Predicting Chemical Composition and Apparent Total Tract Digestibility on Freeze-Dried Not Ground Faeces Using Near-Infrared Spectroscopy in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Care and Use of Animals, Diets and Faecal Sampling
2.2. Feed Analysis
2.3. Faecal Analysis
2.4. Determination of Nutrient and Energy Digestibility
2.5. Faecal NIRS Analysis
2.6. Development of Faecal NIRS Calibration Equations and Statistical Analysis
3. Results
3.1. Faeces Chemical and ATTD Nutrient Composition
3.2. Faecal NIRS Calibrations
3.3. Freeze-Dried Not Ground vs. Freeze-Dried Ground Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Le Goff, G.; Noblet, J. Comparative Total Tract Digestibility of Dietary Energy and Nutrients in Growing Pigs and Adult Sows. J. Anim. Sci. 2001, 79, 2418–2427. [Google Scholar] [CrossRef]
- Patience, J.F.; Rossoni-Serão, M.C.; Gutiérrez, N.A. A Review of Feed Efficiency in Swine: Biology and Application. J. Anim. Sci. Biotechnol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shurson, G.C.; Hung, Y.T.; Jang, J.C.; Urriola, P.E. Measures Matter—Determining the True Nutri-Physiological Value of Feed Ingredients for Swine. Animals 2021, 11, 1259. [Google Scholar] [CrossRef] [PubMed]
- O’Meara, F.M.; Gardiner, G.E.; O’Doherty, J.V.; Lawlor, P.G. The Effect of Feed Form and Delivery Method on Feed Microbiology and Growth Performance in Grow-Finisher Pigs. J. Anim. Sci. 2020, 98, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Camp Montoro, J.; Manzanilla, E.G.; Solà-Oriol, D.; Muns, R.; Gasa, J.; Clear, O.; Calderón Díaz, J.A. Predicting Productive Performance in Grow-Finisher Pigs Using Birth and Weaning Body Weight. Animals 2020, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Camp Montoro, J.; Boyle, L.A.; Solà-Oriol, D.; Muns, R.; Gasa, J.; Garcia Manzanilla, E. Effect of Space Allowance and Mixing on Growth Performance and Body Lesions of Grower-Finisher Pigs in Pens with a Single Wet-Dry Feeder. Porcine Health Manag. 2021, 7, 1–8. [Google Scholar] [CrossRef]
- Camp Montoro, J.; Pessoa, J.; Sol, D.; Muns, R.; Gasa, J.; Manzanilla, E.G. Effect of Phase Feeding, Space Allowance and Mixing on Productive Performance of Grower-Finisher Pigs. Animals 2022, 12, 390. [Google Scholar] [CrossRef]
- Camp Montoro, J.; Solà-Oriol, D.; Muns, R.; Gasa, J.; Llanes, N.; Manzanilla, E.G. High Levels of Standardized Ileal Digestible Amino Acids Improve Feed Efficiency in Slow-Growing Pigs at Late Grower-Finisher Stage. J. Anim. Physiol. Anim. Nutr. 2021, 106, 276–283. [Google Scholar] [CrossRef]
- van der Meer, Y.; Lammers, A.; Jansman, A.J.M.; Rijnen, M.M.J.A.; Hendriks, W.H.; Gerrits, W.J.J. Performance of Pigs Kept under Different Sanitary Conditions Affected by Protein Intake and Amino Acid Supplementation. J. Anim. Sci. 2016, 94, 4704–4719. [Google Scholar] [CrossRef]
- Bastianelli, D. NIRS as a Tool to Assess Digestibility in Feeds and Feedstuffs. In Proceedings of the International Congress on Advancements in Poultry Production in the Middle East and African Countries, Antalya, Turkey, 21–25 October 2013; pp. 1–21. [Google Scholar]
- Zijlstra, R.T.; Swift, M.L.; Wang, L.F.; Scott, T.A.; Edney, M.J. Short Communication: Near Infrared Reflectance Spectroscopy Accurately Predicts the Digestible Energy Content of Barley for Pigs. Can. J. Anim. Sci. 2011, 91, 301–304. [Google Scholar] [CrossRef]
- Garrido-Varo, A.; Sánchez, M.T.; de la Haba, M.J.; Torres, I.; Pérez-Marín, D. Fast, Low-Cost and Non-Destructive Physico-Chemical Analysis of Virgin Olive Oils Using near-Infrared Reflectance Spectroscopy. Sensors 2017, 17, 2642. [Google Scholar] [CrossRef] [Green Version]
- Bastianelli, D.; Carré, B.; Mignon-Grasteau, S.; Bonnal, L.; Davrieux, F. Direct Prediction of Energy Digestibility from Poultry Faeces Using near Infrared Spectroscopy; IM Publications: Chichester, UK, 2007; pp. 626–629. [Google Scholar]
- Gil-Jiménez, E.; Villamuelas, M.; Serrano, E.; Delibes, M.; Fernández, N. Fecal Nitrogen Concentration as a Nutritional Quality Indicator for European Rabbit Ecological Studies. PLoS ONE 2015, 10, e0125190. [Google Scholar] [CrossRef]
- Decruyenaere, V.; Planchon, V.; Dardenne, P.; Stilmant, D. Prediction Error and Repeatability of near Infrared Reflectance Spectroscopy Applied to Faeces Samples in Order to Predict Voluntary Intake and Digestibility of Forages by Ruminants. Anim. Feed. Sci. Technol. 2015, 205, 49–59. [Google Scholar] [CrossRef]
- Bastianelli, D.; Bonnal, L.; Jaguelin-Peyraud, Y.; Noblet, J. Predicting Feed Digestibility from NIRS Analysis of Pig Faeces. Animal 2015, 9, 781–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paternostre, L.; Baeten, V.; Ampe, B.; Millet, S.; De Boever, J. The Usefulness of NIRS Calibrations Based on Feed and Feces Spectra to Predict Nutrient Content, Digestibility and Net Energy of Pig Feeds. Anim. Feed Sci. Technol. 2021, 281, 115091. [Google Scholar] [CrossRef]
- Nirea, K.G.; de Nanclares, M.P.; Skugor, A.; Afseth, N.K.; Meuwissen, T.H.E.; Hansen, J.; Mydland, L.T.; Øverland, M. Assessment of Fecal Near-Infrared Spectroscopy to Predict Feces Chemical Composition and Apparent Total-Tract Digestibility of Nutrients in Pigs. J. Anim. Sci. 2018, 96, 2826–2837. [Google Scholar] [CrossRef]
- Schiborra, A.; Bulang, M.; Berk, A.; Susenbeth, A.; Schlecht, E. Using Faecal Near-Infrared Spectroscopy (FNIRS) to Estimate Nutrient Digestibility and Chemical Composition of Diets and Faeces of Growing Pigs. Anim. Feed. Sci. Technol. 2015, 210, 234–242. [Google Scholar] [CrossRef]
- Garrido-Varo, A.; Pérez-Marén, D.; Guerrero Ginel, J.E.; Goméz Cabrera, A. Avances En La Utilización de La Tecnología NIRS. Aplicaciones En Producción Animal. In XIX Curso De Especializacion Fedna; FEDNA: Madrid, Spain, 2003; pp. 3–23. ISBN 84-607-9033-9. [Google Scholar]
- NRC. Nutrient Requirements of Swine; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Thiex, N. Evaluation of Analytical Methods for the Determination of Moisture, Crude Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. J. AOAC Int. 2009, 92, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Thiex, N.; Novotny, L.; Crawford, A. Determination of Ash in Animal Feed: AOAC Official Method 942.05 Revisited. J. AOAC Int. 2012, 95, 1392–1397. [Google Scholar] [CrossRef]
- Ebeling, M.E. The Dumas Method for Nitrogen in Feeds. J. AOAC Int. 1968, 51, 766–770. [Google Scholar] [CrossRef]
- Thiex, N.J.; Anderson, S.; Gildemeister, B. Crude Fat, Diethyl Ether Extraction, in Feed, Cereal Grain, and Forage (Randall/Soxtec/Submersion Method): Collaborative Study. J. AOAC Int. 2003, 86, 888–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otter, D.E. Standardised Methods for Amino Acid Analysis of Food. Br. J. Nutr. 2012, 108, 230–237. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, J.F.; Aherne, F.; Okai, D.B. Use of Acid Insoluble Ash as an Index Material for Determining Apparent Digestibility with Pigs. Can. J. Anim. Sci. 1974, 54, 107–109. [Google Scholar] [CrossRef]
- Zhang, F.; Adeola, O. Techniques for Evaluating Digestibility of Energy, Amino Acids, Phosphorus, and Calcium in Feed Ingredients for Pigs. Anim. Nutr. 2017, 3, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Shenk, J.S.; Westerhaus, M.O. Populations Structuring of Near Infrared Spectra and Modified Partial Least Squares Regression. Crop. Sci. 1991, 31, 1548–1555. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M.O. Population Definition, Sample Selection, and Calibration Procedures for Near Infrared Reflectance Spectroscopy. Crop. Sci. 1991, 31, 469–474. [Google Scholar] [CrossRef]
- Williams, P.C. Implementation of Near-Infrared Technology. In Near-Infrared Technology in the Agricultural and Food Industries; Williams, P.C., Norris, K.H., Eds.; AACC: St. Paul, MN, USA, 2001; pp. 145–169. ISBN 978-1891127243. [Google Scholar]
- De La Haba, M.J.; Garrido-Varo, A.; Guerrero-Ginel, J.E.; Pérez-Marín, D.C. Near-Infrared Reflectance Spectroscopy for Predicting Amino Acids Content in Intact Processed Animal Proteins. J. Agric. Food Chem. 2006, 54, 7703–7709. [Google Scholar] [CrossRef]
- Fearn, T. Comparing Standard Deviations. NIR News 1996, 7, 6–7. [Google Scholar] [CrossRef]
- Boval, M.; Coates, D.B.; Lecomte, P.; Decruyenaere, V. Faecal near Infrared Reflectance Spectroscopy (NIRS) to Assess Chemical Composition, in Vivo Digestibility and Intake of Tropical Grass by Creole Cattle. Anim. Feed Sci. Technol. 2004, 114, 19–29. [Google Scholar] [CrossRef]
- Coates, D.B.; Dixon, R.M. Developing Robust Faecal near Infrared Spectroscopy Calibrations to Predict Diet Dry Matter Digestibility in Cattle Consuming Tropical Forages. J. Near Infrared. Spectrosc. 2011, 19, 507–519. [Google Scholar] [CrossRef]
- Núñez-Sánchez, N.; Martínez Marín, A.; Pérez Hernández, M.; Carrion, D.; Gómez Castro, G.; Pérez Alba, L. Faecal near Infrared Spectroscopy (NIRS) as a Tool to Assess Rabbit’s Feed Digestibility. Livest. Sci. 2012, 150, 386–390. [Google Scholar] [CrossRef]
- Chang, C.-W.; David, A.L.; Maurice, J.M.; Charles, R.H. Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; McBratney, A.B. Why You Don’t Need to Use RPD. Pedometron 2013, 33, 14–15. [Google Scholar]
- Esbensen, K.H.; Geladi, P.; Larsen, A. The RPD Myth. NIR News 2014, 25, 24–28. [Google Scholar] [CrossRef]
- Shenk, J.S.; Workman, J.; Westerhaus, M. Application of NIR Spectroscopy to Agricultural Products. In Handbook of Near Infrared Analysis; Burns, D.A., Ciurczak, E.W., Eds.; Dekker: New York, NY, USA, 2001; pp. 419–474. ISBN 978-0849373930. [Google Scholar]
- Dardenne, P. Some Considerations about NIR Spectroscopy: Closing Speech at NIR-2009. NIR News 2010, 21, 8–14. [Google Scholar] [CrossRef]
- Decruyenaere, V.; Lecomte, P.; Demarquilly, C.; Aufrere, J.; Dardenne, P.; Stilmant, D.; Buldgen, A. Evaluation of Green Forage Intake and Digestibility in Ruminants Using near Infrared Reflectance Spectroscopy (NIRS): Developing a Global Calibration. Anim. Feed. Sci. Technol. 2009, 148, 138–156. [Google Scholar] [CrossRef]
- Coulibaly, I.; Métayer, J.-P.; Chartrin, P.; Mahaut, B.; Bouvarel, I.; Hogrel, P.; Bastianelli, D. La Combinaison Des Informations Issues Des Aliments et Des Fientes Améliore La Prédiction Par SPIR de La Digestibilité Chez Le Poulet. In Proceedings of the 10èmes Journées de la Recherche Avicole (JRA) et Palmidèdes à Foie Gras (JRFG), La Rochelle, France, 26–28 March 2013; pp. 640–644. [Google Scholar]
- Fernández-Cabanás, V.M.; Garrido-Varo, A.; Pérez-Marín, D.; Dardenne, P. Evaluation of Pretreatment Strategies for Near-Infrared Spectroscopy Calibration Development of Unground and Ground Compound Feedingstuffs. Appl. Spectrosc. 2006, 60, 17–23. [Google Scholar] [CrossRef]
- Pu, Y.; Pérez-Marín, D.; O’shea, N.; Garrido-Varo, A. Recent Advances in Portable and Handheld NIR Spectrometers and Applications in Milk, Cheese and Dairy Powders. Foods 2021, 10, 2377. [Google Scholar] [CrossRef]
Diets 2 | |||||
---|---|---|---|---|---|
Control | LCP | HCP | LNE | HNE | |
Ingredients, g/kg | |||||
Wheat | 350.0 | 350.0 | 350.0 | 330.0 | 306.2 |
Barley | 282.5 | 345.0 | 0.0 | 310.5 | 200.0 |
Maize | 150.0 | 150.0 | 286.6 | 100.0 | 275.5 |
Soybean meal 47.5 | 172.4 | 95.7 | 254.1 | 175.1 | 172.4 |
Soybean hulls | 14.2 | 29.7 | 63.9 | 58.3 | 0.0 |
Vegetable Oil | 5.0 | 5.0 | 17.6 | 0.0 | 21.5 |
Calcium carbonate | 12.3 | 12.7 | 12.2 | 10.7 | 11.7 |
Dicalcium phosphate anhydrous | 0.50 | 0.50 | 1.00 | 3.00 | 0.50 |
Sodium chloride | 4.50 | 4.40 | 3.20 | 4.40 | 3.70 |
L-Lysine HCl | 4.30 | 3.80 | 5.30 | 4.15 | 4.40 |
L-Threonine | 1.60 | 1.20 | 2.20 | 1.15 | 1.60 |
DL-Methionine | 1.30 | 0.70 | 2.20 | 1.30 | 1.20 |
L-Tryptophan | 0.20 | 0.10 | 0.20 | 0.20 | 0.10 |
L-Valine | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 |
Vitamin and trace mineral mixture 3 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 |
Calculated/Analysed Composition 4, % as fed or as specified | |||||
Dry Matter, analysed | 88.00 | 87.70 | 88.30 | 87.90 | 87.90 |
Ash, analysed | 3.90 | 3.60 | 4.00 | 4.10 | 3.90 |
ME, MJ/kg | 13.40 | 13.40 | 13.40 | 12.85 | 13.95 |
NE, MJ/kg | 10.03 | 10.03 | 10.03 | 9.61 | 10.45 |
SID Lys:NE, g/MJ | 0.95 | 0.75 | 1.15 | 0.99 | 0.91 |
Crude Protein, analysed | 13.40 | 11.60 | 16.20 | 14.50 | 14.30 |
Total Lys, analysed | 1.05 | 0.88 | 1.31 | 1.08 | 1.02 |
Total Thr/Lys ratio, analysed | 0.58 | 0.58 | 0.56 | 0.57 | 0.62 |
Total Met-Cys/Lys ratio, analysed | 0.64 | 0.64 | 0.63 | 0.65 | 0.68 |
Total Trp/Lys ratio, analysed | 0.14 | 0.15 | 0.15 | 0.14 | 0.14 |
Total Val/Lys ratio, analysed | 0.60 | 0.65 | 0.65 | 0.67 | 0.69 |
Total Leu/Lys ratio, analysed | 1.09 | 1.14 | 1.08 | 1.14 | 1.14 |
Total Ile/Lys ratio, analysed | 0.54 | 0.55 | 0.57 | 0.58 | 0.60 |
Total His/Lys ratio, analysed | 0.34 | 0.38 | 0.37 | 0.36 | 0.38 |
SID Lys | 0.95 | 0.75 | 1.15 | 0.95 | 0.95 |
SID Thr/Lys ratio | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |
SID Met-Cys/Lys ratio | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 |
SID Trp/Lys ratio | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 |
SID Val/Lys ratio | 0.66 | 0.67 | 0.65 | 0.66 | 0.66 |
SID Leu/Lys ratio | 1.16 | 1.20 | 1.11 | 1.16 | 1.15 |
SID Ile/Lys ratio | 0.56 | 0.55 | 0.57 | 0.57 | 0.57 |
SID His/Lys ratio | 0.36 | 0.36 | 0.34 | 0.35 | 0.36 |
Fat, analysed | 2.79 | 2.74 | 3.78 | 2.21 | 4.19 |
Crude Fibre, analysed | 2.90 | 3.40 | 4.20 | 4.20 | 2.40 |
NDF | 12.96 | 14.15 | 13.54 | 15.02 | 12.00 |
Calcium | 0.75 | 0.75 | 0.80 | 0.77 | 0.72 |
Digestible Phosphorus | 0.22 | 0.22 | 0.22 | 0.25 | 0.22 |
Constituent 3 | Chemical Analysis | ATTD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | CV | Mean | SD | Min | Max | CV | |
Total data set, n = 223 | ||||||||||
DM, g/kg | 930.0 | 16.40 | 901.0 | 957.0 | 0.018 | 0.83 | 0.038 | 0.71 | 0.90 | 0.046 |
CP/DM, g/kg | 266.0 | 23.90 | 218.0 | 320.0 | 0.090 | 0.71 | 0.065 | 0.52 | 0.83 | 0.091 |
OM/DM, g/kg | 971.0 | 14.50 | 940.0 | 1012.0 | 0.015 | 0.85 | 0.035 | 0.74 | 0.91 | 0.041 |
GE/DM, MJ/Kg | 20.3 | 0.38 | 19.1 | 21.3 | 0.019 | 0.79 | 0.045 | 0.63 | 0.88 | 0.056 |
FAT/DM, g/kg | 47.0 | 7.30 | 32.0 | 79.0 | 0.157 | 0.77 | 0.061 | 0.62 | 0.90 | 0.079 |
Control diet, n = 46 | ||||||||||
DM, g/kg | 929.0 | 17.00 | 903.0 | 951.0 | 0.018 | 0.87 | 0.016 | 0.82 | 0.90 | 0.019 |
CP/DM, g/kg | 258.0 | 21.00 | 221.0 | 304.0 | 0.081 | 0.77 | 0.029 | 0.72 | 0.82 | 0.037 |
OM/DM, g/kg | 975.0 | 16.00 | 944.0 | 1005.0 | 0.016 | 0.88 | 0.016 | 0.84 | 0.91 | 0.018 |
GE/DM, MJ/Kg | 20.3 | 0.22 | 19.9 | 20.8 | 0.011 | 0.83 | 0.020 | 0.77 | 0.87 | 0.024 |
FAT/DM, g/kg | 45.0 | 5.30 | 36.0 | 61.0 | 0.118 | 0.81 | 0.034 | 0.74 | 0.88 | 0.042 |
LCP diet, n = 47 | ||||||||||
DM, g/kg | 931.0 | 16.10 | 911.0 | 955.0 | 0.017 | 0.82 | 0.029 | 0.73 | 0.88 | 0.036 |
CP/DM, g/kg | 246.0 | 12.20 | 218.0 | 268.0 | 0.050 | 0.66 | 0.053 | 0.52 | 0.78 | 0.080 |
OM/DM, g/kg | 975.0 | 15.10 | 946.0 | 1012.0 | 0.015 | 0.84 | 0.027 | 0.76 | 0.90 | 0.032 |
GE/DM, MJ/Kg | 20.3 | 0.26 | 19.7 | 20.8 | 0.013 | 0.75 | 0.038 | 0.63 | 0.84 | 0.051 |
FAT/DM, g/kg | 46.0 | 6.80 | 32.0 | 67.0 | 0.146 | 0.73 | 0.051 | 0.62 | 0.82 | 0.071 |
HCP diet, n = 41 | ||||||||||
DM, g/kg | 928.0 | 17.50 | 901.0 | 955.0 | 0.019 | 0.79 | 0.042 | 0.71 | 0.88 | 0.053 |
CP/DM, g/kg | 298.0 | 13.30 | 262.0 | 320.0 | 0.045 | 0.66 | 0.062 | 0.55 | 0.80 | 0.094 |
OM/DM, g/kg | 967.0 | 11.60 | 940.0 | 992.0 | 0.012 | 0.81 | 0.039 | 0.74 | 0.89 | 0.047 |
GE/DM, MJ/Kg | 20.2 | 0.37 | 19.3 | 21.1 | 0.018 | 0.76 | 0.045 | 0.68 | 0.86 | 0.059 |
FAT/DM, g/kg | 48.0 | 6.70 | 37.0 | 69.0 | 0.140 | 0.77 | 0.061 | 0.62 | 0.86 | 0.080 |
LNE diet, n = 44 | ||||||||||
DM, g/kg | 935.0 | 15.50 | 909.0 | 957.0 | 0.017 | 0.84 | 0.022 | 0.80 | 0.90 | 0.027 |
CP/DM, g/kg | 271.0 | 14.20 | 243.0 | 310.0 | 0.052 | 0.73 | 0.035 | 0.67 | 0.83 | 0.048 |
OM/DM, g/kg | 965.0 | 11.70 | 945.0 | 997.0 | 0.012 | 0.86 | 0.020 | 0.82 | 0.91 | 0.024 |
GE/DM, MJ/Kg | 20.0 | 0.34 | 19.1 | 21.1 | 0.017 | 0.80 | 0.026 | 0.76 | 0.88 | 0.032 |
FAT/DM, g/kg | 41.0 | 5.30 | 32.0 | 55.0 | 0.129 | 0.73 | 0.054 | 0.62 | 0.87 | 0.073 |
HNE diet, n = 45 | ||||||||||
DM, g/kg | 929.0 | 15.20 | 904.0 | 952.0 | 0.016 | 0.83 | 0.032 | 0.75 | 0.90 | 0.039 |
CP/DM, g/kg | 263.0 | 20.40 | 225.0 | 300.0 | 0.078 | 0.72 | 0.051 | 0.59 | 0.83 | 0.071 |
OM/DM, g/kg | 975.0 | 13.70 | 949.0 | 1010.0 | 0.014 | 0.85 | 0.030 | 0.77 | 0.91 | 0.035 |
GE/DM, MJ/Kg | 20.7 | 0.39 | 19.7 | 21.3 | 0.019 | 0.80 | 0.036 | 0.71 | 0.88 | 0.045 |
FAT/DM, g/kg | 53.0 | 6.80 | 41.0 | 79.0 | 0.129 | 0.81 | 0.045 | 0.67 | 0.90 | 0.056 |
Constituent 3 | Meancv4 | SDcv4 | SECcv4 | R2ccv4 | SECVcv4 | R2cvcv4 | RPDcv4 | Meanlo | SDlo | SEClo | R2clo | SECVlo | R2cvlo | RPDlo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Freeze-dried ground faeces | ||||||||||||||
Faeces chemical components | ||||||||||||||
DM, g/kg | 930.0 | 16.50 | 5.00 | 0.91 | 5.50 | 0.89 | 2.98 | 930.0 | 16.50 | 4.60 | 0.92 | 5.40 | 0.89 | 3.02 |
CP/DM, g/kg | 266.0 | 23.80 | 4.80 | 0.96 | 5.60 | 0.95 | 4.31 | 267.0 | 23.90 | 5.10 | 0.96 | 5.40 | 0.95 | 4.45 |
OM/DM, g/kg | 971.0 | 13.70 | 5.90 | 0.81 | 6.70 | 0.76 | 2.17 | 971.0 | 14.20 | 6.10 | 0.82 | 6.70 | 0.77 | 2.15 |
GE/DM, MJ/kg | 20.3 | 0.36 | 0.16 | 0.80 | 0.18 | 0.75 | 2.18 | 20.3 | 0.36 | 0.16 | 0.79 | 0.18 | 0.74 | 2.11 |
FAT/DM, g/kg | 46.0 | 6.10 | 3.40 | 0.69 | 3.80 | 0.62 | 1.95 | 46.0 | 6.10 | 3.60 | 0.66 | 3.80 | 0.61 | 1.91 |
Apparent total tract of nutrient digestibility | ||||||||||||||
dDM | 0.83 | 0.034 | 0.017 | 0.75 | 0.019 | 0.70 | 2.05 | 0.83 | 0.036 | 0.020 | 0.71 | 0.022 | 0.64 | 1.75 |
dCP | 0.71 | 0.062 | 0.037 | 0.63 | 0.040 | 0.58 | 1.62 | 0.71 | 0.061 | 0.036 | 0.65 | 0.041 | 0.54 | 1.57 |
dOM | 0.85 | 0.032 | 0.016 | 0.75 | 0.017 | 0.71 | 2.04 | 0.85 | 0.031 | 0.016 | 0.73 | 0.018 | 0.67 | 1.98 |
dGE | 0.79 | 0.041 | 0.024 | 0.66 | 0.026 | 0.59 | 1.70 | 0.79 | 0.039 | 0.022 | 0.69 | 0.024 | 0.62 | 1.85 |
dFAT | 0.77 | 0.058 | 0.028 | 0.77 | 0.033 | 0.68 | 1.87 | 0.77 | 0.058 | 0.028 | 0.77 | 0.033 | 0.67 | 1.83 |
Freeze-dried not ground faeces | ||||||||||||||
Faeces chemical components | ||||||||||||||
DM, g/kg | 931.0 | 16.20 | 4.90 | 0.91 | 5.70 | 0.88 | 2.85 | 930.0 | 16.30 | 5.00 | 0.91 | 5.70 | 0.88 | 2.86 |
CP/DM, g/kg | 266.0 | 23.40 | 6.10 | 0.93 | 6.40 | 0.93 | 3.77 | 266.0 | 23.60 | 6.10 | 0.93 | 6.60 | 0.92 | 3.62 |
OM/DM, g/kg | 971.0 | 14.00 | 6.60 | 0.78 | 7.30 | 0.73 | 2.00 | 971.0 | 14.20 | 6.40 | 0.80 | 7.40 | 0.73 | 1.96 |
GE/DM, MJ/kg | 20.3 | 0.35 | 0.17 | 0.77 | 0.18 | 0.74 | 2.14 | 20.3 | 0.36 | 0.19 | 0.73 | 0.20 | 0.69 | 1.92 |
FAT/DM, g/kg | 46.0 | 6.20 | 3.40 | 0.70 | 3.70 | 0.64 | 1.97 | 46.0 | 6.50 | 4.00 | 0.63 | 4.20 | 0.57 | 1.73 |
Apparent total tract of nutrient digestibility | ||||||||||||||
dDM | 0.83 | 0.036 | 0.017 | 0.76 | 0.019 | 0.70 | 1.97 | 0.83 | 0.035 | 0.015 | 0.81 | 0.018 | 0.73 | 2.09 |
dCP | 0.71 | 0.058 | 0.030 | 0.73 | 0.034 | 0.66 | 1.91 | 0.71 | 0.062 | 0.035 | 0.68 | 0.039 | 0.61 | 1.67 |
dOM | 0.85 | 0.033 | 0.015 | 0.78 | 0.017 | 0.72 | 1.99 | 0.85 | 0.032 | 0.013 | 0.83 | 0.016 | 0.75 | 2.21 |
dGE | 0.79 | 0.039 | 0.019 | 0.76 | 0.023 | 0.65 | 1.96 | 0.79 | 0.039 | 0.019 | 0.77 | 0.023 | 0.67 | 1.96 |
dFAT | 0.77 | 0.059 | 0.029 | 0.76 | 0.034 | 0.67 | 1.83 | 0.77 | 0.059 | 0.028 | 0.78 | 0.033 | 0.67 | 1.85 |
Constituent 3 | SECVlo | F | Fcritical | |
---|---|---|---|---|
FDG | FDNG | |||
Faeces chemical components | ||||
DM, g/kg | 5.40 | 5.70 | 1.10 | 1.25 |
CP/DM, g/kg | 5.40 | 6.60 | 1.51 | 1.25 |
OM/DM, g/kg | 6.70 | 7.40 | 1.20 | 1.25 |
GE/DM, MJ/kg | 1.80 | 2.00 | 1.19 | 1.25 |
FAT/DM, g/kg | 3.80 | 4.20 | 1.21 | 1.25 |
Apparent total tract of nutrient digestibility | ||||
dDM | 0.022 | 0.018 | 1.43 | 1.25 |
dCP | 0.041 | 0.039 | 1.14 | 1.25 |
dOM | 0.018 | 0.016 | 1.26 | 1.25 |
dGE | 0.024 | 0.023 | 1.13 | 1.25 |
dFAT | 0.033 | 0.033 | 1.01 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camp Montoro, J.; Solà-Oriol, D.; Muns, R.; Gasa, J.; Llanes, N.; Garcia Manzanilla, E. Predicting Chemical Composition and Apparent Total Tract Digestibility on Freeze-Dried Not Ground Faeces Using Near-Infrared Spectroscopy in Pigs. Animals 2023, 13, 2090. https://doi.org/10.3390/ani13132090
Camp Montoro J, Solà-Oriol D, Muns R, Gasa J, Llanes N, Garcia Manzanilla E. Predicting Chemical Composition and Apparent Total Tract Digestibility on Freeze-Dried Not Ground Faeces Using Near-Infrared Spectroscopy in Pigs. Animals. 2023; 13(13):2090. https://doi.org/10.3390/ani13132090
Chicago/Turabian StyleCamp Montoro, Jordi, David Solà-Oriol, Ramon Muns, Josep Gasa, Núria Llanes, and Edgar Garcia Manzanilla. 2023. "Predicting Chemical Composition and Apparent Total Tract Digestibility on Freeze-Dried Not Ground Faeces Using Near-Infrared Spectroscopy in Pigs" Animals 13, no. 13: 2090. https://doi.org/10.3390/ani13132090
APA StyleCamp Montoro, J., Solà-Oriol, D., Muns, R., Gasa, J., Llanes, N., & Garcia Manzanilla, E. (2023). Predicting Chemical Composition and Apparent Total Tract Digestibility on Freeze-Dried Not Ground Faeces Using Near-Infrared Spectroscopy in Pigs. Animals, 13(13), 2090. https://doi.org/10.3390/ani13132090