A Postmortem Case Study—An Analysis of microRNA Patterns in a Korean Native Male Calf (Bos taurus coreanae) That Died of Fat Necrosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal, History and Postmortem Examination
2.2. Histopathology
2.3. Serum Chemistry
2.4. MiRNA Extraction and Analysis
2.5. Raw Data Preparation
2.6. Target Gene Prediction and Pathway Analysis
2.7. Statistical Analysis
3. Results
3.1. Gross Pathological Findings
3.2. Histopathological Findings
3.3. Serum Chemistry
3.4. Analysis of miRNA Expression Pattern and KEGG Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajmone-Marsan, P.; Garcia, J.F.; Lenstra, J.A. On the origin of cattle: How aurochs became cattle and colonized the world. Evol. Anthropol. 2010, 19, 148–157. [Google Scholar] [CrossRef]
- Felius, M.; Beerling, M.L.; Buchanan, D.S.; Theunissen, B.; Koolmees, P.A.; Lenstra, J.A. On the history of cattle genetic resources. Diversity 2014, 6, 705–750. [Google Scholar] [CrossRef] [Green Version]
- Katamoto, H.; Aoki, M.; Shimada, Y.; Hakogi, E. Lipoprotein lipase activity of post-heparinplasma in Japanese Black cattle affected with fat necrosis. Br. Vet. J. 1996, 152, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Lee, H.; Kim, B.; Park, J. Serum lipid analyses in Korean indigenous cattle with abdominal fat necrosis. J. Vet. Clin. 2010, 27, 407–410. [Google Scholar]
- Vitovec, J.; Prokš, C.; Valvoda, V. Lipomatosis (fat necrosis) in cattle and pigs. J. Comp. Pathol. 1975, 85, 53–59. [Google Scholar] [CrossRef]
- Reed, S.D.; Evans, D.E. Necrotizing infiltrative lipomatosis in a miniature Zebu bull (Bos primigenius indicus). Vet. Med. Int. 2010, 2010, e810496. [Google Scholar] [CrossRef] [Green Version]
- Tani, C.; Pratakpiriya, W.; Tani, M.; Yamauchi, T.; Hirai, T.; Yamaguchi, R.; Ano, H.; Katamoto, H. Histopathological changes in the pancreas of cattle with abdominal fat necrosis. J. Vet. Med. Sci. 2017, 79, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Friedman, R.C.; Farh, K.K.-H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Shandilya, U.K.; Sharma, A.; Naylor, D.; Canovas, A.; Mallard, B.; Karrow, N.A. Expression profile of miRNA from high, middle, and low stress-responding sheep during bacterial endotoxin challenge. Animals 2023, 13, 508. [Google Scholar] [CrossRef]
- Sharma, A.; Shandilya, U.K.; Sullivan, T.; Naylor, D.; Canovas, A.; Mallard, B.A.; Karrow, N.A. Identification of ovine serum miRNAs following bacterial lipopolysaccharide challenge. Int. J. Mol. Sci. 2020, 21, 7920. [Google Scholar] [CrossRef] [PubMed]
- Shaker, F.; Nikravesh, A.; Arezumand, R.; Aghaee-Bakhtiari, S.H. Web-based tools for miRNA studies analysis. Comput. Biol. Med. 2020, 127, 104060. [Google Scholar] [CrossRef] [PubMed]
- Janssens, P.M.; Vonk, J.; Demacker, P.N. Hypertriglyceridaemia in a case of subcutaneous fat necrosis in a newborn. Ann. Clin. Biochem. 1993, 30, 482–484. [Google Scholar] [CrossRef]
- Fernandez-Valverde, S.L.; Taft, R.J.; Mattick, J.S. MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes 2011, 60, 1825–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roggli, E.; Gattesco, S.; Caille, D.; Briet, C.; Boitard, C.; Meda, P.; Regazzi, R. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 2012, 61, 1742–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasu, S.; Kumano, K.; Darden, C.M.; Rahman, I.; Lawrence, M.C.; Naziruddin, B. MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells 2019, 8, 1533. [Google Scholar] [CrossRef] [Green Version]
- Pordzik, J.; Jakubik, D.; Jarosz-Popek, J.; Wicik, Z.; Eyileten, C.; De Rosa, S.; Indolfi, C.; Siller-Matula, J.M.; Czajka, P.; Postula, M. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: Bioinformatic analysis and review. Cardiovasc. Diabetol. 2019, 18, 113. [Google Scholar] [CrossRef] [Green Version]
- Oka, A.; Iwamoto, E.; Tatsuda, K. Effects of clay on fat necrosis and carcass characteristics in Japanese Black steers. Anim. Sci. J. 2015, 86, 878–883. [Google Scholar] [CrossRef]
- Tan, P.H.; Lai, L.M.; Carrington, E.V.; Opaluwa, A.S.; Ravikumar, K.H.; Chetty, N.; Kaplan, V.; Kelly, C.J.; Babu, E.D. Fat necrosis of the breast—A review. Breast 2006, 15, 313–318. [Google Scholar] [CrossRef]
- Hanson, P.; Pandit, M.; Menon, V.; Roberts, S.; Barber, T.M. Painful fat necrosis resulting from insulin injections. Endocrinol. Diabetes Metab. Case Rep. 2014, 2014, e140073. [Google Scholar] [CrossRef]
- Stuedemann, J.A.; Rumsey, T.S.; Bond, J.; Wilkinson, S.R.; Bush, L.P.; Williams, D.J.; Caudle, A.B. Association of blood cholesterol with occurrence of fat necrosis in cows and tall fescue summer toxicosis in steers. Am. J. Vet. Res. 1985, 46, 1990–1995. [Google Scholar]
- Taniyama, H.; Shirakawa, T.; Furuoka, H.; Osame, S.; Kitamura, N.; Miyazawa, K. Spontaneous diabetes mellitus in young cattle: Histologic, immunohistochemical, and electron microscopic studies of the islets of Langerhans. Vet. Pathol. 1993, 30, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izumi, H.; Kosaka, N.; Shimizu, T.; Sekine, K.; Ochiya, T.; Takase, M. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J. Dairy Sci. 2012, 95, 4831–4841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, H.-J.; Kim, H.J.; Lee, J.H.; Lim, D.H.; Son, J.K.; Kim, E.-T.; Jang, G.; Kim, D.-H. Identification of plasma miRNA biomarkers for pregnancy detection in dairy cattle. J. Anim. Reprod. Biotechnol. 2021, 36, 35–44. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Lai, Y.-T.; Rahman, M.M.; Chen, H.-W.; Husna, A.A.; Fujikawa, T.; Ando, T.; Kitahara, G.; Koiwa, M.; Kubota, C.; et al. Bovine milk transcriptome analysis reveals microRNAs and RNU2 involved in mastitis. FEBS J. 2020, 287, 1899–1918. [Google Scholar] [CrossRef]
- Ochiai, C.; Miyauchi, S.; Kuda, Y.; Naruke, Y.; Yoneyama, S.; Tomita, K.; Dongze, L.; Chiba, Y.; Hirata, T.-I.; Ichijo, T.; et al. Characterization of microRNA expression in B cells derived from Japanese black cattle naturally infected with bovine leukemia virus by deep sequencing. PLoS ONE 2021, 16, e0256588. [Google Scholar] [CrossRef]
- Lewandowska-Sabat, A.M.; Hansen, S.F.; Solberg, T.R.; Østeråso, O.; Heringstad, B.; Boysen, P.; Olsaker, I. MicroRNA expression profiles of bovine monocyte-derived macrophages infected in vitro with two strains of Streptococcus agalactiae. BMC Genom. 2018, 19, 241. [Google Scholar] [CrossRef] [Green Version]
- Li, X. MiR-375, a microRNA related to diabetes. Gene 2014, 533, 1–4. [Google Scholar] [CrossRef]
- Nielsen, L.B.; Wang, C.; Sørensen, K.; Bang-Berthelsen, C.H.; Hansen, L.; Andersen, M.-L.M.; Hougaard, P.; Juul, A.; Zhang, C.-Y.; Pociot, F.; et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: Evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp. Diabetes Res. 2012, 2012, 896362. [Google Scholar]
- Wang, T.; Lu, J.; Xu, Y.; Li, M.; Sun, J.; Zhang, J.; Xu, B.; Xu, M.; Chen, Y.; Bi, Y.; et al. Circulating prolactin associates with diabetes and impaired glucose regulation: A population-based study. Diabetes Care 2012, 36, 1974–1980. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, D.; Mukhopadhyay, M.; Bhattacharyya, M.; Karmakar, P. Is autophagy associated with diabetes mellitus and its complications? A review. EXCLI J. 2018, 17, 709–720. [Google Scholar] [PubMed]
- Lee, S.; Dong, H.H. FoxO integration of insulin signaling with glucose and lipid metabolism. J. Endocrinol. 2017, 233, R67–R79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, Z. Diabetes mellitus in a 6-month-old Charolais heifer calf. Can. Vet. J. 2003, 44, 921. [Google Scholar] [PubMed]
- Phillips, R.W.; Knox, K.L.; Pierson, R.E.; Tasker, J.B. Bovine diabetes mellitus. Cornell Vet. 1971, 61, 114–124. [Google Scholar] [PubMed]
miRNA | Log2 Fold Change | p-Value |
---|---|---|
Upregulation | ||
bta-miR-22-3p | +3.18 | <0.001 |
bta-miR-22-5p | +3.54 | <0.001 |
bta-miR-23b-3p | +2.03 | 0.02 |
bta-miR-26a | +3.35 | 0.004 |
bta-miR-27b | +2.16 | 0.003 |
bta-miR-29a | +1.97 | 0.002 |
bta-miR-29c | +2.18 | 0.04 |
bta-miR-30a-5p | +4.32 | <0.001 |
bta-miR-30b-5p | +3.14 | 0.04 |
bta-miR-30c | +4.29 | 0.005 |
bta-miR-30d | +2.02 | 0.007 |
bta-miR-30e-5p | +3.10 | 0.006 |
bta-miR-30f | +4.10 | 0.01 |
bta-miR-103 | +2.71 | 0.005 |
bta-miR-107 | +2.48 | 0.004 |
bta-miR-122 | +6.75 | <0.001 |
bta-miR-125a | +3.07 | 0.03 |
bta-miR-125b | +4.19 | <0.001 |
bta-miR-146b | +2.46 | 0.03 |
bta-miR-181a | +1.83 | <0.001 |
bta-miR-192 | +6.35 | 0.003 |
bta-miR-195 | +6.45 | 0.02 |
Downregulation | ||
bta-miR-206 | −4.18 | 0.04 |
bta-miR-223 | −1.27 | 0.04 |
KEGG Description | Gene Set | Enrichment Ratio | Corrected p-Value (FDR) |
---|---|---|---|
Prolactin-signaling pathway | bta04917 | 3.837 | 0.0092284 |
Insulin resistance | bta04931 | 2.886 | 0.039731 |
Autophagy | bta04140 | 2.760 | 0.033460 |
Insulin-signaling pathway | bta04910 | 2.679 | 0.037608 |
FoxO-signaling pathway | bta04068 | 2.582 | 0.046199 |
Focal adhesion | bta04510 | 2.251 | 0.046199 |
MicroRNAs in cancer | bta05206 | 2.223 | 0.026351 |
PI3K-Akt-signaling pathway | bta04151 | 1.968 | 0.033460 |
Pathways in cancer | bta05200 | 1.715 | 0.045387 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-J.; Cho, H.-S.; Noh, S.; Kim, Y.H.; Seo, H.-W.; Oh, Y. A Postmortem Case Study—An Analysis of microRNA Patterns in a Korean Native Male Calf (Bos taurus coreanae) That Died of Fat Necrosis. Animals 2023, 13, 2149. https://doi.org/10.3390/ani13132149
Lee S-J, Cho H-S, Noh S, Kim YH, Seo H-W, Oh Y. A Postmortem Case Study—An Analysis of microRNA Patterns in a Korean Native Male Calf (Bos taurus coreanae) That Died of Fat Necrosis. Animals. 2023; 13(13):2149. https://doi.org/10.3390/ani13132149
Chicago/Turabian StyleLee, Sang-Joon, Ho-Seong Cho, Sanghyun Noh, Young Hun Kim, Hwi-Won Seo, and Yeonsu Oh. 2023. "A Postmortem Case Study—An Analysis of microRNA Patterns in a Korean Native Male Calf (Bos taurus coreanae) That Died of Fat Necrosis" Animals 13, no. 13: 2149. https://doi.org/10.3390/ani13132149
APA StyleLee, S.-J., Cho, H.-S., Noh, S., Kim, Y. H., Seo, H.-W., & Oh, Y. (2023). A Postmortem Case Study—An Analysis of microRNA Patterns in a Korean Native Male Calf (Bos taurus coreanae) That Died of Fat Necrosis. Animals, 13(13), 2149. https://doi.org/10.3390/ani13132149