Ammonia Increases the Stress of the Amazonian Giant Arapaima gigas in a Climate Change Scenario
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Fish and Acclimation
2.2. Experimental Design
2.3. Water Quality
2.4. Zootechnical Performance
2.5. Hematological Parameters
2.6. Biochemical and Ionic Parameters of Plasma
2.7. H+-ATPase and AChE Activities
2.8. Statistical Analysis
3. Results
3.1. Water Quality Parameters
3.2. Growth Performance
3.3. Hematological Parameters
3.4. Plasma Metabolites
3.5. Enzymes
4. Discussion
4.1. Water Quality
4.2. Growth
4.3. Production Costs
4.4. Hematological Parameters
4.5. Plasma Ammonia, Plasma Ions, and H+-ATPase
4.6. Biochemical Parameters in Plasma
4.7. AChE Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eissa, A.E.; Zaki, M.M. The impact of global climatic changes on the aquatic environment. Procedia Environ. Sci. 2011, 4, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Morash, A.J.; Alter, K. Effects of environmental and farm stress on abalone physiology: Perspectives for abalone aquaculture in the face of global climate change. Rev. Aquac. 2016, 8, 342–368. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Sharma, K.; Brotto, A.C.; Khanal, S.K. Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission. Bioresour. Technol. 2013, 130, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.A.; Wood, C.M. Seven things fish know about ammonia and we don’t. Respir. Physiol. Neurobiol. 2012, 184, 231–240. [Google Scholar] [CrossRef]
- Randall, D.J.; Ip, Y.K. Ammonia as a respiratory gas in water and air-breathing fishes. Respir. Physiol. Neurobiol. 2006, 154, 216–225. [Google Scholar] [CrossRef]
- Randall, D.J.; Tsui, T.K.N. Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, 17–23. [Google Scholar] [CrossRef]
- Nawata, C.M.; Hung, C.C.Y.; Tsui, T.K.N.; Wilson, J.M.; Wright, P.A.; Wood, C.M. Ammonia excretion in rainbow trout (Oncorhynchus mykiss): Evidence for Rh glycoprotein and H+-ATPase involvement. Physiol. Genom. 2007, 31, 463–474. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.K.; Liew, H.J.; Diricx, M.; Blust, R.; De Boeck, G. The interactive effects of ammonia exposure, nutritional status and exercise on metabolic and physiological responses in gold fish (Carassius auratus L.). Aquat. Toxicol. 2012, 109, 33–46. [Google Scholar] [CrossRef]
- Weihrauch, D.; Wilkie, M.P.; Walsh, P.J. Ammonia and urea transporters in gills of fish and aquatic crustaceans. J. Exp. Biol. 2009, 212, 1716–1730. [Google Scholar] [CrossRef] [Green Version]
- Bucking, C. A Broader Look at Ammonia Production, Excretion, and Transport in Fish: A Review of Impacts of Feeding and the Environment. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2017, 187, 1–18. [Google Scholar] [CrossRef]
- Dosdat, A.; Ruyet, J.P.L.; Covès, D.; Dutto, G.; Gasset, E.; Le Roux, A.; Lemarié, G. Effect of chronic exposure to ammonia on growth, food utilisation and metabolism of the European sea bass (Dicentrarchus labrax). Aquat. Living Resour. 2003, 16, 509–520. [Google Scholar] [CrossRef]
- Gao, N.; Zhu, L.; Guo, Z.; Yi, M.; Zhang, L. Effects of chronic ammonia exposure on ammonia metabolism and excretion in marine medaka Oryzias melastigma. Fish Shellfish Immunol. 2017, 65, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Lemarié, G.; Dosdat, A.; Covès, D.; Dutto, G.; Gasset, E.; Person-Le Ruyet, J. Effect of chronic ammonia exposure on growth of European seabass (Dicentrarchus labrax) juveniles. Aquaculture 2004, 229, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Liew, H.J.; Sinha, A.K.; Nawata, C.M.; Blust, R.; Wood, C.M.; De Boeck, G. Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Aquat. Toxicol. 2013, 126, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.W.; Kim, S.H.; Kim, J.H.; Hwang, S.D.; Kang, J.C. Toxic effects of ammonia exposure on growth performance, hematological parameters, and plasma components in rockfish, Sebastes schlegelii, during thermal stress. Fish. Aquat. Sci. 2016, 19, 44. [Google Scholar] [CrossRef] [Green Version]
- Souza-Bastos, L.R.; Val, A.L.; Wood, C.M. Are Amazonian fish more sensitive to ammonia? Toxicity of ammonia to eleven native species. Hydrobiologia 2017, 789, 143–155. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, S.; Zhu, J.; Miao, L.; Ren, M.; Lin, Y.; Ge, X.; Sun, S. Growth performance, physiological response and histology changes of juvenile blunt snout bream, Megalobrama amblycephala exposed to chronic ammonia. Aquaculture 2019, 506, 424–436. [Google Scholar] [CrossRef]
- Ip, Y.K.; Chew, S.F. Ammonia Production, Excretion, Toxicity, and Defense in Fish: A Review. Front. Physiol. 2010, 1, 1–20. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernamental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.M.; Val, A.L. Effects of climate scenarios on the growth and physiology of the Amazonian fish tambaqui (Colossoma macropomum) (Characiformes: Serrasalmidae). Hydrobiologia 2017, 789, 167–178. [Google Scholar] [CrossRef]
- Ismiño-Orbe, R.A.; Araujo-Lima, C.A.R.M.; Gomes, L.d.C. Excreção de amônia por tambaqui (Colossoma macropomum) de acordo com variações na temperatura da água e massa do peixe. Pesqui. Agropecu. Bras. 2003, 38, 1243–1247. [Google Scholar] [CrossRef]
- Imbiriba, E.P. Potencial de criação de pirarucu em cativeiro. Acta Amaz. 2001, 31, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Brauner, C.J.; Matey, V.; Wilson, J.M.; Bernier, N.J.; Val, A.L. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon. J. Exp. Biol. 2004, 207, 1433–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, R.J.; Brauner, C.J.; Wang, Y.X.; Richards, J.G.; Patrick, M.L.; Xi, W.; Matey, V.; Val, A.L. Impact of Ontogenetic Changes in Branchial Morphology on Gill Function in Arapaima gigas. Physiol. Biochem. Zool. 2010, 83, 322–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelster, B.; Wood, C.M.; Braz-Mota, S.; Val, A.L. Gills and air-breathing organ in O2 uptake, CO2 excretion, N-waste excretion, and ionoregulation in small and large pirarucu (Arapaima gigas). J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2020, 190, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.M.; Pelster, B.; Braz-Mota, S.; Val, A.L. Gills versus kidney for ionoregulation in the obligate air-breathing Arapaima gigas, a fish with a kidney in its air-breathing organ. J. Exp. Biol. 2020, 223, jeb232694. [Google Scholar] [CrossRef] [PubMed]
- Ituassú, D.R.; Pereira Filho, M.; Roubach, R.; Crescêncio, R.; Cavero, B.A.S.; Gandra, A.L. Níveis de proteína bruta para juvenis de pirarucu. Pesqui. Agropecuária Bras. 2005, 40, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Cavero, B.A.S.; Pereira-Filho, M.; Roubach, R.; Ituassú, D.R.; Gandra, A.L.; Crescêncio, R. Efeito da densidade de estocagem sobre a eficiência alimentar de juvenis de Pirarucu (Arapaima gigas) em ambiente confinado. Acta Amaz. 2003, 33, 4. [Google Scholar] [CrossRef] [Green Version]
- Cavero, B.A.S.; Pereira-Filho, M.; Roubach, R.; Ituassú, D.R.; Gandra, A.L.; Crescêncio, R. Efeito da densidade de estocagem na homogeneidade do crescimento de juvenis de pirarucu em ambiente confinado. Pesqui. Agropecuária Bras. 2003, 38, 1. [Google Scholar] [CrossRef]
- Rodrigues, A.P.O.; Lima, A.F.; Andrade, C.L.; de Medeiros, R.M.d.S. Feeding frequency affects feed intake and growth in juvenile pirarucu (Arapaima gigas). Acta Amaz. 2019, 49, 11–16. [Google Scholar] [CrossRef]
- Pedrosa, R.U.; Mattos, B.O.; Pereira, D.S.P.; Rodrigues, M.L.; Braga, L.G.T.; Fortes-Silva, R. Effects of feeding strategies on growth, biochemical parameters and waste excretion of juvenile arapaima (Arapaima gigas) raised in recirculating aquaculture systems (RAS). Aquaculture 2019, 500, 562–568. [Google Scholar] [CrossRef]
- Cavero, B.A.S.; Pereira-Filho, M.; Bordinhon, A.M.; Fonseca, F.A.L.d.; Ituassú, D.R.; Roubach, R.; Ono, E.A. Tolerância de juvenis de pirarucu ao aumento da concentração de amônia em ambiente confinado. Pesqui. Agropecuária Bras. 2004, 39, 513–516. [Google Scholar] [CrossRef]
- Verdouw, H.; Van Echteld, C.J.A.; Dekkers, E.M.J. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 1978, 12, 399–402. [Google Scholar] [CrossRef]
- Liu, H.; Xie, S.; Zhu, X.; Lei, W.; Han, D.; Yang, Y. Effects of dietary ascorbic acid supplementation on the growth performance, immune and stress response in juvenile Leiocassis longirostris Günther exposed to ammonia. Aquac. Res. 2008, 39, 1628–1638. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.S. Water Quality and Pond Soil Analyses for Aquaculture; Alabama Agriculture Experiment Station, Auburn University: Auburn, AL, USA, 1992; p. 183. [Google Scholar]
- Goldenfarb, P.B.; Bowyer, F.P.; Hall, E. Reproducibility in the hematology laboratory: The microhematocrit determination. Am. J. Clin. Pathol. 1971, 56, 35–39. [Google Scholar] [CrossRef]
- Van Kampen, E.J.; Zijlstra, W.G. Standardization of hemoglobinometry II. The hemiglobincyanide method. Clin. Chim. Acta. 1961, 6, 538–544. [Google Scholar] [CrossRef]
- Benesch, R.E.; Benesch, R.; Yung, S. Equations for the spectrophotometric analysis of hemoglobin mixtures. Anal. Biochem. 1973, 55, 245–248. [Google Scholar] [CrossRef]
- Brow, B.A. Hematology: Principles and Procedures, 2nd ed.; Lea & Febiger: Philadelphia, PA, USA, 1976. [Google Scholar]
- Kultz, D.; Somero, G.N. Osmotic and thermal effects on in situ ATPase activity in permeabilized gill epithelial cells of the fish Gillichthys mirabilis. J. Exp. Biol. 1995, 198, 1883–1894. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Valentino Andres, J.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Campos, D.F.; Braz-Mota, S.; Val, A.L.; Almeida-Val, V.M.F. Predicting thermal sensitivity of three Amazon fishes exposed to climate change scenarios. Ecol. Indic. 2019, 101, 533–540. [Google Scholar] [CrossRef]
- Fé-Gonçalves, L.M.; Araújo, J.D.A.; Santos, C.H.d.A.d.; Val, A.L.; Almeida-Val, V.M.F.d. How will farmed populations of freshwater fish deal with the extreme climate scenario in 2100? Transcriptional responses of Colossoma macropomum from two Brazilian climate regions. J. Therm. Biol. 2020, 89, 102487. [Google Scholar] [CrossRef]
- Barbieri, E.; Doi, S.A. Acute toxicity of ammonia on juvenile cobia (Rachycentron canadum, Linnaeus, 1766) according to the salinity. Aquac. Int. 2012, 20, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Kieffer, J.D.; Wakefield, A.M. Oxygen consumption, ammonia excretion and protein use in response to thermal changes in juvenile Atlantic salmon Salmo salar. J. Fish Biol. 2009, 74, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Foss, A.; Siikavuopio, S.I.; Sæther, B.S.; Evensen, T.H. Effect of chronic ammonia exposure on growth in juvenile Atlantic cod. Aquaculture 2004. [CrossRef]
- Foss, A.; Evensen, T.H.; Vollen, T.; Oiestad, V. Effects of chronic ammonia exposure on growth and food conversion efficiency in juvenile spotted wolffish. Aquaculture 2003, 228, 215–224. [Google Scholar] [CrossRef]
- Cuenco, M.L.; Stickney, R.R.; Grant, W.E. Fish bioenergetics and growth in aquaculture ponds: II. Effects of interactions among, size, temperature, dissolved oxygen, unionized ammonia and food on growth of individual fish. Ecol. Modell. 1985, 27, 191–206. [Google Scholar] [CrossRef]
- Pincinato, R.B.M.; Asche, F.; Oglend, A. Climate change and small pelagic fish price volatility. Clim. Change 2020, 161, 591–599. [Google Scholar] [CrossRef]
- Ferreira, G.; Marcovitch, J.; Val, A.L. A systematic review of the production chain of the Arapaima gigas, the giant fish of the Amazon. Manag. Environ. Qual. Int. J. 2020, 31, 349–363. [Google Scholar] [CrossRef]
- Valladão, G.M.R.; Gallani, S.U.; Pilarski, F. South American fish for continental aquaculture. Rev. Aquac. 2016, 10, 351–369. [Google Scholar] [CrossRef]
- Buckley, J.A.; Whitmore, C.M.; Liming, B.D. Effects of prolonged exposure to ammonia on the blood and liver glycogen of coho salmon (Oncorhynchus kisutch). Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1979, 63, 297–303. [Google Scholar] [CrossRef]
- Wright, P.A.; Randall, D.J.; Wood, C.M. The Distribution of Ammonia and H+ Between Tissue Compartments in Lemon Sole (Parophrys vetulus) at Rest, During Hypercapnia and Following Exercise. J. Exp. Biol. 1988, 136, 149–175. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, H.J.; Hwang, I.K.; Han, J.M.; Kim, D.H.; Oh, C.W.; Lee, J.S.; Kang, J.C. Alterations of growth performance, hematological parameters, and plasma constituents in the sablefish, Anoplopoma fimbria depending on ammonia concentrations. Fish. Aquat. Sci. 2017, 20, 4. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, J.; Ndugwa, M.; Caneos, W.; De Boeck, G. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. Aquat. Toxicol. 2019, 212, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Chew, S.F.; Wilson, J.M.; Ip, Y.K.; Randall, D.J. Nitrogen excretion and defense against ammonia toxicity. In The Physiology of Tropical Fishes; Val, A.L., Almeida-Val, V.M.F., Randall, D.J., Eds.; Academic Press: London, UK, 2005; pp. 307–395. [Google Scholar]
- Gilmour, K.M.; Perry, S.F. Carbonic anhydrase and acid-base regulation in fish. J. Exp. Biol. 2009, 212, 1647–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Zhang, M.; Qian, Y.; Shi, G.; Wang, R. Ammonia toxicity in the yellow catfish (Pelteobagrus fulvidraco): The mechanistic insight from physiological detoxification to poisoning. Fish Shellfish Immunol. 2020, 102, 195–202. [Google Scholar] [CrossRef]
- Nawata, C.M.; Wood, C.M. The effects of CO2 and external buffering on ammonia excretion and Rhesus glycoprotein mRNA expression in rainbow trout. J. Exp. Biol. 2008, 211, 3226–3236. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.B.; Chew, S.F.; Anderson, P.M.; Ip, Y.K. Reduction in the rates of protein and amino acid catabolism to slow down the accumulation of endogenous ammonia: A strategy potentially adopted by mudskippers (Periophthalmodon schlosseri and Boleophthalmus boddaerti) during aerial exposure in constant darkness. J. Exp. Biol. 2001, 204, 1605–1614. [Google Scholar] [CrossRef]
- Almeida-Silva, J.; Campos, D.F.; Almeida-Val, V.M.F. Metabolic adjustment of Pyrrhulina aff. brevis exposed to different climate change scenarios. J. Therm. Biol. 2020, 92, 102657. [Google Scholar] [CrossRef]
- Randall, D.J.; Wright, P.A. Ammonia distribution and excretion in fish. Fish Physiol. Biochem. 1987, 3, 107–120. [Google Scholar] [CrossRef]
- Dinesh, B.; Ramesh, M.; Poopal, R.K. Effect of ammonia on the electrolyte status of an Indian major carp Catla catla. Aquac. Res. 2013, 44, 1677–1684. [Google Scholar] [CrossRef]
- Shrivastava, J.; Sinha, A.K.; Datta, S.N.; Blust, R.; De Boeck, G. Pre-acclimation to low ammonia improves ammonia handling in common carp (Cyprinus carpio) when exposed subsequently to high environmental ammonia. Aquat. Toxicol. 2016, 180, 334–344. [Google Scholar] [CrossRef]
- Wood, C.M.; Robertson, L.M.; Johannsson, O.E.; Val, A.L. Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi, Hemigrammus rhodostomus, and Moenkhausia diktyota). J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2014, 184, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Frommel, A.Y.; Kwan, G.T.; Prime, K.J.; Tresguerres, M.; Lauridsen, H.; Val, A.L.; Gonçalves, L.U.; Brauner, C.J. Changes in gill and air-breathing organ characteristics during the transition from water- to air-breathing in juvenile Arapaima gigas. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2021, 335, 801–813. [Google Scholar] [CrossRef]
- Tang, X.; Fu, Y.; Zhao, Y.; Pi, J.; Wang, H. Dietary α-Ketoglutarate supplementation alleviates harmful effects of high environmental ammonia on grass carp, Ctenopharyngodon idella. Aquac. Res. 2020, 51, 1182–1189. [Google Scholar] [CrossRef]
- Olivares-Rubio, H.F.; Espinosa-Aguirre, J.J. Acetylcholinesterase activity in fish species exposed to crude oil hydrocarbons: A review and new perspectives. Chemosphere 2021, 264, 128401. [Google Scholar] [CrossRef] [PubMed]
- Braz-Mota, S.; Sadauskas-Henrique, H.; Duarte, R.M.; Val, A.L.; Almeida-Val, V.M.F. Roundup® exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere 2015, 135, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Das, P.C.; Ayyappan, S.; Jena, J.K.; Das, B.K. Acute toxicity of ammonia and its sub-lethal effects on selected haematological and enzymatic parameters of mrigal, Cirrhinus mrigala (Hamilton). Aquac. Res. 2004, 35, 134–143. [Google Scholar] [CrossRef]
Parameter | Current | Current + Amm 2.44 | RCP8.5 | RCP8.5 + Amm 2.44 |
---|---|---|---|---|
Temperature (°C) | 27.5 ± 0.2 aA | 27.7 ± 0.2 aA | 29.9 ± 0.1 aB | 29.6 ± 0.1 aB |
CO2 (ppm) | 6.2 ± 0.05 aA | 4.8 ± 0.4 aA | 9.3 ± 0.5 aB | 11 ± 0.9 aB |
pH | 5.81 ± 0.11 | 5.46 ± 0.16 | 5.86 ± 0.11 | 5.76 ± 0.14 |
OD (mg·L−1) | 6.13 ± 0.12 aA | 5.69 ± 0.14 bA | 6.17 ± 0.1 aA | 5.55 ± 0.1 bA |
EC (µS·cm−1) | 57.63 ± 2.02 aA | 376.81 ± 10.37 bA | 55.52 ± 2.98 aA | 392.03 ± 10.03 bA |
NH4+ + NH3 (mmol·L−1) | 0.15 ± 0.01 aA | 2.6 ± 0.1 bA | 0.18 ± 0.01 aA | 2.6 ± 0.1 bA |
NH3 (mmol·L−1) | 1.29 × 10−4 ± 0.29 × 10−4 aA | 16.70 × 10−4 ± 3.7 × 10−4 bA | 2.26 × 10−4 ± 0.45 × 10−4 aA | 34.30 × 10−4 ± 7.70 × 10−4 bB |
NO2 (mmol·L−1) | 0.023 ± 0.005 | 0.024 ± 0.006 | 0.023 ± 0.005 | 0.024 ± 0.005 |
Na+ (µmol·L−1) | 53.45 ± 3.07 | 52.51± 3.62 | 57.21 ± 4.04 | 59.1 ± 3.47 |
K+ (µmol·L−1) | 14.54 ± 0.98 | 14.50 ± 1.12 | 15.81 ± 1.13 | 12.62 ± 0.92 |
Scenario | ||||
---|---|---|---|---|
Parameter | Current | Current + Amm 2.44 | RCP8.5 | RCP8.5 + Amm 2.44 |
Growth (cm) | 8.20 ± 0.67 aA | 4.53 ± 0.83 bA | 5.31 ± 0.94 aB | 4.61 ± 0.67 aA |
Condition factor (CF) | 1.75 ± 0.03 aA | 1.60 ± 0.04 bA | 1.60 ± 0.05 aB | 1.59 ± 0.02 aA |
Scenario | ||||
---|---|---|---|---|
Parameter | Current | Current + Amm 2.44 | RCP8.5 | RCP8.5 + Amm 2.44 |
Ht (%) | 35.8 ± 1.1 | 36.4 ± 1.2 | 32.8 ± 1.7 | 35.6 ± 1.1 |
Hb (g·dL−1) | 10.45 ± 0.46 | 11.26 ± 0.46 | 10.29 ± 0.46 | 11.16 ± 0.46 |
RBC (106 cells·mm3) | 2.05 ± 0.10 | 2.26 ± 0.10 | 2.04 ± 0.10 | 2.13± 0.09 |
MCV (fL) | 177.89 ± 7.92 | 164.62 ± 7.92 | 161.56 ± 7.92 | 168.45 ± 7.92 |
MCH (pg) | 51.16 ± 2.91 | 50.61 ± 2.91 | 51.18 ± 2.91 | 52.46 ± 2.91 |
MCHC (%) | 28.9 ± 1.3 | 30.8 ± 1.3 | 31.6 ± 1.3 | 31.3 ± 1.3 |
Met-Hb (%) | 8.4 × 10−4 ± 0.4 × 10−4 | 7.5 × 10−4 ± 0.4 × 10−4 | 7.7 × 10−4 ± 0.4 × 10−4 | 8.1 × 10−4 ± 0.4 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, J.F.P.; Amanajás, R.D.; Val, A.L. Ammonia Increases the Stress of the Amazonian Giant Arapaima gigas in a Climate Change Scenario. Animals 2023, 13, 1977. https://doi.org/10.3390/ani13121977
Ramírez JFP, Amanajás RD, Val AL. Ammonia Increases the Stress of the Amazonian Giant Arapaima gigas in a Climate Change Scenario. Animals. 2023; 13(12):1977. https://doi.org/10.3390/ani13121977
Chicago/Turabian StyleRamírez, José Fernando Paz, Renan Diego Amanajás, and Adalberto Luis Val. 2023. "Ammonia Increases the Stress of the Amazonian Giant Arapaima gigas in a Climate Change Scenario" Animals 13, no. 12: 1977. https://doi.org/10.3390/ani13121977
APA StyleRamírez, J. F. P., Amanajás, R. D., & Val, A. L. (2023). Ammonia Increases the Stress of the Amazonian Giant Arapaima gigas in a Climate Change Scenario. Animals, 13(12), 1977. https://doi.org/10.3390/ani13121977