | 24.89 a | 0.705 | |
Tenderness (N) | 22.83 a | 31.89 b | 26.72 ab | 28.35 ab | 1.150 |
Compound | m/z | LOD [ng/g] | LOQ [ng/g] |
---|---|---|---|
pentanoic acid | 60 | 0.22 | 0.65 |
eucalyptol | 154 | 1.81 | 5.47 |
menthol | 71 | 0.46 | 1.40 |
methyl salicylate | 120 | 3.96 | 12.00 |
trans-anethole | 148 | 2.59 | 7.86 |
Group | ||||
---|---|---|---|---|
Carcass | C Control | D1 0.5 mL/L | D2 1 mL/L | D3 2 mL/L |
Pectoral muscle (PM) | <LOD | <LOD | <LOD | <LOQ |
Thigh muscle (TM) | <LOD | <LOD | <LOD | <LOD |
Liver (L) | <LOD | <LOD | <LOD | <LOD |
Abdominal fat (AF) | <LOD | <LOD | <LOD | <LOQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwiński, H.; Chodkowska, K.A.; Drabik, K.; Batkowska, J.; Karwowska, M.; Kuropka, P.; Szumowski, A.; Szumny, A.; Różański, H. The Impact of a Phytobiotic Mixture on Broiler Chicken Health and Meat Safety. Animals 2023, 13, 2155. https://doi.org/10.3390/ani13132155
Iwiński H, Chodkowska KA, Drabik K, Batkowska J, Karwowska M, Kuropka P, Szumowski A, Szumny A, Różański H. The Impact of a Phytobiotic Mixture on Broiler Chicken Health and Meat Safety. Animals. 2023; 13(13):2155. https://doi.org/10.3390/ani13132155
Chicago/Turabian StyleIwiński, Hubert, Karolina A. Chodkowska, Kamil Drabik, Justyna Batkowska, Małgorzata Karwowska, Piotr Kuropka, Adam Szumowski, Antoni Szumny, and Henryk Różański. 2023. "The Impact of a Phytobiotic Mixture on Broiler Chicken Health and Meat Safety" Animals 13, no. 13: 2155. https://doi.org/10.3390/ani13132155
APA StyleIwiński, H., Chodkowska, K. A., Drabik, K., Batkowska, J., Karwowska, M., Kuropka, P., Szumowski, A., Szumny, A., & Różański, H. (2023). The Impact of a Phytobiotic Mixture on Broiler Chicken Health and Meat Safety. Animals, 13(13), 2155. https://doi.org/10.3390/ani13132155