Precision Livestock Farming Research: A Global Scientometric Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Concept of PLF
3. Materials and Methods
3.1. Data Collection
3.2. Research Methodology
4. Results and Discussion
4.1. Analysis of Main Features
4.1.1. Annual Scientific Production
4.1.2. Countries
4.1.3. Institutions
4.1.4. Authors
4.1.5. Journals
4.2. Analysis of Research Cores
4.2.1. Research Hotspots
4.2.2. Research Directions
4.2.3. Research Frontiers
4.3. Analysis of Hot Topics
4.3.1. Social Science in PLF
4.3.2. The Environmental Impact of PLF
4.3.3. Information Technology in FLF
4.3.4. Animal Welfare in PLF
5. Conclusions and Insights
5.1. Conclusions
- (1)
- From the perspective of the characteristics of publishing, the number of research papers on topics related to PLF generally shows an increasing trend. The international cooperation of this research is strong, and the developed countries of livestock farming in Europe and America have a large number of papers and close cooperation among countries; the research institutions of this study are mainly universities, involving agriculture-related institutions in individual countries, and the Inter-institutional cooperation network is relatively loose but the group characteristics are obvious; Daniel Berckmans and his team have published the most articles, and the overall cooperation among scholars is characterized by “small concentration and large dispersion”, and the cooperation among scholars is weak; the research belongs to a multidisciplinary cross-fertilization research field, mainly including animal science, veterinary science, computer science, agricultural engineering and environmental science.
- (2)
- Research hotspots in PLF include precision dairy technology, precision cattle technology, intelligent systems, and animal behavior research. The hot words can be categorized into PLF technology, technology application objects, and technology use, with research directions focused on deep learning, accelerometer, automatic milking systems, lameness, estrus detection, and electronic identification, and the specific research contents intersecting. Scholars have paid more attention to deep learning and machine learning since 2021.
- (3)
- From the perspective of hot topics, the research on PLF mainly includes four hot topics: social science, environmental impact, information technology, and animal welfare. The literature on PLF from a social science perspective can be divided into five categories: adoption of PLF on farms, effects of PLF on farmer identity, farmer work and farm work, ethical concerns in PLF, economics and management of PLF, and transformation of PLF. PLF provides a valuable tool for mitigating the impact of animal husbandry on the environment by optimizing livestock management. The new generation of information technology represented by the Internet of Things, blockchain, and machine learning plays an important role in promoting the stable and sustainable development of animal husbandry. The combination of sensors and algorithms can effectively extract and analyze the images, sounds, movements and vital signs of animals, facilitating early detection of diseases and improving animal welfare.
5.2. Insights
- (1)
- Strengthen the exchange and cooperation of PLF research. Universities with outstanding contributions in the field of PLF, such as Wageningen University and Research, University of Guelph and Katholieke Universiteit Leuven, should actively hold academic exchange conferences or exchange programs, and other institutions should actively establish friendly exchange relations with these universities and carry out related project cooperation. Scholars should actively participate in international exchange meetings and forums on PLF, discuss and learn the research experience and latest achievements of PLF with scholars from all over the world, and strengthen extensive exchanges and cooperation among scholars.
- (2)
- Pay attention to the combination of multi-disciplines and multi-methods. The research content needs the intervention of many disciplines and fields such as animal science, veterinary science, computer science, agricultural engineering and environmental science; in terms of research methods, it is necessary to organically integrate various methods such as big data analysis and model analysis, and strengthen the innovative integration of information technology in animal husbandry, in order to promote the research and development of PLF.
- (3)
- Strengthen the application of deep learning, machine learning, and other technologies. Develop integrated intelligent detection channels that integrate lameness recognition, body condition scoring, weight estimation, respiratory heart rate sign measurement and other multi-functional features; give full play to the role of data decision support, and realize refinement management to improve animal welfare. In addition, it is necessary to consider the relationship between PLF and humans and animals from the perspective of social science and to guide farmers to change the concept of responsibility to deeply explore and give full play to the value of PLF.
- (4)
- Strengthen the focus and exploration of DLF. PLF is gradually transforming into DLF, and farmers, scientists and consumers as well as other stakeholders should consciously participate in and pay attention to following this process in order to accelerate the innovative integration of digital technology and animal husbandry and promote the development of animal husbandry.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annu. Rev. Anim. Biosci. 2019, 7, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Li, B.M.; Wang, Z.Y.; Yang, L. Research progress of precision breeding technology for egg-laying hens from the European Precision Livestock Farming Symposium. Chin. Poult. 2016, 38, 1–4. [Google Scholar] [CrossRef]
- Li, J.J.; Bai, P.F. Realistic challenges and coping strategies of China’s smart agriculture innovation practice. Sci. Manag. Res. 2023, 41, 127–134. [Google Scholar] [CrossRef]
- Li, Q.F.; Ding, L.Y.; Li, J.; Ma, W.H.; Xiao, B.X.; Yu, L.G.; Gao, R.H.; Zheng, W.G.; Zhang, S.R. Research progress of automatic monitoring technology for dairy cattle breathing frequency. Chin. J. Anim. Sci. 2019, 55, 52–57. [Google Scholar] [CrossRef]
- Jin, M.; Yang, B.W.; Wang, C.G. Application of feature extraction and feature downscaling in pig behavior classification recognition. Heilongjiang Anim. Sci. Vet. 2022, 23, 53–59. [Google Scholar] [CrossRef]
- Peng, Y.X.; Yang, Z.B.; Yan, K.Y.; Wang, H.; Hu, D.; Wang, Z.; Liu, N.; Zhao, L.S. From artificial to intelligent:research progress of individual cattle identification technology. China Anim. Husb. Vet. Med. 2023, 50, 1–12. [Google Scholar] [CrossRef]
- Guo, P.J.; Ji, Y.; Xi, J.Z.; Zhou, R.Y.; Chen, H.; Wang, D.H. Research on the estimation method of egg weight based on image processing. Chin. Poult. 2021, 43, 68–73. [Google Scholar] [CrossRef]
- Chu, M.Y.; Si, Y.S.; Li, Q.; Liu, G. Research progress of automatic measurement technology of livestock body size. Trans. Chin. Soc. Agric. Eng. 2022, 38, 228–240. [Google Scholar]
- Yang, D.X.; Wu, Y.L.; Zhang, G.G.; Liu, S. Low-cost poultry house environment monitor design based on low-power WiFi. Foreign Electron. Meas. Technol. 2021, 40, 135–143. [Google Scholar] [CrossRef]
- Yin, H.; Lv, J.W.; Chen, Y.C.; Cen, H.L.; Li, J.B.; Liu, S.Y. Prediction of CO_2 concentration in sheep sheds in Xinjiang based on LightGBM-SSA-ELM. Trans. Chin. Soc. Agric. Mach. 2022, 53, 261–270. [Google Scholar]
- Pomar, C.; Remus, A. Precision pig feeding: A breakthrough toward sustainability. Anim. Front. 2019, 9, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Han, C.S.; Kaur, U.; Bai, H.; Roqueto Dos Reis, B.; White, R.; Nawrocki, R.A.; Voyles, R.M.; Kang, M.G.; Priya, S. Invited review: Sensor technologies for real-time monitoring of the rumen environment. J. Dairy Sci. 2022, 105, 6379–6404. [Google Scholar] [CrossRef]
- Bovo, M.; Agrusti, M.; Benni, S.; Torreggiani, D.; Tassinari, P. Random forest modelling of milk yield of dairy cows under heat stress conditions. Animals 2021, 11, 1305. [Google Scholar] [CrossRef]
- Silva, S.R.; Araujo, J.P.; Guedes, C.; Silva, F.; Almeida, M.; Cerqueira, J.L. Precision technologies to address dairy cattle welfare: Focus on lameness, mastitis and body condition. Animals 2021, 11, 2253. [Google Scholar] [CrossRef]
- Gauthier, R.; Largouët, C.; Dourmad, J.Y. Prediction of litter performance in lactating sows using machine learning, for precision livestock farming. Comput. Electron. Agric. 2022, 196, 106876. [Google Scholar] [CrossRef]
- Tassinari, P.; Bovo, M.; Benni, S.; Franzoni, S.; Poggi, M.; Mammi, L.M.E.; Mattoccia, S.; Di Stefano, L.; Bonora, F.; Barbaresi, A.; et al. A computer vision approach based on deep learning for the detection of dairy cows in free stall barn. Comput. Electron. Agric. 2021, 182, 106030. [Google Scholar] [CrossRef]
- Astill, J.; Dara, R.A.; Fraser, E.D.; Roberts, B.; Sharif, S. Smart poultry management: Smart sensors, big data, and the internet of things. Comput. Electron. Agric. 2020, 170, 105291. [Google Scholar] [CrossRef]
- Gauthier, R.; Largouët, C.; Rozé, L.; Dourmad, J.Y. Online forecasting of daily feed intake in lactating sows supported by offline time-series clustering, for precision livestock farming. Comput. Electron. Agric. 2021, 188, 106329. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef]
- Vaintrub, M.O.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal 2021, 15, 100143. [Google Scholar] [CrossRef]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Vranken, E.; Berckmans, D. Precision livestock farming for pigs. Anim. Front. 2017, 7, 32–37. [Google Scholar] [CrossRef] [Green Version]
- He, D.J.; Liu, D.; Zhao, K.X. Research progress of animal information intelligent perception and behavior detection in precision livestock farming. Trans. Chin. Soc. Agric. Mach. 2016, 47, 231–244. [Google Scholar]
- Norton, T.; Chen, C.; Larsen, M.L.V.; Berckmans, D. Review: Precision livestock farming: Building ‘digital representations’ to bring the animals closer to the farmer. Animal 2019, 13, 3009–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, M.; Yik, S. Precision livestock farming in swine welfare: A review for swine practitioners. Animals 2019, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Tekin, K.; Yurdakok Dikmen, B.; Kanca, H.; Guatteo, R. Precision livestock farming technologies: Novel direction of information flow. Ank. Univ. Vet. Fak. Derg. 2021, 68, 193–212. [Google Scholar] [CrossRef]
- Rowe, E.; Dawkins, M.S.; Gebhardt-Henrich, S.G. A systematic review of precision livestock farming in the poultry sector: Is technology focussed on improving bird welfare? Animals 2019, 9, 614. [Google Scholar] [CrossRef] [Green Version]
- Hostiou, N.; Fagon, J.; Chauvat, S.; Turlot, A.; Kling, F.; Boivin, X.; Allain, C. Impact of precision livestock farming on work and human-animal interactions on dairy farms. A review. Biosci. Biotechnol. Biochem. 2017, 21, 268–275. [Google Scholar] [CrossRef]
- Qiao, Y.; Xue, T.; Kong, H.; Clark, C.; Lomax, S.; Rafique, K.; Sukkarieh, S. One-Shot Learning with Pseudo-Labeling for Cattle Video Segmentation in Smart Livestock Farming. Animals 2022, 12, 558. [Google Scholar] [CrossRef]
- Neethirajan, S. The Significance and Ethics of Digital Livestock Farming. AgriEngineering 2023, 5, 488–505. [Google Scholar] [CrossRef]
- Symeonaki, E.; Arvanitis, K.G.; Piromalis, D.; Tseles, D.; Balafoutis, A.T. Ontology-based IoT middleware approach for smart livestock farming toward agriculture 4.0: A case study for controlling thermal environment in a pig facility. Agronomy 2022, 12, 750. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Chen, Y.; Feng, X.; Sun, Z. Knowledge Mapping of Machine Learning Approaches Applied in Agricultural Management—A Scientometric Review with CiteSpace. Sustainability 2021, 13, 7662. [Google Scholar] [CrossRef]
- Liu, W. The data source of this study is Web of Science Core Collection? Not enough. Scientometrics 2019, 121, 1815–1824. [Google Scholar] [CrossRef]
- Wei, J.; Liang, G.; Alex, J.; Zhang, T.; Ma, C. Research progress of energy utilization of agricultural waste in China: Bibliometric analysis by citespace. Sustainability 2020, 12, 812. [Google Scholar] [CrossRef] [Green Version]
- Xiao, P.N.; Zhou, Y.; Li, X.G.; Xu, J.; Zhao, C. Assessment of Heavy Metals in Agricultural Land: A Literature Review Based on Bibliometric Analysis. Sustainability 2021, 13, 4559. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.M.; Liu, Z.Y.; Hu, Z.G.; Wang, X.W. Methodological functions of CiteSpace Knowledge Graph. Sci. Res. 2015, 33, 242–253. [Google Scholar] [CrossRef]
- Shao, H.; Kim, G.; Li, Q.; Newman, G. Web of Science-Based Green Infrastructure: A Bibliometric Analysis in CiteSpace. Land 2021, 10, 711. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Porter, A.L.; Wang, Z.L. Evolutionary trend analysis of nanogenerator research based on a novel perspective of phased bibliographic coupling. Nano Energy 2017, 34, 93–102. [Google Scholar] [CrossRef]
- Lyu, X.; Peng, W.; Yu, W.; Xin, Z.F.; Niu, S.D.; Qu, Y. Sustainable intensification to coordinate agricultural efficiency and environmental protection: A systematic review based on metrological visualization. J. Land Use Sci. 2021, 16, 313–338. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, J.; Dong, Z.; Li, X. Research Hotspots and Trend Analysis in the Field of Regional Economics and Carbon Emissions since the 21st Century: A Bibliometric Analysis. Sustainability 2022, 14, 11210. [Google Scholar] [CrossRef]
- McFarlane, N.J.B.; Schofield, C.P. Segmentation and Tracking of Piglets in Images. Mach. Vis. Appl. 1995, 8, 187–193. [Google Scholar] [CrossRef]
- Devir, S.; Hogeveen, H.; Hogewerf, P.H.; Ipema, A.H.; Lauwere, C.K.D.; Rossing, W.; Smits, A.C.; Stefanowska, J. Design and implementation of a system for automatic milking and feeding. Can. Agric. Eng. 1996, 38, 107–114. [Google Scholar]
- Liu, X.; Spahr, S.L. Automated electronic activity measurement for detection of estrus in dairy cattle. J. Dairy Sci. 1993, 76, 2906–2912. [Google Scholar] [CrossRef]
- Dongre, V.B.; Gandhi, R.S. Applications of artificial neural networks for enhanced livestock productivity: A review. Indian J. Anim. Sci. 2016, 86, 1232–1237. [Google Scholar]
- Wang, W.; Lu, C. Visualization analysis of big data research based on Citespace. Soft Comput. 2020, 24, 8173–8186. [Google Scholar] [CrossRef]
- Hu, W.B.; Huang, Z.H. The integration of three industries in animal husbandry: A study based on a typical case in the United States and its inspiration. China Livest. J. 2018, 54, 125–129. [Google Scholar] [CrossRef]
- Han, H.L.; Zhang, M. The inspiration of the IOT model of animal husbandry in developed countries to China. Heilongjiang Anim. Sci. Vet. 2015, 10, 27–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Liu, H.; Huang, X.; Deng, J.; Jia, R.; He, X.; Tahir, M.N.; Lan, Y. Research hotspots and frontiers in agricultural multispectral technology: Bibliometrics and scientometrics analysis of the web of science. Front. Plant Sci. 2022, 13, 955340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.R.; Zhang, J.B.; Zhang, Z. Progress in Chinese Agricultural Technology: Bibliometric Analysis Based on CiteSpace. Forum Sci. Technol. China 2018, 9, 113–120. [Google Scholar] [CrossRef]
- Sun, W.; Mao, L.X. The Evolution of Beijing-Tianjin-Hebei Synergistic Development Research Based on CiteSpace Method. J. Geogr. 2018, 73, 2378–2391. [Google Scholar]
- Ilyas, Q.M.; Ahmad, M. Smart farming: An enhanced pursuit of sustainable remote livestock tracking and geofencing using IoT and GPRS. Wirel. Commun. Mob. Comput. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Jiang, M.; Rao, Y.; Zhang, J.; Shen, Y. Automatic behavior recognition of group-housed goats using deep learning. Comput. Electron. Agric. 2020, 177, 105706. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, H.; Qiao, Y.; Jiang, S.; Lin, H.; Sun, Q. The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors 2022, 22, 6541. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Belal, A.A.; Abd-Elmabod, S.K.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Pan, L.; Yang, S.X. A new intelligent electronic nose system for measuring and analysing livestock and poultry farm odours. Environ. Monit. Assess. 2007, 135, 399–408. [Google Scholar] [CrossRef]
- Zhao, H.M.; Wang, S.Q.; Zhao, X.; Wang, W. Citespace-based visualization and analysis of soil carbon, nitrogen and phosphorus interaction studies. Soils 2022, 54, 682–690. [Google Scholar] [CrossRef]
- Zhu, A.; Tailor, P.; Verma, R.; Zhang, I.; Schott, B.; Ye, C.; Szirth, B.; Habiel, M.; Khouri, A.S. Implementation of deep learning artificial intelligence in vision-threatening disease screenings for an underserved community during COVID-19. J. Telemed. Telecare 2023, 1357633X231158832. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, D.M.; Rafie, A.M.; Al-Haddad, S.A.R.; Azrad, S. A Systematic Literature Review on the Use of Deep Learning in Precision Livestock Detection and Localization Using Unmanned Aerial Vehicles. IEEE Access 2022, 10, 80071–80091. [Google Scholar] [CrossRef]
- Pu, H.; Lian, J.; Fan, M. Automatic recognition of flock behavior of chickens with convolutional neural network and kinect sensor. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1850023. [Google Scholar] [CrossRef]
- Wu, D.H.; Wu, Q.; Yin, X.Q.; Jiang, B.; Wang, H.; He, D.J.; Song, H.B. Lameness detection of dairy cows based on the YOLOv3 deep learning algorithm and a relative step size characteristic vector. Biosyst. Eng. 2020, 189, 150–163. [Google Scholar] [CrossRef]
- Zhang, X.D.; Kang, X.; Feng, N.N.; Liu, G. Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector. Comput. Electron. Agric. 2020, 178, 105754. [Google Scholar] [CrossRef]
- Aquilani, C.; Confessore, A.; Bozzi, R.; Sirtori, F.; Pugliese, C. Review: Precision Livestock Farming Technologies in Pasture-Based Livestock Systems. Animal 2022, 16, 100429. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.; Chang, Y.-M.; Abeyesinghe, S. Individual Monitoring of Activity and Lameness in Conventional and Slower-Growing Breeds of Broiler Chickens Using Accelerometers. Animals 2023, 13, 1432. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Y.; Street, G.M.; Huang, Y.; Filip To, S.D.; Purswell, J.L. Classification of Broiler Behaviours Using Triaxial Accelerometer and Machine Learning. Animal 2021, 15, 100269. [Google Scholar] [CrossRef]
- Dentinger, J.E.; Börger, L.; Holton, M.D.; Jafari-Marandi, R.; Norman, D.A.; Smith, B.K.; Oppenheimer, S.F.; Strickland, B.K.; Wilson, R.P.; Street, G.M. A Probabilistic Framework for Behavioral Identification from Animal-Borne Accelerometers. Ecol. Model. 2022, 464, 109818. [Google Scholar] [CrossRef]
- Mei, W.; Yang, X.; Zhao, Y.; Wang, X.; Dai, X.; Wang, K. Identification of Aflatoxin-Poisoned Broilers Based on Accelerometer and Machine Learning. Biosyst. Eng. 2023, 227, 107–116. [Google Scholar] [CrossRef]
- Williams, M.; Zhan Lai, S. Classification of Dairy Cow Excretory Events Using a Tail-Mounted Accelerometer. Comput. Electron. Agric. 2022, 199, 107187. [Google Scholar] [CrossRef]
- Miguel-Pacheco, G.G.; Kaler, J.; Remnant, J.; Cheyne, L.; Abbott, C.; French, A.P.; Pridmore, T.P.; Huxley, J.N. Behavioural changes in dairy cows with lameness in an automatic milking system. Appl. Anim. Behav. Sci. 2014, 150, 1–8. [Google Scholar] [CrossRef]
- Bonestroo, J.; van der Voort, M.; Hogeveen, H.; Emanuelson, U.; Klaas, I.C.; Fall, N. Forecasting chronic mastitis using automatic milking system sensor data and gradient-boosting classifiers. Comput. Electron. Agric. 2022, 198, 107002. [Google Scholar] [CrossRef]
- Bausewein, M.; Mansfeld, R.; Doherr, M.G.; Harms, J.; Sorge, U.S. Sensitivity and Specificity for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds. Animals 2022, 12, 2131. [Google Scholar] [CrossRef]
- Aerts, J.; Kolenda, M.; Piwczyński, D.; Sitkowska, B.; Önder, H. Forecasting Milking Efficiency of Dairy Cows Milked in an Automatic Milking System Using the Decision Tree Technique. Animals 2022, 12, 1040. [Google Scholar] [CrossRef]
- Morales-Piñeyrúa, J.T.; Sant’Anna, A.C.; Banchero, G.; Damián, J.P. Dairy Cows’ Temperament and Milking Performance during the Adaptation to an Automatic Milking System. Animals 2023, 13, 562. [Google Scholar] [CrossRef]
- Dolecheck, K.; Bewley, J. Animal board invited review: Dairy cow lameness expenditures, losses and total cost. Animal 2018, 12, 1462–1474. [Google Scholar] [CrossRef] [Green Version]
- Prasomsri, P. Effect of lameness on daily milk yield in dairy cow. Thai J. Vet. Med. 2022, 52, 679–687. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Li, Q.; Liu, G. Dimension-reduced spatiotemporal network for lameness detection in dairy cows. Comput. Electron. Agric. 2022, 197, 106922. [Google Scholar] [CrossRef]
- Jiang, B.; Song, H.; Wang, H.; Li, C. Dairy cow lameness detection using a back curvature feature. Comput. Electron. Agric. 2022, 194, 106729. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, X.; Qin, L.; Yue, S.; Zeng, P. Cows’ legs tracking and lameness detection in dairy cattle using video analysis and Siamese neural networks. Comput. Electron. Agric. 2023, 205, 107618. [Google Scholar] [CrossRef]
- Röttgen, V.; Schön, P.C.; Becker, F.; Tuchscherer, A.; Wrenzycki, C.; Düpjan, S.; Puppe, B. Automatic recording of individual oestrus vocalisation in group-housed dairy cattle: Development of a cattle call monitor. Animal 2020, 14, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, I.; Singh, P.; Dudi, K.; Lathwal, S.S.; Ruhil, A.P.; Singh, Y.; Malhotra, R.; Baithalu, R.K.; Sinha, R. Vocal cues based Decision Support System for estrus detection in water buffaloes (Bubalus bubalis). Comput. Electron. Agric. 2019, 162, 183–188. [Google Scholar] [CrossRef]
- Higaki, S.; Darhan, H.; Suzuki, C.; Suda, T.; Sakurai, R.; Yoshioka, K. An attempt at estrus detection in cattle by continuous measurements of ventral tail base surface temperature with supervised machine learning. J. Reprod. Dev. 2021, 67, 67–71. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Zhang, H.; Liu, T. A lightweight CNN-based model for early warning in sow oestrus sound monitoring. Ecol. Inform. 2022, 72, 101863. [Google Scholar] [CrossRef]
- Yu, L.H.; Guo, J.J.; Pu, Y.H.; Cen, H.L.; Li, J.B.; Liu, S.Y.; Nie, J.; Ge, J.B.; Yang, S.; Zhao, H.X.; et al. A Recognition Method of Ewe Estrus Crawling Behavior Based on Multi-Target Detection Layer Neural Network. Animals 2023, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.R.; Barros, D.V.; De Oliveira Junior, M.C.M.; Barioni Junior, W.; Da Silva, J.A.R.; Lourenço Junior, J.D.B.; Dos Santos Pessoa, J. Innovative Use and Efficiency Test of Subcutaneous Transponders for Electronic Identification of Water Buffaloes. Trop. Anim. Health Prod. 2020, 52, 3725–3733. [Google Scholar] [CrossRef]
- Kandemir, Ç.; Baytöre, C.; Taşkin, T.; Koşum, N.; Tekin, B.A. Performance Evaluation of Leg and Ear Numbers in Radio Frequency Identification Systems (RFID) in Sensitive Livestock Products in Goat Breeding. Cienc. Rural 2023, 53, 20210801. [Google Scholar] [CrossRef]
- Shojaeipour, A.; Falzon, G.; Kwan, P.; Hadavi, N.; Cowley, F.C.; Paul, D. Automated Muzzle Detection and Biometric Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattle. Agronomy 2021, 11, 2365. [Google Scholar] [CrossRef]
- Chen, D.F.; Wu, Y.F.; Li, H.Y.; Wang, M.C.; Zhou, Y.Z.; Zhu, Z.F.; Liu, Y.Z.; Pan, X.; Zhou, J.; He, F.Y. Visual mapping analysis of literature on Chinese and Western medicine for spastic cerebral palsy based on CiteSpace bibliometric method. Chin. Herb. Med. 2021, 52, 4318–4326. [Google Scholar]
- Khatun, M.; Bruckmaier, R.M.; Thomson, P.C.; House, J.; García, S.C. Suitability of somatic cell count, electrical conductivity, and lactate dehydrogenase activity in foremilk before versus after alveolar milk ejection for mastitis detection. J. Dairy Sci. 2019, 102, 9200–9212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Kang, X.; Chu, M.; Liu, G. Deep learning-based automatic dairy cow ocular surface temperature detection from thermal images. Comput. Electron. Agric. 2022, 202, 107429. [Google Scholar] [CrossRef]
- Li, J.; Kang, F.; Zhang, Y.; Liu, Y.; Yu, X. Research on Tracking and Identification of Typical Protective Behavior of Cows Based on DeepLabCut. Appl. Sci. 2023, 13, 1141. [Google Scholar] [CrossRef]
- Aerts, J.; Piwczyński, D.; Ghiasi, H.; Sitkowska, B.; Kolenda, M.; Önder, H. Genetic Parameters Estimation of Milking Traits in Polish Holstein-Friesians Based on Automatic Milking System Data. Animals 2021, 11, 1943. [Google Scholar] [CrossRef]
- Available online: https://www.ispag.org/about/definition (accessed on 13 June 2023).
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming—Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef]
- Nyaga, J.M.; Onyango, C.M.; Wetterlind, J.; Söderström, M. Precision Agriculture Research in Sub-Saharan Africa Countries: A Systematic Map. Precis. Agric. 2021, 22, 1217–1236. [Google Scholar] [CrossRef]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cravero, A.; Pardo, S.; Sepúlveda, S.; Muñoz, L. Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review. Agronomy 2022, 12, 748. [Google Scholar] [CrossRef]
- Miller, G.A.; Hyslop, J.J.; Barclay, D.; Edwards, A.; Thomson, W.; Duthie, C.-A. Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle. Front. Sustain. Food Syst. 2019, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Van Knegsel, A.T.M.; Vervoort, J.J.M.; Bruckmaier, R.M.; Van Hoeij, R.J.; Kemp, B.; Saccenti, E. Prediction of Metabolic Status of Dairy Cows in Early Lactation with On-Farm Cow Data and Machine Learning Algorithms. J. Dairy Sci. 2019, 102, 10186–10201. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Zahid, A.; Das, A.K.; Muzammil, M.; Khan, M.U. A Systematic Literature Review on Deep Learning Applications for Precision Cattle Farming. Comput. Electron. Agric. 2021, 187, 106313. [Google Scholar] [CrossRef]
- Chen, X.; Yang, T.; Mai, K.; Liu, C.; Xiong, J.; Kuang, Y.; Gao, Y. Holstein Cattle Face Re-Identification Unifying Global and Part Feature Deep Network with Attention Mechanism. Animals 2022, 12, 1047. [Google Scholar] [CrossRef]
- Koskela, O.; Benitez Pereira, L.S.; Pölönen, I.; Aronen, I.; Kunttu, I. Deep Learning Image Recognition of Cow Behavior and an Open Data Set Acquired near an Automatic Milking Robot. AFSci 2022, 31, 89–103. [Google Scholar] [CrossRef]
- Qian, W.J.; Zhang, Y.K. Visual Knowledge Mapping Analysis for the Study of Human Destiny Community. J. Southwest Univ. Natl. 2020, 41, 222–230. [Google Scholar]
- Yang, Y.; Zeng, G.; Ge, S.S.; Hao, J. Progress and Prospects of Green Innovation Research at Home and Abroad. Econ. Geogr. 2022, 42, 10–21. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Lima, E.; Hopkins, T.; Gurney, E.; Shortall, O.; Lovatt, F.; Davies, P.; Williamson, G.; Kaler, J. Drivers for precision livestock technology adoption: A study of factors associated with adoption of electronic identification technology by commercial sheep farmers in England and Wales. PLoS ONE 2018, 13, e0190489. [Google Scholar] [CrossRef] [PubMed]
- Palacpac, E.P.; Valiente, E.M.; Jacang, R.T.; Manito, M.T.M. Adoption scores for buffalo-based technologies in the Philippines as influenced by socio-economic, technological, communication, and institutional factors. Buffalo Bull. 2022, 41, 105–126. [Google Scholar] [CrossRef]
- Kaler, J.; Ruston, A. Technology adoption on farms: Using Normalisation Process Theory to understand sheep farmers’ attitudes and behaviours in relation to using precision technology in flock management. Prev. Vet. Med. 2019, 170, 104715. [Google Scholar] [CrossRef]
- Silvi, R.; Pereira, L.G.R.; Paiva, C.A.V.; Tomich, T.R.; Teixeira, V.A.; Sacramento, J.P.; Ferreira, R.E.P.; Coelho, S.G.; Machado, F.S.; Campos, M.M.; et al. Adoption of Precision Technologies by Brazilian Dairy Farms: The Farmer’s Perception. Animals 2021, 11, 3488. [Google Scholar] [CrossRef]
- Makinde, A.; Islam, M.M.; Wood, K.M.; Conlin, E.; Williams, M.; Scott, S.D. Investigating perceptions, adoption, and use of digital technologies in the Canadian beef industry. Comput. Electron. Agric. 2022, 198, 107095. [Google Scholar] [CrossRef]
- Krampe, C.; Serratosa, J.; Niemi, J.K.; Ingenbleek, P.T.M. Consumer perceptions of precision livestock farming—A qualitative study in three european countries. Animals 2021, 11, 1221. [Google Scholar] [CrossRef]
- Pfeiffer, J.; Gabriel, A.; Gandorfer, M. Understanding the public attitudinal acceptance of digital farming technologies: A nationwide survey in Germany. Agric. Hum. Values 2021, 38, 107–128. [Google Scholar] [CrossRef]
- Hartung, J.; Banhazi, T.; Vranken, E.; Guarino, M. European farmers’ experiences with precision livestock farming systems. Anim. Front. 2017, 7, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Tse, C.; Barkema, H.W.; DeVries, T.J.; Rushen, J.; Vasseur, E.; Pajor, E.A. Producer experience with transitioning to automatic milking: Cow training, challenges, and effect on quality of life. J. Dairy Sci. 2018, 101, 9599–9607. [Google Scholar] [CrossRef] [Green Version]
- Hay, R.; Pearce, P. Technology adoption by rural women in Queensland, Australia: Women driving technology from the homestead for the paddock. J. Rural. Stud. 2014, 36, 318–327. [Google Scholar] [CrossRef]
- Eastwood, C.R.; Jago, J.G.; Edwards, J.P.; Burke, J.K. Getting the most out of advanced farm management technologies: Roles of technology suppliers and dairy industry organisations in supporting precision dairy farmers. Anim. Prod. Sci. 2015, 56, 1752–1760. [Google Scholar] [CrossRef]
- Eastwood, C.; Ayre, M.; Nettle, R.; Dela Rue, B. Making Sense in the Cloud: Farm Advisory Services in a Smart Farming Future. NJAS Wagening. J. Life Sci. 2019, 90–91, 1–10. [Google Scholar] [CrossRef]
- Finstad, T.; Aune, M.; Egseth, K.A. The domestication triangle: How humans, animals and technology shape each other–The case of automated milking systems. J. Rural. Stud. 2021, 84, 211–220. [Google Scholar] [CrossRef]
- Driessen, C.; Heutinck, L.F. Cows desiring to be milked? Milking robots and the co-evolution of ethics and technology on Dutch dairy farms. Agric. Hum. Values 2015, 32, 3–20. [Google Scholar] [CrossRef]
- Werkheiser, I. Technology and responsibility: A discussion of underexamined risks and concerns in precision livestock farming. Anim. Front. 2020, 10, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, B.; Lu, Y.C.; Chen, Y.R. Economic value and cost of automated on-line poultry inspection for the US broiler industry. Food Control 1999, 10, 69–80. [Google Scholar] [CrossRef]
- Van Asseldonk, M.A.P.M.; Jalvingh, A.W.; Huirne, R.B.M.; Dijkhuizen, A.A. Potential economic benefits from changes in management via information technology applications on Dutch dairy farms: A simulation study. Livest. Prod. Sci. 1999, 60, 33–44. [Google Scholar] [CrossRef]
- Van Asseldonk, M.A.P.M.; Huirne, R.B.M.; Dijkhuizen, A.A.; Beulens, A.J.M. Dynamic programming to determine optimum investments in information technology on dairy farms. Agric. Syst. 1999, 62, 17–28. [Google Scholar] [CrossRef]
- Rutten, C.J.; Steeneveld, W.; Inchaisri, C.; Hogeveen, H. An ex ante analysis on the use of activity meters for automated estrus detection: To invest or not to invest? J. Dairy Sci. 2014, 97, 6869–6887. [Google Scholar] [CrossRef] [Green Version]
- Gerssen-Gondelach, S.J.; Lauwerijssen, R.B.G.; Havlik, P.; Herrero, M.; Valin, H.; Faaij, A.P.C.; Wicke, B. Intensification Pathways for Beef and Dairy Cattle Production Systems: Impacts on GHG Emissions, Land Occupation and Land Use Change. Agric. Ecosyst. Environ. 2017, 240, 135–147. [Google Scholar] [CrossRef]
- Monteiro, A.N.T.R.; Bertol, T.M.; de Oliveira, P.a.V.; Dourmad, J.-Y.; Coldebella, A.; Kessler, A.M. The Impact of Feeding Growing-Finishing Pigs with Reduced Dietary Protein Levels on Performance, Carcass Traits, Meat Quality and Environmental Impacts. Livest. Sci. 2017, 198, 162–169. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Garnsworthy, P.C. Impact of diet and fertility on greenhouse gas emissions and nitrogen efficiency of milk production. Livestock 2017, 22, 140–144. [Google Scholar] [CrossRef]
- Crowe, M.A.; Hostens, M.; Opsomer, G. Reproductive Management in Dairy Cows—The Future. Ir. Vet. J. 2018, 71, 1. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Feng, H.; Huang, Q.; Xiao, X.; Zhang, X. Wearable Internet of Things Enabled Precision Livestock Farming in Smart Farms: A Review of Technical Solutions for Precise Perception, Biocompatibility, and Sustainability Monitoring. J. Clean. Prod. 2021, 312, 127712. [Google Scholar] [CrossRef]
- Germani, L.; Mecarelli, V.; Baruffa, G.; Rugini, L.; Frescura, F. An IoT Architecture for Continuous Livestock Monitoring Using LoRa LPWAN. Electronics 2019, 8, 1435. [Google Scholar] [CrossRef] [Green Version]
- Koksal, O.; Tekinerdogan, B. Architecture Design Approach for IoT-Based Farm Management Information Systems. Precis. Agric. 2019, 20, 926–958. [Google Scholar] [CrossRef] [Green Version]
- Torky, M.; Hassanein, A.E. Integrating Blockchain and the Internet of Things in Precision Agriculture: Analysis, Opportunities, and Challenges. Comput. Electron. Agric. 2020, 178, 105476. [Google Scholar] [CrossRef]
- Kampan, K.; Tsusaka, T.W.; Anal, A.K. Adoption of Blockchain Technology for Enhanced Traceability of Livestock-Based Products. Sustainability 2022, 14, 13148. [Google Scholar] [CrossRef]
- Gehlot, A.; Malik, P.K.; Singh, R.; Akram, S.V.; Alsuwian, T. Dairy 4.0: Intelligent Communication Ecosystem for the Cattle Animal Welfare with Blockchain and IoT Enabled Technologies. Appl. Sci. 2022, 12, 7316. [Google Scholar] [CrossRef]
- Ubeda Ortega, J.C.; Rodriguez-Molina, J.; Martinez-Nunez, M.; Garbajosa, J. A Proposal for Decentralized and Secured Data Collection from Unmanned Aerial Vehicles in Livestock Monitoring with Blockchain and IPFS. Appl. Sci. 2023, 13, 471. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access 2021, 9, 4843–4873. [Google Scholar] [CrossRef]
- Warner, D.; Vasseur, E.; Lefebvre, D.M.; Lacroix, R. A machine learning based decision aid for lameness in dairy herds using farm-based records. Comput. Electron. Agric. 2020, 169, 105193. [Google Scholar] [CrossRef]
- Li, Y.F.; Shu, H.; Bindelle, J.; Xu, B.B.; Zhang, W.J.; Jin, Z.M.; Guo, L.F.; Wang, W.S. Classification and Analysis of Multiple Cattle Unitary Behaviors and Movements Based on Machine Learning Methods. Animals 2022, 12, 1060. [Google Scholar] [CrossRef]
- Hansen, M.F.; Smith, M.L.; Smith, L.N.; Salter, M.G.; Baxter, E.M.; Farish, M.; Grieve, B. Towards on-farm pig face recognition using convolutional neural networks. Comput. Ind. 2018, 98, 145–152. [Google Scholar] [CrossRef]
- Cang, Y.; He, H.; Qiao, Y. An intelligent pig weights estimate method based on deep learning in sow stall environments. IEEE Access 2019, 7, 164867–164875. [Google Scholar] [CrossRef]
- Available online: https://www.woah.org/en/what-we-do/animal-health-and-welfare/animal-welfare/ (accessed on 25 March 2023).
- Broom, D.M. Quality of life means welfare: How is it related to other concepts and assessed? Anim. Welf. 2007, 16, 45–53. [Google Scholar] [CrossRef]
- Stewart, M.; Webster, J.R.; Schaefer, A.L.; Cook, N.J.; Scott, S.L. Infrared thermography as a non-invasive tool to study animal welfare. Anim. Welf. 2005, 14, 319–325. [Google Scholar] [CrossRef]
- Martiskainen, P.; Järvinen, M.; Skön, J.P.; Tiirikainen, J.; Kolehmainen, M.; Mononen, J. Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 2009, 119, 32–38. [Google Scholar] [CrossRef]
- Racewicz, P.; Ludwiczak, A.; Skrzypczak, E.; Skladanowska-Baryza, J.; Biesiada, H.; Nowak, T.; Nowaczewski, S.; Zaborowicz, M.; Stanisz, M.; Slosarz, P. Welfare health and productivity in commercial pig herds. Animals 2021, 11, 1176. [Google Scholar] [CrossRef]
- Bishop, J.C.; Falzon, G.; Trotter, M.; Kwan, P.; Meek, P.D. Livestock vocalisation classification in farm soundscapes. Comput. Electron. Agric. 2019, 162, 531–542. [Google Scholar] [CrossRef]
- Mao, A.X.; Giraudet, C.S.E.; Liu, K.; Nolasco, I.D.A.; Xie, Z.Q.; Xie, Z.X.; Gao, Y.; Theobald, J.; Bhatta, D.; Bhatta, D.; et al. Automated identification of chicken distress vocalizations using deep learning models. J. R. Soc. Interface 2022, 19, 20210921. [Google Scholar] [CrossRef]
- Huhtala, A.; Suhonen, K.; Mäkelä, P.; Hakojarvi, M.; Ahokas, J. Evaluation of instrumentation for cow positioning and tracking indoors. Biosyst. Eng. 2007, 96, 399–405. [Google Scholar] [CrossRef]
- Cheng, M.; Yuan, H.; Wang, Q.; Cai, Z.J.; Liu, Y.Q.; Zhang, Y.J. Application of deep learning in sheep behaviors recognition and influence analysis of training data characteristics on the recognition effect. Comput. Electron. Agric. 2022, 198, 107010. [Google Scholar] [CrossRef]
No | Country | Year | Papers | Centrality |
---|---|---|---|---|
1 | USA | 1973 | 698 | 0.24 |
2 | China | 2000 | 419 | 0.09 |
3 | UK | 1992 | 325 | 0.22 |
4 | Australia | 2000 | 301 | 0.13 |
5 | Germany | 1990 | 300 | 0.11 |
6 | Canada | 1997 | 270 | 0.10 |
7 | Netherlands | 1992 | 237 | 0.18 |
8 | Italy | 1998 | 202 | 0.07 |
9 | Belgium | 2001 | 196 | 0.04 |
10 | Brazil | 2003 | 193 | 0.03 |
11 | France | 1986 | 140 | 0.18 |
12 | Spain | 1999 | 131 | 0.23 |
13 | Denmark | 1996 | 110 | 0.01 |
14 | Switzerland | 2003 | 102 | 0.02 |
15 | Japan | 2005 | 95 | 0.02 |
16 | New Zealand | 1996 | 89 | 0.03 |
17 | Republic of Ireland | 2001 | 80 | 0.01 |
18 | South Korea | 2009 | 79 | 0.06 |
19 | India | 1998 | 76 | 0.03 |
20 | Austria | 2004 | 72 | 0.01 |
No | Institution | Affiliated Country | Year | Papers | Centrality |
---|---|---|---|---|---|
1 | Wageningen University and Research | Netherlands | 1996 | 143 | 0.17 |
2 | Katholieke Univ Leuven | Belgium | 2004 | 117 | 0.07 |
3 | University Guelph | Canada | 2007 | 99 | 0.12 |
4 | China Agricultural University | China | 2013 | 87 | 0.07 |
5 | Univ Sydney | Australia | 2012 | 65 | 0.03 |
6 | USDA | USA | 1973 | 64 | 0.08 |
7 | University of Milan | Italy | 2008 | 64 | 0.04 |
8 | Univ British Columbia | Canada | 2009 | 63 | 0.02 |
9 | Agr and Agri Food Canada | Canada | 1998 | 60 | 0.04 |
10 | Univ Wisconsin | USA | 2010 | 59 | 0.03 |
11 | Aarhus University | Denmark | 2008 | 58 | 0.08 |
12 | INRAE | France | 1986 | 53 | 0.09 |
13 | Univ New England | Australia | 2000 | 51 | 0.06 |
14 | Ghent University | Belgium | 2001 | 48 | 0.02 |
15 | Iowa State University | USA | 1999 | 45 | 0.03 |
16 | Agr Res Org | Israel | 1997 | 40 | 0.03 |
17 | Univ Kentucky | USA | 2000 | 40 | 0.02 |
18 | Swedish Univ Agr Sci | Sweden | 2001 | 34 | 0.04 |
19 | Northwest A&F Univ | China | 2018 | 32 | 0.01 |
20 | Univ Bern | Switzerland | 2016 | 31 | 0.01 |
No | Author | Affiliated Institutions | Year | Records | Centrality |
---|---|---|---|---|---|
1 | Daniel Berckmans | Katholieke Univ Leuven | 2004 | 67 | 0.02 |
2 | Tomas Norton | Katholieke Univ Leuven | 2017 | 36 | 0.01 |
3 | Claudia Bahr | Katholieke Univ Leuven | 2010 | 33 | 0.01 |
4 | Ilan Halachmi | Agr Res Org | 2000 | 30 | 0.03 |
5 | Marcella Guarino | University of Milan | 2008 | 28 | 0.02 |
6 | Jeffrey Rushen | Univ British Columbia | 2009 | 27 | 0.01 |
7 | Trevor J. Devries | Univ Guelph | 2016 | 26 | 0.00 |
8 | Henk Hogeveen | Wageningen Univ and Res | 1994 | 22 | 0.01 |
9 | Jeffrey M. Bewley | Univ Kentucky | 2001 | 20 | 0.01 |
10 | Sergio C. Garcia | Univ Sydney | 2014 | 19 | 0.00 |
No | Keywords | Year | Papers | Centrality |
---|---|---|---|---|
1 | dairy cow | 1992 | 530 | 0.10 |
2 | cattle | 1991 | 526 | 0.13 |
3 | behavior | 1997 | 491 | 0.08 |
4 | system | 1996 | 457 | 0.15 |
5 | performance | 1993 | 291 | 0.07 |
6 | cow | 1992 | 279 | 0.08 |
7 | machine learning | 1996 | 279 | 0.03 |
8 | precision livestock farming | 2008 | 271 | 0.01 |
9 | dairy cattle | 1995 | 216 | 0.07 |
10 | health | 1999 | 198 | 0.03 |
11 | time | 2001 | 194 | 0.02 |
12 | deep learning | 2018 | 184 | 0.01 |
13 | management | 2004 | 179 | 0.03 |
14 | classification | 2000 | 176 | 0.03 |
15 | animal welfare | 1997 | 170 | 0.06 |
16 | feeding behavior | 1997 | 153 | 0.04 |
17 | model | 2004 | 136 | 0.03 |
18 | computer vision | 1995 | 131 | 0.01 |
19 | milk yield | 1999 | 125 | 0.02 |
20 | welfare | 2007 | 125 | 0.02 |
Cluster Serial Number | Cluster Name | Document Number | Keywords (Logarithmic Likelihood Ratio, p-Value) |
---|---|---|---|
#0 | deep learning | 168 | deep learning (174.71, 1.0 × 10−4); computer vision (118.87, 1.0 × 10−4); image processing (68.37, 1.0 × 10−4); precision livestock farming (58.38, 1.0 × 10−4); object detection (53.56, 1.0 × 10−4) |
#1 | accelerometer | 145 | accelerometer (36.26, 1.0 × 10−4); gps (35.94, 1.0 × 10−4); feeding behaviour (30.08, 1.0 × 10−4); grazing (29.56, 1.0 × 10−4); sheep (28.9, 1.0 × 10−4) |
#2 | automatic milking system | 122 | automatic milking system (57.92, 1.0 × 10−4); mastitis (47.72, 1.0 × 10−4); robotic milking (46.23, 1.0 × 10−4); somatic cell count (40.29, 1.0 × 10−4); automatic milking (46.98, 1.0 × 10−4) |
#3 | lameness | 109 | lameness (126.76, 1.0 × 10−4); locomotion score (40.18, 1.0 × 10−4); heat stress (39.21, 1.0 × 10−4); animal welfare (37.95, 1.0 × 10−4); locomotion (33.11, 1.0 × 10−4) |
#4 | estrus detection | 105 | estrus detection (56.1, 1.0 × 10−4); estrus (55.48, 1.0 × 10−4); machine learning (32.73, 1.0 × 10−4); reproductive performance (31.18, 1.0 × 10−4); ovulation (28.8, 1.0 × 10−4) |
#5 | electronic identification | 53 | electronic identification (42.82, 1.0 × 10−4); feeding behavior (36.53, 1.0 × 10−4); transponder (30.98, 1.0 × 10−4); traceability (25.81, 1.0 × 10−4); performance (15.7, 1.0 × 10−4) |
First Author | Title | Journal | Year | Cited Frequency |
---|---|---|---|---|
Laurens Klerkx | A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda | NJAS-Wageningen Journal of Life Sciences | 2019 | 344 |
Emanuela Tullo | Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy | Science of the Total Environment | 2019 | 137 |
Mohamed Torky | Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges | Computers and Electronics in Agriculture | 2020 | 98 |
Lefteris Benos | Machine Learning in Agriculture: A Comprehensive Updated Review | Sensors | 2021 | 95 |
Ricardo S. Alonso | An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario | Ad Hoc Networks | 2020 | 91 |
Ilan Halachmi | Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production | Annual Review of Animal Biosciences | 2019 | 91 |
Abhinav Sharma | Machine Learning Applications for Precision Agriculture: A Comprehensive Review | Sensors | 2020 | 86 |
Qiao Yongliang | Cattle segmentation and contour extraction based on Mask R-CNN for precision livestock farming | Computers and Electronics in Agriculture | 2019 | 80 |
Callum Eastwood | Making sense in the cloud: Farm advisory services in a smart farming future | NJAS-Wageningen Journal of Life Sciences | 2019 | 70 |
Madonna Benjamin | Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners | Animals | 2019 | 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Tang, W.; Cui, L.; Deng, X. Precision Livestock Farming Research: A Global Scientometric Review. Animals 2023, 13, 2096. https://doi.org/10.3390/ani13132096
Jiang B, Tang W, Cui L, Deng X. Precision Livestock Farming Research: A Global Scientometric Review. Animals. 2023; 13(13):2096. https://doi.org/10.3390/ani13132096
Chicago/Turabian StyleJiang, Bing, Wenjie Tang, Lihang Cui, and Xiaoshang Deng. 2023. "Precision Livestock Farming Research: A Global Scientometric Review" Animals 13, no. 13: 2096. https://doi.org/10.3390/ani13132096
APA StyleJiang, B., Tang, W., Cui, L., & Deng, X. (2023). Precision Livestock Farming Research: A Global Scientometric Review. Animals, 13(13), 2096. https://doi.org/10.3390/ani13132096