Dietary Probiotics Modulate Gut Barrier and Immune-Related Gene Expression and Histomorphology in Broiler Chickens under Non- and Pathogen-Challenged Conditions: A Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Selection of Studies
2.3. Construction of Database
2.4. Data Analysis
3. Results
3.1. Database Description
3.2. Probiotic Effects on Gut Barrier and Immune-Related Gene Expression
3.3. Probiotic Effects on Gut Histomorphology
3.4. Probiotic Effects on Growth Performance
3.5. Backward Elimination Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popova, T. Effect of probiotics in poultry for improving meat quality. Curr. Opin. Food Sci. 2017, 14, 72–77. [Google Scholar] [CrossRef]
- Bilal, M.; Si, W.; Barbe, F.; Chevaux, E.; Sienkiewicz, O.; Zhao, X. Effects of novel probiotic strains of Bacillus pumilus and Bacillus subtilis on production, gut health, and immunity of broiler chickens raised under suboptimal conditions. Poult. Sci. 2021, 100, 100871. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, K.; Zhang, A.; Chang, W.; Zheng, A.; Chen, Z.; Cai, H.; Liu, G. Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poult. Sci. 2021, 100, 101323. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Peng, Q.; Jia, H.M.; Zeng, X.F.; Zhu, J.L.; Hou, C.L.; Liu, X.T.; Yang, F.J.; Qiao, S.Y. Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1. Poult. Sci. 2017, 96, 2576–2586. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, W.; Liu, D.; Guo, Y. Effects of Lactobacillus acidophilus on the growth performance and intestinal health of broilers challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2018, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Luo, L.; Zhang, Y.; Wang, Z.; Xia, Z. Effects of the dietary probiotic, Enterococcus faecium NCIMB11181, on the intestinal barrier and system immune status in Escherichia coli O78-challenged broiler chickens. Probiotics Antimicrob. Proteins 2019, 11, 946–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neveling, D.P.; Dicks, L.M.T. Probiotics: An antibiotic replacement strategy for healthy broilers and productive rearing. Probiotics Antimicrob. Proteins 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef]
- Sales, J. Effects of access to pasture on performance, carcass composition, and meat quality in broilers: A meta-analysis. Poult. Sci. 2014, 93, 1523–1533. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Trevisi, P.; Prates, J.A.M.; Tanghe, S.; Bosi, P.; Canibe, N.; Montagne, L.; Freire, J.; Zebeli, Q. Assessing the effect of dietary inulin supplementation on gastrointestinal fermentation, digestibility and growth in pigs: A meta-analysis. Anim. Feed Sci. Technol. 2017, 233, 120–132. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Canibe, N.; Montagne, L.; Freire, J.; Bosi, P.; Prates, J.A.M.; Tanghe, S.; Trevisi, P. Resistant starch reduces large intestinal pH and promotes fecal lactobacilli and bifidobacteria in pigs. Animal 2019, 13, 64–73. [Google Scholar] [CrossRef] [Green Version]
- St-Pierre, N.R. Invited review: Integrating quantitative findings from multiple studies using mixed model methodology. J. Dairy Sci. 2001, 84, 741–755. [Google Scholar] [CrossRef]
- Musa, B.B.; Duan, Y.; Khawar, H.; Sun, Q.; Ren, Z.; Elsiddig Mohamed, M.A.; Abbasi, I.H.R.; Yang, X. Bacillus subtilis B21 and Bacillus licheniformis B26 improve intestinal health and performance of broiler chickens with Clostridium perfringens -induced necrotic enteritis. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1039–1049. [Google Scholar] [CrossRef]
- Gharib-Naseri, K.; de Paula Dorigam, J.C.; Doranalli, K.; Kheravii, S.; Swick, R.A.; Choct, M.; Wu, S.B. Modulations of genes related to gut integrity, apoptosis, and immunity underlie the beneficial effects of Bacillus amyloliquefaciens CECT 5940 in broilers fed diets with different protein levels in a necrotic enteritis challenge model. J. Anim. Sci. Biotechnol. 2020, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Qiu, K.; Li, C.-L.; Wang, J.; Qi, G.-H.; Gao, J.; Zhang, H.-J.; Wu, S.-G. Effects of dietary supplementation with Bacillus subtilis, as an alternative to antibiotics, on growth performance, serum immunity, and intestinal health in broiler chickens. Front. Nutr. 2021, 8, 786878. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Wang, Z.; Dai, X.; Hu, Y.; Zhong, M.; Xiong, L.; Jiang, C.; Khalique, A.; Ni, X.; Zeng, D.; et al. Effects of Bacillus methylotrophicus SY200 supplementation on growth performance, antioxidant status, intestinal morphology, and immune function in broiler chickens. Probiotics Antimicrob. Proteins 2022. [Google Scholar] [CrossRef] [PubMed]
- Kan, L.; Guo, F.; Liu, Y.; Pham, V.H.; Guo, Y.; Wang, Z. Probiotics Bacillus licheniformis improves intestinal health of subclinical necrotic enteritis-challenged broilers. Front. Microbiol. 2021, 12, 623739. [Google Scholar] [CrossRef]
- Wang, H.; Ni, X.; Qing, X.; Liu, L.; Lai, J.; Khalique, A.; Li, G.; Pan, K.; Jing, B.; Zeng, D. Probiotic enhanced intestinal immunity in broilers against subclinical necrotic enteritis. Front. Immunol. 2017, 8, 1592. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, C.; Tan, J.; Macia, L.; Mackay, C.R. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol. Rev. 2017, 278, 277–295. [Google Scholar] [CrossRef]
- Kogut, M.H.; Genovese, K.J.; Swaggerty, C.L.; He, H.; Broom, L. Inflammatory phenotypes in the intestine of poultry: Not all inflammation is created equal. Poult. Sci. 2018, 97, 2339–2346. [Google Scholar] [CrossRef]
- Kimura, I.; Ichimura, A.; Ohue-Kitano, R.; Igarashi, M. Free fatty acid receptors in health and disease. Physiol. Rev. 2020, 100, 171–210. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, Q.; Yang, Y.; Guo, A. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Front. Vet. Sci. 2021, 8, 736739. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Yan, D.; Liu, S.; Gao, N.; Ma, Z.; Shi, Z.; Dong, N.; Shan, A. Host defense peptides in nutrition and diseases: A contributor of immunology modulation. J. Agric. Food Chem. 2023, 71, 3125–3140. [Google Scholar] [CrossRef] [PubMed]
- Metzler-Zebeli, B.U. The role of dietary and microbial fatty acids in the control of inflammation in neonatal piglets. Animals 2021, 11, 2781. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Osorio, L.M.; Yepes-Medina, V.; Ballou, A.; Parini, M.; Angel, R. Short and medium chain fatty acids and their derivatives as a natural strategy in the control of necrotic enteritis and microbial homeostasis in broiler chickens. Front. Vet. Sci. 2021, 8, 773372. [Google Scholar] [CrossRef]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell. Infect. Microbiol. 2012, 2, 86. [Google Scholar] [CrossRef] [Green Version]
- Hakizimana, O.; Matabaro, E.; Lee, B.H. The current strategies and parameters for the enhanced microbial production of 2,3-butanediol. Biotechnol. Rep. 2019, 25, e00397. [Google Scholar] [CrossRef]
- Ariyoshi, T.; Hagihara, M.; Takahashi, M.; Mikamo, H. Effect of Clostridium butyricum on gastrointestinal infections. Biomedicines 2022, 10, 483. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium species as probiotics: Potentials and challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Kogut, M.H.; Genovese, K.J.; He, H.; Arsenault, R.J. AMPK and mTOR: Sensors and regulators of immunometabolic changes during Salmonella infection in the chicken. Poult. Sci. 2016, 95, 345–353. [Google Scholar] [CrossRef]
- Okamoto, K.; Fujiya, M.; Nata, T.; Ueno, N.; Inaba, Y.; Ishikawa, C.; Ito, T.; Moriichi, K.; Tanabe, H.; Mizukami, Y.; et al. Competence and sporulation factor derived from Bacillus subtilis improves epithelial cell injury in intestinal inflammation via immunomodulation and cytoprotection. Int. J. Color. Dis. 2012, 27, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Suva, M.A.; Sureja, V.P.; Kheni, D.B. Novel insight on probiotic Bacillus subtilis: Mechanism of action and clinical applications. J. Curr. Res. Sci. Med. 2016, 2, 65. [Google Scholar] [CrossRef]
- Zanello, G.; Meurens, F.; Berri, M.; Chevaleyre, C.; Melo, S.; Auclair, E.; Salmon, H. Saccharomyces cerevisiae decreases inflammatory responses induced by F4+ enterotoxigenic Escherichia coli in porcine intestinal epithelial cells. Vet. Immunol. Immunopathol. 2011, 141, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.S.; Elian, S.D.A.; Vieira, A.T.; Tiago, F.C.P.; Martins, A.K.S.; Silva, F.C.P.; Souza, É.L.S.; Sousa, L.P.; Araújo, H.R.C.; Pimenta, P.F.; et al. Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever. Int. J. Med. Microbiol. 2011, 301, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.; Wang, K.; Zhou, S.-N.; Wang, X.-D.; Wu, J.-E. Protective effect of Saccharomyces boulardii on deoxynivalenol-induced injury of porcine macrophage via attenuating p38 MAPK signal pathway. Appl. Biochem. Biotechnol. 2017, 182, 411–427. [Google Scholar] [CrossRef]
- Li, M.; van Esch, B.C.A.M.; Wagenaar, G.T.M.; Garssen, J.; Folkerts, G.; Henricks, P.A.J. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 2018, 831, 52–59. [Google Scholar] [CrossRef]
- Xu, X.; Yang, S.; Olajide, J.S.; Qu, Z.; Gong, Z.; Wang, J.; Zhang, Y.; Wang, H.; Xiong, L.; Zhang, K.; et al. Clostridium butyricum supplement can ameliorate the intestinal barrier roles in broiler chickens experimentally infected with Clostridium perfringens. Front. Physiol. 2021, 12, 1572. [Google Scholar] [CrossRef]
- Mohammed, E.S.I.; Radey, R. Immunomodulation of antimicrobial peptides expression in the gastrointestinal tract by probiotics in response to stimulation by Salmonella minnesota Lipopolysaccharides. Probiotics Antimicrob. Proteins 2021, 13, 1157–1172. [Google Scholar] [CrossRef]
- Liu, L.; Ling, H.; Zhang, W.; Zhou, Y.; Li, Y.; Peng, N.; Zhao, S. Functional comparison of Clostridium butyricum and sodium butyrate supplementation on growth, intestinal health, and the anti-inflammatory response of broilers. Front. Microbiol. 2022, 13, 914212. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Hooda, S.; Pieper, R.; Zijlstra, R.T.; van Kessel, A.G.; Mosenthin, R.; Gänzle, M.G. Nonstarch polysaccharides modulate bacterial microbiota, pathways for butyrate production, and abundance of pathogenic Escherichia coli in the pig gastrointestinal tract. Appl. Environ. Microbiol. 2010, 76, 3692–3701. [Google Scholar] [CrossRef] [Green Version]
- Metzler-Zebeli, B.U.; Zijlstra, R.T.; Mosenthin, R.; Gänzle, M.G. Dietary calcium phosphate content and oat β-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs. FEMS Microbiol. Ecol. 2011, 75, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Broom, L.J.; Kogut, M.H. Gut immunity: Its development and reasons and opportunities for modulation in monogastric production animals. Anim. Heal. Res. Rev. 2018, 19, 46–52. [Google Scholar] [CrossRef]
- Shini, S.; Bryden, W.L. Probiotics and gut health: Linking gut homeostasis and poultry productivity. Anim. Prod. Sci. 2021, 62, 1090–1112. [Google Scholar] [CrossRef]
- Roselli, M.; Pieper, R.; Rogel-Gaillard, C.; de Vries, H.; Bailey, M.; Smidt, H.; Lauridsen, C. Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Anim. Feed Sci. Technol. 2017, 233, 104–119. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, G.E.; Metzler-Zebeli, B.U.; Lawlor, P.G. Impact of intestinal microbiota on growth and feed efficiency in pigs: A review. Microorganisms 2020, 8, 1886. [Google Scholar] [CrossRef]
- Mu, Q.; Tavella, V.J.; Luo, X.M. Role of Lactobacillus reuteri in human health and diseases. Front. Microbiol. 2018, 9, 757. [Google Scholar] [CrossRef] [Green Version]
- Bell, H.N.; Rebernick, R.J.; Goyert, J.; Singhal, R.; Kuljanin, M.; Kerk, S.A.; Huang, W.; Das, N.K.; Andren, A.; Solanki, S.; et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 2022, 40, 185–200.e6. [Google Scholar] [CrossRef]
- Bahaddad, S.A.; Almalki, M.H.K.; Alghamdi, O.A.; Sohrab, S.S.; Yasir, M.; Azhar, E.I.; Chouayekh, H. Bacillus species as direct-fed microbial antibiotic alternatives for monogastric production. Probiotics Antimicrob. Proteins 2023, 15, 1–16. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarkar, A.; McSkimming, D.I. Gut microbiota and immune system interactions. Microorganisms 2020, 8, 1587. [Google Scholar] [CrossRef]
- Ateya, A.I.; Arafat, N.; Saleh, R.M.; Ghanem, H.M.; Naguib, D.; Radwan, H.A.; Elseady, Y.Y. Intestinal gene expressions in broiler chickens infected with Escherichia coli and dietary supplemented with probiotic, acidifier and synbiotic. Vet. Res. Commun. 2019, 43, 131–142. [Google Scholar] [CrossRef]
- Chang, C.H.; Teng, P.Y.; Lee, T.T.; Yu, B. Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica. Asian-Australas. J. Anim. Sci. 2020, 33, 1797–1808. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Ajuwon, K.M. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS ONE 2017, 12, e0179586. [Google Scholar] [CrossRef] [Green Version]
- Raheem, A.; Liang, L.; Zhang, G.; Cui, S. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Front. Immunol. 2021, 12, 616713. [Google Scholar] [CrossRef]
- Shehata, A.A.; Yalçın, S.; Latorre, J.D.; Basiouni, S.; Attia, Y.A.; Abd El-Wahab, A.; Visscher, C.; El-Seedi, H.R.; Huber, C.; Hafez, H.M.; et al. Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry. Microorganisms 2022, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Wang, B.; Zhou, Y.; Tang, L.; Zeng, Z.; Zhang, H.; Li, W. Protective effects of Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 against Clostridium perfringens infection in broilers. Front. Immunol. 2021, 11, 628374. [Google Scholar] [CrossRef]
- Zhao, Y.; Zeng, Y.; Zeng, D.; Wang, H.; Sun, N.; Xin, J.; Zhou, M.; Yang, H.; Lei, L.; Ling, H.; et al. Dietary probiotic supplementation suppresses subclinical necrotic enteritis in broiler chickens in a microbiota-dependent manner. Front. Immunol. 2022, 13, 855426. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, R.; Liu, J.; Wang, W.; Chen, Y.; Cai, W. Effects of novel microecologics combined with traditional Chinese medicine and probiotics on growth performance and health of broilers. Poult. Sci. 2022, 101, 101412. [Google Scholar] [CrossRef] [PubMed]
- Wickramasuriya, S.S.; Park, I.; Lee, K.; Lee, Y.; Kim, W.H.; Nam, H.; Lillehoj, H.S. Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry. Vaccines 2022, 10, 172. [Google Scholar] [CrossRef] [PubMed]
- Calik, A.; Omara, I.I.; White, M.B.; Li, W.; Dalloul, R.A. Effects of dietary direct fed microbial supplementation on performance, intestinal morphology and immune response of broiler chickens challenged with coccidiosis. Front. Vet. Sci. 2019, 6, 463. [Google Scholar] [CrossRef] [Green Version]
- Azizi, T.; Daneshyar, M.; Allymehr, M.; Tukmechi, A.; Khalilvandi Behroozyar, H.; Shalizar Jalali, A. Combination of Lactobacillus species and yeast ameliorates adverse effect of deoxynivalenol contaminated diet on immune system, gut morphology and jejunal gene expression in broiler chickens. Ital. J. Anim. Sci. 2021, 20, 59–70. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.A.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A.-M.E.; Alagawany, M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K.; Abdel-Raheem, S.; Böhm, J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 2009, 88, 49–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, X.-F.; He, S.; Chen, X.; Wang, J.; Li, J.; Zhu, Q.; Zhang, Z.; Li, L.; Alam, M.S. Effects of high carbohydrate diet-modulated microbiota on gut health in Chinese perch. Front. Microbiol. 2020, 11, 575102. [Google Scholar] [CrossRef]
- Xi, Y.; Huang, Y.; Li, Y.; Huang, Y.; Yan, J.; Shi, Z. The effects of dietary protein and fiber levels on growth performance, gout occurrence, intestinal microbial communities, and immunoregulation in the gut-kidney axis of goslings. Poult. Sci. 2022, 101, 101780. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, W.K. Effects of dietary fiber on nutrients utilization and gut health of poultry: A review of challenges and opportunities. Animals 2021, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarpour, H.R.; Chamani, M.; Rahimi, G.; Sadeghi, A.A.; Qujeq, D. The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian-Australas. J. Anim. Sci. 2012, 25, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, S.P.; Wu, A.M.; Ding, X.M.; Lei, Y.; Bai, J.; Zhang, K.Y.; Chio, J.S. Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poult. Sci. 2013, 92, 663–670. [Google Scholar] [CrossRef]
- Bodinga, B.M.; Hayat, K.; Liu, X.; Zhou, J.; Yang, X.; Ismaila, A.; Soomro, R.N.; Ren, Z.; Zhang, W.; Yang, X.J. Effects of Bacillus Subtilis DSM 32315 on immunity, nutrient transporters and functional diversity of cecal microbiome of broiler chickens in necrotic enteritis challenge. J. World’s Poult. Res. 2020, 10, 527–544. [Google Scholar] [CrossRef]
- Cao, L.; Wu, X.H.; Bai, Y.L.; Wu, X.Y.; Gu, S.B. Anti-inflammatory and antioxidant activities of probiotic powder containing Lactobacillus plantarum 1.2567 in necrotic enteritis model of broiler chickens. Livest. Sci. 2019, 223, 157–163. [Google Scholar] [CrossRef]
- Chaudhari, A.A.; Lee, Y.; Lillehoj, H.S. Beneficial effects of dietary supplementation of Bacillus strains on growth performance and gut health in chickens with mixed coccidiosis infection. Vet. Parasitol. 2020, 277, 109009. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ishfaq, M.; Wang, J. Effects of Lactobacillus salivarius supplementation on the growth performance, liver function, meat quality, immune responses and Salmonella pullorum infection resistance of broilers challenged with Aflatoxin B1. Poult. Sci. 2022, 101, 101651. [Google Scholar] [CrossRef]
- Deng, Q.; Shi, H.; Luo, Y.; Zhao, H.; Liu, N. Effect of dietary Lactobacilli mixture on Listeria monocytogenes infection and virulence property in broilers. Poult. Sci. 2020, 99, 3655–3662. [Google Scholar] [CrossRef]
- Dong, Z.L.; Wang, Y.W.; Song, D.; Hou, Y.J.; Wang, W.W.; Qi, W.T.; Yun, T.T.; Li, A.K. The effects of dietary supplementation of pre-microencapsulated Enterococcus fecalis and the extract of Camellia oleifera seed on growth performance, intestinal morphology, and intestinal mucosal immune functions in broiler chickens. Anim. Feed Sci. Technol. 2016, 212, 42–51. [Google Scholar] [CrossRef]
- Emami, N.K.; Calik, A.; White, M.B.; Kimminau, E.A.; Dalloul, R.A. Effect of probiotics and multi-component feed additives on microbiota, gut barrier and immune responses in broiler chickens during subclinical necrotic enteritis. Front. Vet. Sci. 2020, 7, 972. [Google Scholar] [CrossRef]
- Emami, N.K.; Calik, A.; White, M.B.; Young, M.; Dalloul, R.A. Necrotic enteritis in broiler chickens: The role of tight junctions and mucosal immune responses in alleviating the effect of the disease. Microorganisms 2019, 7, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Xi, Y.; Xia, Y.; Wu, T.; Zhao, D.; Zhang, Z.; Ding, B. Dietary Lactobacillus fermentum and Bacillus coagulans supplementation modulates intestinal immunity and microbiota of broiler chickens challenged by Clostridium perfringens. Front. Vet. Sci. 2021, 8, 680742. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Long, S.; Mahfuz, S.; Wu, D.; Wang, X.; Wei, X.; Piao, X. Effects of probiotics as antibiotics substitutes on growth performance, serum biochemical parameters, intestinal morphology, and barrier function of broilers. Animals 2019, 9, 985. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, N.G.; Modarressi, M.H.; Mousavi, S.N.; Ebrahimi, M.T. Effects of indigenous spore-forming probiotic as feed supplement on performance and safety in broilers. J. Hell. Vet. Med. Soc. 2019, 70, 1841–1850. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.M.; Chamani, M.; Mousavi, S.N.; Hosseini, S.A.; Sadeghi, A.A. Growth performance, mucin2 gene expression, morphology of small intestine and intestinal lactobacillus population of broiler chicks fed with triticale-based diets: Effects of dietary physical form and dietary inclusion of enzyme and probiotic. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 203–210. [Google Scholar] [CrossRef]
- Konieczka, P.; Sandvang, D.; Kinsner, M.; Szkopek, D.; Szyryńska, N.; Jankowski, J. Bacillus-based probiotics affect gut barrier integrity in different ways in chickens subjected to optimal or challenge conditions. Vet. Microbiol. 2022, 265, 109323. [Google Scholar] [CrossRef]
- Lan, D.; Xun, X.Y.; Hu, Y.D.; Li, N.Z.; Yang, C.W.; Jiang, X.S.; Liu, Y.P. Research on the effect of Pediococcus pentosaceus on Salmonella enteritidis -infected chicken. BioMed Res. Int. 2020, 2020, 6416451. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Chen, Y.P.; Yang, M.X.; Zhang, L.L.; Lu, Z.X.; Zhou, Y.M.; Wang, T. Bacillus amyloliquefaciens supplementation alleviates immunological stress and intestinal damage in lipopolysaccharide-challenged broilers. Anim. Feed Sci. Technol. 2015, 208, 119–131. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Lv, Z.; Liu, D.; Guo, Y. Bacillus subtilis and yeast cell wall improve the intestinal health of broilers challenged by Clostridium perfringens. Br. Poult. Sci. 2017, 58, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, S.; Luo, Z.; Liu, D. Supplemental Bacillus subtilis PB6 improves growth performance and gut health in broilers challenged with Clostridium perfringens. J. Immunol. Res. 2021, 2021, 2549541. [Google Scholar] [CrossRef]
- Memon, F.U.; Yang, Y.; Leghari, I.H.; Lv, F.; Soliman, A.M.; Zhang, W.; Si, H. Transcriptome analysis revealed ameliorative effects of Bacillus based probiotic on immunity, gut barrier system, and metabolism of chicken under an experimentally induced Eimeria tenella infection. Genes 2021, 12, 536. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M.; Zhang, Z.; Yin, G. Effect of probiotics on the performance and intestinal health of broiler chickens infected with Eimeria tenella. Vaccines 2022, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Mountzouris, K.C.; Palamidi, I.; Paraskeuas, V.; Griela, E.; Fegeros, K. Dietary probiotic form modulates broiler gut microbiota indices and expression of gut barrier genes including essential components for gut homeostasis. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1143–1159. [Google Scholar] [CrossRef]
- Wang, J.; Ishfaq, M.; Miao, Y.; Liu, Z.; Hao, M.; Wang, C.; Wang, J.; Chen, X. Dietary administration of Bacillus subtilis KC1 improves growth performance, immune response, heat stress tolerance, and disease resistance of broiler chickens. Poult. Sci. 2022, 101, 101693. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Han, Q.; Guo, Y.; Zhang, B.; D’inca, R. Dietary live yeast and mannan-oligosaccharide supplementation attenuate intestinal inflammation and barrier dysfunction induced by Escherichia coli in broilers. Br. J. Nutr. 2016, 116, 1878–1888. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, Y.; Xu, S.; Yang, J.; Wang, K.; Zhan, X. Bacillus subtilis DSM29784 alleviates negative effects on growth performance in broilers by improving the intestinal health under necrotic enteritis challenge. Front. Microbiol. 2021, 12, 2470. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Duan, Y.; Wang, F.; Guo, F.; Yan, F.; Yang, X.; Yang, X. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens. J. Anim. Sci. Biotechnol. 2018, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, B.; Zeng, Z.; Liu, R.; Tang, L.; Gong, L.; Li, W. Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. Poult. Sci. 2019, 98, 5028–5039. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shao, Y.; Song, B.; Zhen, W.; Wang, Z.; Guo, Y.; Shahid, M.S.; Nie, W. Effects of Bacillus coagulans supplementation on the growth performance and gut health of broiler chickens with Clostridium perfringens-induced necrotic enteritis. J. Anim. Sci. Biotechnol. 2018, 9, 9. [Google Scholar] [CrossRef]
- Wu, Y.; Zhen, W.; Geng, Y.; Wang, Z.; Guo, Y. Pretreatment with probiotic Enterococcus faecium NCIMB 11181 ameliorates necrotic enteritis-induced intestinal barrier injury in broiler chickens. Sci. Rep. 2019, 9, 10256. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Memon, F.U.; Hao, K.; Jiang, M.; Guo, L.; Liu, T.; Lv, F.; Zhang, W.; Zhang, Y.; Si, H. The combined use of Bacillus subtilis-based probiotic and anticoccidial herb had a better anti-Eimeria tenella efficiency. J. Appl. Poult. Res. 2021, 30, 100181. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.; Yu, Y.; Zhang, R.; Wu, Y.; Yue, M.; Yang, C. Effects of Bacillus coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poult. Sci. 2021, 100, 101168. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Xu, H.; Liang, C.; Zhai, Z. Bacillus amyloliquefaciens BLCC1-0238 alone or in combination with mannan-oligosaccharides alleviates subclinical necrotic enteritis in broilers. Probiotics Antimicrob. Proteins 2022, 14, 158–168. [Google Scholar] [CrossRef]
- Zhen, W.; Shao, Y.; Gong, X.; Wu, Y.; Geng, Y.; Wang, Z.; Guo, Y. Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poult. Sci. 2018, 97, 2654–2666. [Google Scholar] [CrossRef] [PubMed]
Response Variable (Y) 1,2 | nTreat | Parameter Estimates | Model Statistics | |||||
---|---|---|---|---|---|---|---|---|
Intercept | SEIntercept | Slope | SESlope | RMSE | R2 | p-Value | ||
Jejunum, Week 3 | ||||||||
MUC2 | 10 | 0.95 | 0.149 | 0.053 | 0.023 | 0.336 | 0.40 | 0.049 |
ZO1 | 11 | 0.99 | 0.046 | 0.019 | 0.007 | 0.104 | 0.46 | 0.023 |
OCLN | 13 | 0.96 | 0.247 | 0.084 | 0.037 | 0.612 | 0.32 | 0.044 |
CLDN1 | 11 | 0.99 | 0.111 | 0.041 | 0.017 | 0.251 | 0.39 | 0.041 |
IL1B | 11 | 1.01 | 0.060 | −0.012 | 0.009 | 0.135 | 0.15 | 0.241 |
IFNG | 14 | 1.02 | 0.058 | −0.003 | 0.009 | 0.154 | 0.01 | 0.773 |
TLR2 | 11 | 1.07 | 0.181 | 0.014 | 0.028 | 0.407 | 0.03 | 0.621 |
Jejunum, Week 6 | ||||||||
MUC2 | 10 | 0.99 | 0.449 | 0.156 | 0.065 | 0.902 | 0.42 | 0.044 |
ZO1 | 14 | 1.00 | 0.170 | 0.069 | 0.022 | 0.382 | 0.45 | 0.009 |
OCLN | 16 | 0.94 | 0.245 | 0.067 | 0.032 | 0.604 | 0.24 | 0.056 |
CLDN1 | 12 | 1.00 | 0.266 | 0.060 | 0.034 | 0.533 | 0.23 | 0.112 |
Ileum, Week 3 | ||||||||
MUC2 | 10 | 0.89 | 0.217 | 0.095 | 0.030 | 0.439 | 0.57 | 0.012 |
ZO1 | 11 | 0.97 | 0.171 | −0.016 | 0.023 | 0.347 | 0.05 | 0.510 |
OCLN | 13 | 0.85 | 0.150 | 0.064 | 0.020 | 0.338 | 0.47 | 0.009 |
CLDN1 | 10 | 0.96 | 0.115 | 0.036 | 0.016 | 0.233 | 0.39 | 0.054 |
Ileum, Week 6 | ||||||||
MUC2 | 15 | 0.98 | 0.538 | 0.130 | 0.074 | 1.211 | 0.19 | 0.103 |
ZO1 | 14 | 0.86 | 0.463 | 0.127 | 0.062 | 0.930 | 0.26 | 0.061 |
OCLN | 16 | 0.97 | 0.115 | 0.034 | 0.015 | 0.259 | 0.26 | 0.043 |
CLDN1 | 11 | 0.94 | 0.362 | 0.087 | 0.049 | 0.728 | 0.26 | 0.112 |
Response Variable (Y) 1,2,3,4 | nTreat | Parameter Estimates | Model Statistics | |||||
---|---|---|---|---|---|---|---|---|
Intercept | SEIntercept | Slope | SESlope | RMSE | R2 | p-Value | ||
Jejunum, Week 2 | ||||||||
ZO1 | 14 | 0.99 | 0.026 | 0.015 | 0.004 | 0.070 | 0.51 | 0.004 |
OCLN | 16 | 0.71 | 0.909 | 0.170 | 0.137 | 2.420 | 0.10 | 0.234 |
CLDN1 | 14 | 0.94 | 0.226 | 0.041 | 0.035 | 0.601 | 0.10 | 0.264 |
CLDN3 | 10 | 1.00 | 0.040 | 0.103 | 0.007 | 0.089 | 0.97 | <0.001 |
IL1B | 10 | 1.00 | 0.015 | −0.009 | 0.003 | 0.035 | 0.63 | 0.006 |
IL10 | 14 | 1.04 | 0.247 | 0.015 | 0.039 | 0.606 | 0.01 | 0.707 |
IFNG | 10 | 1.00 | 0.037 | −0.037 | 0.006 | 0.083 | 0.82 | <0.001 |
Jejunum, Week 3 | ||||||||
MUC2 | 10 | 0.93 | 0.238 | 0.051 | 0.037 | 0.538 | 0.19 | 0.205 |
ZO1 | 17 | 0.97 | 0.098 | 0.036 | 0.014 | 0.260 | 0.31 | 0.021 |
OCLN | 17 | 0.94 | 0.177 | 0.062 | 0.025 | 0.473 | 0.28 | 0.028 |
CLDN1 | 14 | 0.80 | 0.617 | 0.138 | 0.091 | 1.524 | 0.16 | 0.155 |
IL1B | 17 | 1.00 | 0.074 | −0.042 | 0.010 | 0.198 | 0.53 | 0.001 |
IL6 | 12 | 1.01 | 0.096 | −0.030 | 0.013 | 0.216 | 0.35 | 0.044 |
IL10 | 13 | 0.91 | 0.290 | 0.152 | 0.042 | 0.719 | 0.54 | 0.004 |
IFNG | 18 | 1.00 | 0.106 | −0.022 | 0.016 | 0.303 | 0.11 | 0.190 |
TNFA | 10 | 1.01 | 0.066 | −0.026 | 0.010 | 0.150 | 0.45 | 0.033 |
Jejunum, Week 4 | ||||||||
ZO1 | 12 | 1.06 | 0.085 | 0.034 | 0.013 | 0.192 | 0.40 | 0.026 |
OCLN | 12 | 0.99 | 0.283 | 0.056 | 0.043 | 0.634 | 0.15 | 0.220 |
IL1B | 10 | 0.98 | 0.113 | 0.076 | 0.017 | 0.227 | 0.72 | 0.002 |
IFNG | 14 | 0.99 | 0.186 | 0.038 | 0.028 | 0.458 | 0.13 | 0.198 |
Jejunum, Week 5 | ||||||||
MUC2 | 13 | 0.97 | 0.206 | −0.004 | 0.026 | 0.358 | 0 | 0.890 |
Ileum, Week 2 | ||||||||
IFNG | 10 | 1.04 | 0.231 | −0.015 | 0.036 | 0.517 | 0.02 | 0.677 |
TLR4 | 10 | 1.03 | 0.048 | −0.035 | 0.007 | 0.107 | 0.75 | 0.001 |
Ileum, Week 3 | ||||||||
ZO1 | 16 | 0.96 | 0.196 | 0.050 | 0.028 | 0.483 | 0.19 | 0.096 |
OCLN | 16 | 0.98 | 0.207 | 0.056 | 0.029 | 0.509 | 0.21 | 0.077 |
CLDN1 | 11 | 0.98 | 0.239 | 0.010 | 0.035 | 0.479 | 0.01 | 0.785 |
IL10 | 10 | 0.97 | 0.178 | 0.013 | 0.026 | 0.358 | 0.03 | 0.626 |
IFNG | 12 | 1.01 | 0.043 | −0.032 | 0.006 | 0.097 | 0.71 | 0.001 |
Ileum, Week 4 | ||||||||
ZO1 | 11 | 0.98 | 0.062 | 0.042 | 0.009 | 0.141 | 0.71 | 0.001 |
OCLN | 11 | 0.93 | 0.143 | 0.070 | 0.021 | 0.325 | 0.56 | 0.008 |
CLDN1 | 11 | 0.89 | 0.263 | 0.082 | 0.038 | 0.597 | 0.34 | 0.059 |
TNFA | 10 | 0.95 | 0.121 | −0.023 | 0.016 | 0.244 | 0.21 | 0.185 |
Ceca, Week 2 | ||||||||
IL6 | 18 | 0.96 | 0.093 | −0.034 | 0.013 | 0.270 | 0.31 | 0.017 |
IL8 | 10 | 0.83 | 0.251 | −0.001 | 0.031 | 0.518 | 0 | 0.967 |
IL10 | 10 | 1.12 | 0.571 | 0.213 | 0.081 | 1.014 | 0.47 | 0.030 |
Ceca, Week 4 | ||||||||
ZO1 | 10 | 1.21 | 0.198 | 0.119 | 0.033 | 0.401 | 0.62 | 0.007 |
Response Variable (Y) 1,2 | nTreat | Parameter Estimates | Model Statistics | |||||
---|---|---|---|---|---|---|---|---|
Intercept | SEIntercept | Slope | SESlope | RMSE | R2 | p-Value | ||
Jejunum, Week 3 | ||||||||
Villus Height | 15 | 1.00 | 0.030 | 0.022 | 0.004 | 0.080 | 0.66 | <0.001 |
Crypt Depth | 15 | 0.99 | 0.041 | −0.005 | 0.006 | 0.110 | 0.05 | 0.411 |
Villus Height/Crypt Depth | 15 | 1.00 | 0.064 | 0.029 | 0.009 | 0.171 | 0.42 | 0.009 |
Jejunum, Week 6 | ||||||||
Villus Height | 19 | 1.00 | 0.032 | 0.011 | 0.004 | 0.084 | 0.28 | 0.020 |
Crypt Depth | 19 | 1.00 | 0.061 | 0.008 | 0.008 | 0.163 | 0.05 | 0.348 |
Villus Height/Crypt Depth | 19 | 1.01 | 0.050 | 0.004 | 0.007 | 0.133 | 0.02 | 0.529 |
Ileum, Week 3 | ||||||||
Villus Height | 11 | 0.98 | 0.037 | 0.003 | 0.005 | 0.083 | 0.03 | 0.585 |
Crypt Depth | 11 | 1.00 | 0.058 | −0.016 | 0.008 | 0.130 | 0.29 | 0.088 |
Villus Height/Crypt Depth | 11 | 0.99 | 0.065 | 0.023 | 0.009 | 0.147 | 0.41 | 0.034 |
Ileum, Week 6 | ||||||||
Villus Height | 17 | 0.99 | 0.023 | 0.014 | 0.003 | 0.058 | 0.58 | 0.000 |
Crypt Depth | 17 | 1.00 | 0.048 | −0.004 | 0.006 | 0.119 | 0.02 | 0.570 |
Villus Height/Crypt Depth | 17 | 1.01 | 0.022 | 0.015 | 0.003 | 0.055 | 0.65 | <0.001 |
Response Variable (Y) 1,2,3,4 | nTreat | Parameter Estimates | Model Statistics | |||||
---|---|---|---|---|---|---|---|---|
Intercept | SEIntercept | Slope | SESlope | RMSE | R2 | p-Value | ||
Duodenum, Week 5 | ||||||||
Villus Height | 15 | 1.01 | 0.026 | 0.013 | 0.003 | 0.046 | 0.53 | 0.002 |
Crypt Depth | 15 | 0.99 | 0.037 | 0.008 | 0.005 | 0.063 | 0.18 | 0.117 |
Villus Height/Crypt Depth | 15 | 1.01 | 0.042 | 0.002 | 0.005 | 0.073 | 0.01 | 0.776 |
Jejunum, Week 2 | ||||||||
Villus Height | 11 | 0.98 | 0.050 | 0.012 | 0.007 | 0.113 | 0.23 | 0.132 |
Crypt Depth | 11 | 1.00 | 0.020 | −0.014 | 0.003 | 0.046 | 0.71 | 0.001 |
Villus Height/Crypt Depth | 11 | 0.98 | 0.088 | 0.029 | 0.013 | 0.197 | 0.38 | 0.044 |
Jejunum, Week 3 | ||||||||
Villus Height | 17 | 0.99 | 0.040 | 0.019 | 0.006 | 0.106 | 0.42 | 0.005 |
Crypt Depth | 17 | 1.01 | 0.035 | −0.012 | 0.005 | 0.093 | 0.29 | 0.027 |
Villus Height/Crypt Depth | 17 | 0.97 | 0.085 | 0.038 | 0.012 | 0.226 | 0.40 | 0.007 |
Jejunum, Week 5 | ||||||||
Villus Height | 17 | 1.00 | 0.026 | 0.005 | 0.003 | 0.052 | 0.13 | 0.148 |
Crypt Depth | 17 | 0.99 | 0.024 | −0.007 | 0.003 | 0.049 | 0.28 | 0.029 |
Villus Height/Crypt Depth | 17 | 1.01 | 0.030 | 0.009 | 0.004 | 0.059 | 0.29 | 0.025 |
Ileum, Week 3 | ||||||||
Villus Height | 13 | 1.01 | 0.020 | 0.006 | 0.003 | 0.046 | 0.30 | 0.052 |
Crypt Depth | 13 | 1.00 | 0.057 | 0.007 | 0.008 | 0.127 | 0.06 | 0.434 |
Villus Height/Crypt Depth | 13 | 1.00 | 0.035 | −0.001 | 0.005 | 0.077 | 0 | 0.873 |
Ileum, Week 5 | ||||||||
Villus Height | 15 | 0.99 | 0.055 | 0.000 | 0.007 | 0.095 | 0 | 0.962 |
Crypt Depth | 15 | 0.99 | 0.030 | 0.010 | 0.004 | 0.052 | 0.37 | 0.016 |
Villus Height/Crypt Depth | 15 | 1.00 | 0.025 | −0.009 | 0.003 | 0.043 | 0.41 | 0.011 |
Response Variable (Y) 1 | nTreat | Parameter Estimates | Model Statistics | |||||
---|---|---|---|---|---|---|---|---|
Intercept | SEIntercept | Slope | SESlope | RMSE | R2 | p-Value | ||
Starter, Week 1–3 | ||||||||
ADFI (g) | 33 | 48.79 | 2.405 | 0.253 | 0.334 | 8.736 | 0.02 | 0.455 |
ADG (g) | 30 | 32.52 | 1.267 | 0.215 | 0.176 | 4.425 | 0.05 | 0.234 |
FCR | 33 | 1.46 | 0.050 | −0.002 | 0.007 | 0.180 | 0 | 0.741 |
Finisher, Week 4–6 | ||||||||
ADFI (g) | 29 | 148.29 | 7.481 | 0.600 | 1.025 | 25.025 | 0.01 | 0.563 |
ADG (g) | 26 | 73.80 | 4.703 | 0.661 | 0.644 | 15.012 | 0.04 | 0.315 |
FCR | 29 | 1.99 | 0.057 | −0.006 | 0.008 | 0.189 | 0.02 | 0.422 |
Overall, Week 1–6 | ||||||||
ADFI (g) | 32 | 97.98 | 4.503 | 0.443 | 0.624 | 15.736 | 0.02 | 0.483 |
ADG (g) | 26 | 53.54 | 2.414 | 0.514 | 0.333 | 7.705 | 0.09 | 0.135 |
FCR | 32 | 1.77 | 0.030 | −0.007 | 0.004 | 0.105 | 0.07 | 0.132 |
Response Variable (Y) 1,2,3 | nTreat | Parameter Estimates | Model Statistics | |||||
---|---|---|---|---|---|---|---|---|
Intercept | SEIntercept | Slope | SESlope | RMSE | R2 | p-Value | ||
Starter, Week 1–3 | ||||||||
ADFI (g) | 22 | 51.82 | 2.483 | 0.132 | 0.347 | 7.456 | 0.01 | 0.709 |
ADG (g) | 22 | 34.72 | 2.260 | 0.270 | 0.316 | 6.787 | 0.04 | 0.403 |
FCR | 22 | 1.49 | 0.066 | −0.007 | 0.009 | 0.198 | 0.03 | 0.464 |
Finisher, Week 4–6 | ||||||||
ADFI (g) | 13 | 142.90 | 16.708 | 1.388 | 2.474 | 40.945 | 0.03 | 0.586 |
ADG (g) | 13 | 68.16 | 11.278 | 0.758 | 1.670 | 27.638 | 0.02 | 0.659 |
FCR | 13 | 2.04 | 0.135 | −0.003 | 0.020 | 0.330 | 0 | 0.879 |
Overall, Week 1–6 | ||||||||
ADFI (g) | 17 | 95.08 | 4.156 | 0.102 | 0.634 | 11.776 | 0 | 0.874 |
ADG (g) | 17 | 55.76 | 4.857 | 0.259 | 0.741 | 13.760 | 0.01 | 0.731 |
FCR | 17 | 1.75 | 0.091 | −0.007 | 0.014 | 0.257 | 0.02 | 0.626 |
Response Variable (Y) 1,2 | Predictor (X) | nTreat | Parameter Estimates | Model Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Intercept | SEIntercept | Slope | SESlope | RMSE | R2 | VIF | p-Value | |||
Jejunum, Week 3 | ||||||||||
MUC2 | 10 | 0.95 | 0.149 | 0.336 | 0.40 | |||||
Probiotic (CFU/kg) | 0.053 | 0.023 | 1.00 | 0.050 | ||||||
ZO1 | 11 | 0.99 | 0.046 | 0.101 | 0.49 | |||||
Probiotic (CFU/kg) | 0.019 | 0.007 | 1.00 | 0.016 | ||||||
OCLN | 13 | 0.95 | 0.233 | 0.594 | 0.36 | |||||
Probiotic (CFU/kg) | 0.009 | 0.004 | 1.00 | 0.030 | ||||||
CLDN1 | 11 | 7.37 | 2.871 | 0.209 | 0.62 | |||||
Dietary ME (MJ/kg) | −0.514 | 0.231 | 1.00 | 0.057 | ||||||
Probiotic (CFU/kg) | 0.039 | 0.014 | 1.00 | 0.026 | ||||||
Villus Height | 15 | −0.83 | 0.946 | 0.073 | 0.74 | |||||
Dietary ME (MJ/kg) | 0.146 | 0.076 | 1.00 | 0.077 | ||||||
Probiotic (CFU/kg) | 0.022 | 0.004 | 1.00 | 0.000 | ||||||
Villus Height/Crypt Depth | 15 | −4.69 | 1.627 | 0.125 | 0.72 | |||||
Dietary ME (MJ/kg) | 0.456 | 0.130 | 1.00 | 0.004 | ||||||
Probiotic (CFU/kg) | 0.029 | 0.007 | 1.00 | 0.001 | ||||||
Jejunum, Week 6 | ||||||||||
MUC2 | 10 | 26.72 | 9.897 | 0.688 | 0.70 | |||||
Dietary ME (MJ/kg) | −1.961 | 0.754 | 1.00 | 0.035 | ||||||
Probiotic (CFU/kg) | 0.152 | 0.050 | 1.00 | 0.018 | ||||||
ZO1 | 14 | 0.34 | 4.308 | 0.309 | 0.70 | |||||
Dietary ME (MJ/kg) | 0.749 | 0.325 | 1.20 | 0.044 | ||||||
Dietary CP (%) | −0.460 | 0.182 | 1.19 | 0.030 | ||||||
Probiotic (CFU/kg) | 0.071 | 0.018 | 1.01 | 0.003 | ||||||
OCLN | 16 | −13.01 | 3.829 | 0.440 | 0.62 | |||||
Dietary CP (%) | 0.702 | 0.193 | 1.00 | 0.003 | ||||||
Probiotic (CFU/kg) | 0.072 | 0.023 | 1.00 | 0.009 | ||||||
Villus Height | 19 | 1.00 | 0.032 | 0.084 | 0.28 | |||||
Probiotic (CFU/kg) | 0.011 | 0.004 | 1.00 | 0.020 | ||||||
Ileum, Week 3 | ||||||||||
MUC2 | 10 | 0.88 | 0.217 | 0.439 | 0.57 | |||||
Probiotic (CFU/kg) | 0.095 | 0.030 | 1.00 | 0.012 | ||||||
OCLN | 13 | 0.85 | 0.150 | 0.338 | 0.47 | |||||
Probiotic (CFU/kg) | 0.064 | 0.020 | 1.00 | 0.009 | ||||||
CLDN1 | 10 | 0.96 | 0.115 | 0.233 | 0.39 | |||||
Probiotic (CFU/kg) | 0.036 | 0.016 | 1.00 | 0.054 | ||||||
Crypt Depth | 11 | 1.00 | 0.058 | 0.130 | 0.29 | |||||
Probiotic (CFU/kg) | −0.016 | 0.008 | 1.00 | 0.088 | ||||||
Villus Height/Crypt Depth | 11 | −4.09 | 2.538 | 0.122 | 0.68 | |||||
Dietary ME (MJ/kg) | 0.856 | 0.348 | 3.20 | 0.044 | ||||||
Dietary CP (%) | −0.256 | 0.129 | 3.20 | 0.087 | ||||||
Probiotic (CFU/kg) | 0.023 | 0.008 | 1.00 | 0.021 | ||||||
Ileum, Week 6 | ||||||||||
ZO1 | 14 | 57.76 | 14.077 | 0.582 | 0.76 | |||||
Dietary ME (MJ/kg) | −3.390 | 0.755 | 1.71 | 0.001 | ||||||
Dietary CP (%) | −0.695 | 0.299 | 1.72 | 0.043 | ||||||
Probiotic (CFU/kg) | 0.116 | 0.039 | 1.02 | 0.014 | ||||||
OCLN | 16 | 7.27 | 2.943 | 0.231 | 0.45 | |||||
Dietary ME (MJ/kg) | −0.489 | 0.228 | 1.02 | 0.052 | ||||||
Probiotic (CFU/kg) | 0.031 | 0.014 | 1.02 | 0.045 | ||||||
Villus Height | 17 | −0.02 | 0.382 | 0.049 | 0.72 | |||||
Dietary CP (%) | 0.052 | 0.019 | 1.00 | 0.019 | ||||||
Probiotic (CFU/kg) | 0.014 | 0.003 | 1.00 | <0.001 | ||||||
Villus Height/Crypt Depth | 17 | 2.49 | 0.603 | 0.048 | 0.76 | |||||
Dietary ME (MJ/kg) | −0.114 | 0.046 | 1.01 | 0.028 | ||||||
Probiotic (CFU/kg) | 0.015 | 0.003 | 1.01 | <0.001 |
Response Variable (Y) 1,2,3,4 | Predictor (X) | nTreat | Parameter Estimates | Model Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Intercept | SEIntercept | Slope | SESlope | RMSE | R2 | VIF | p-Value | |||
Jejunum, Week 2 | ||||||||||
ZO1 | 14 | 6.23 | 1.644 | 0.048 | 0.81 | |||||
Dietary ME (MJ/kg) | −0.512 | 0.145 | 1.49 | 0.005 | ||||||
Dietary CP (%) | 0.054 | 0.016 | 1.50 | 0.006 | ||||||
Probiotic (CFU/kg) | 0.015 | 0.003 | 1.00 | 0.000 | ||||||
CLDN3 | 10 | 1.00 | 0.040 | 0.089 | 0.97 | |||||
Probiotic (CFU/kg) | 0.103 | 0.007 | 1.00 | <0.001 | ||||||
IL1B | 10 | 1.00 | 0.015 | 0.035 | 0.63 | |||||
Probiotic (CFU/kg) | −0.009 | 0.003 | 1.00 | 0.006 | ||||||
IFNG | 10 | 1.00 | 0.037 | 0.083 | 0.82 | |||||
Probiotic (CFU/kg) | −0.037 | 0.006 | 1.00 | 0.000 | ||||||
Jejunum, Week 3 | ||||||||||
ZO1 | 17 | 14.06 | 3.798 | 0.201 | 0.64 | |||||
Dietary ME (MJ/kg) | −0.517 | 0.190 | 1.26 | 0.018 | ||||||
Dietary CP (%) | −0.316 | 0.099 | 1.26 | 0.007 | ||||||
Probiotic (CFU/kg) | 0.032 | 0.011 | 1.01 | 0.012 | ||||||
OCLN | 17 | 9.41 | 3.919 | 0.424 | 0.46 | |||||
Dietary CP (%) | −0.404 | 0.187 | 1.00 | 0.048 | ||||||
Probiotic (CFU/kg) | 0.060 | 0.023 | 1.00 | 0.020 | ||||||
IL1B | 17 | −2.10 | 1.215 | 0.169 | 0.68 | |||||
Dietary CP (%) | 0.146 | 0.057 | 1.01 | 0.023 | ||||||
Probiotic (CFU/kg) | −0.040 | 0.009 | 1.01 | 0.001 | ||||||
IL6 | 12 | −4.66 | 1.799 | 0.145 | 0.77 | |||||
Days post-infection | −0.022 | 0.008 | 1.12 | 0.021 | ||||||
Dietary CP (%) | 0.285 | 0.088 | 1.11 | 0.012 | ||||||
Probiotic (CFU/kg) | −0.034 | 0.009 | 1.01 | 0.005 | ||||||
IL10 | 13 | 0.35 | 0.382 | 0.637 | 0.67 | |||||
Days post-infection | 0.066 | 0.033 | 1.01 | 0.072 | ||||||
Probiotic (CFU/kg) | 0.057 | 0.038 | 1.01 | 0.002 | ||||||
TNFA | 10 | 1.01 | 0.066 | 0.150 | 0.46 | |||||
Probiotic (CFU/kg) | −0.026 | 0.010 | 1.00 | 0.033 | ||||||
Jejunum, Week 4 | ||||||||||
ZO1 | 12 | 11.29 | 2.383 | 0.113 | 0.83 | |||||
Days post-infection | 0.018 | 0.008 | 2.07 | 0.066 | ||||||
Dietary ME (MJ/kg) | −0.828 | 0.194 | 2.05 | 0.003 | ||||||
Probiotic (CFU/kg) | 0.032 | 0.008 | 1.02 | 0.003 | ||||||
IL1B | 10 | 5.03 | 1.414 | 0.164 | 0.87 | |||||
Dietary CP (%) | −0.204 | 0.071 | 1.00 | 0.024 | ||||||
Probiotic (CFU/kg) | 0.076 | 0.012 | 1.00 | 0.000 | ||||||
Ileum, Week 2 | ||||||||||
TLR4 | 10 | −2.07 | 0.604 | 0.052 | 0.95 | |||||
Dietary CP (%) | 0.143 | 0.028 | 1.00 | 0.001 | ||||||
Probiotic (CFU/kg) | −0.035 | 0.004 | 1.00 | <0.001 | ||||||
Ileum, Week 3 | ||||||||||
ZO1 | 16 | 11.94 | 4.302 | 0.409 | 0.46 | |||||
Dietary CP (%) | −0.514 | 0.201 | 1.00 | 0.024 | ||||||
Probiotic (CFU/kg) | 0.048 | 0.024 | 1.00 | 0.063 | ||||||
OCLN | 16 | 12.02 | 4.638 | 0.441 | 0.45 | |||||
Dietary CP (%) | −0.517 | 0.217 | 1.00 | 0.033 | ||||||
Probiotic (CFU/kg) | 0.054 | 0.025 | 1.00 | 0.052 | ||||||
IFNG | 12 | 1.01 | 0.043 | 0.097 | 0.71 | |||||
Probiotic (CFU/kg) | −0.032 | 0.006 | 1.00 | 0.001 | ||||||
Ileum, Week 4 | ||||||||||
ZO1 | 11 | 3.67 | 0.826 | 0.098 | 0.87 | |||||
Dietary ME (MJ/kg) | −0.208 | 0.064 | 1.08 | 0.012 | ||||||
Probiotic (CFU/kg) | 0.036 | 0.006 | 1.08 | 0.001 | ||||||
OCLN | 11 | 7.67 | 1.803 | 0.208 | 0.84 | |||||
Dietary CP (%) | −0.335 | 0.089 | 1.06 | 0.006 | ||||||
Probiotic (CFU/kg) | 0.058 | 0.014 | 1.06 | 0.003 | ||||||
CLDN1 | 11 | 12.08 | 3.798 | 0.438 | 0.69 | |||||
Dietary CP (%) | −0.557 | 0.189 | 1.06 | 0.018 | ||||||
Probiotic (CFU/kg) | 0.062 | 0.029 | 1.06 | 0.061 | ||||||
Ceca, Week 2 | ||||||||||
IL6 | 18 | 0.96 | 0.093 | 0.270 | 0.31 | |||||
Probiotic (CFU/kg) | −0.034 | 0.013 | 1.00 | 0.017 | ||||||
IL10 | 10 | 46.42 | 16.880 | 0.735 | 0.79 | |||||
Days post-infection | 0.506 | 0.177 | 1.96 | 0.029 | ||||||
Dietary ME (MJ/kg) | −3.868 | 1.412 | 1.97 | 0.034 | ||||||
Probiotic (CFU/kg) | 0.200 | 0.059 | 1.01 | 0.015 | ||||||
Ceca, Week 4 | ||||||||||
ZO1 | 10 | −4.26 | 0.721 | 0.147 | 0.96 | |||||
Days post-infection | 0.727 | 0.095 | 1.00 | 0.0001 | ||||||
Probiotic (CFU/kg) | 0.014 | 0.001 | 1.00 | <0.001 |
Response Variable (Y) 1,2,3,4 | Predictor (X) | nTreat | Parameter Estimates | Model Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Intercept | SEIntercept | Slope | SESlope | RMSE | R2 | VIF | p-Value | |||
Duodenum, Week 5 | ||||||||||
Villus Height | 15 | 0.78 | 0.073 | 0.035 | 0.75 | |||||
Days post-infection | 0.007 | 0.002 | 1.02 | 0.007 | ||||||
Probiotic (CFU/kg) | 0.012 | 0.003 | 1.02 | 0.001 | ||||||
Jejunum, Week 2 | ||||||||||
Crypt Depth | 11 | 0.14 | 0.261 | 0.032 | 0.88 | |||||
Dietary CP (%) | 0.040 | 0.012 | 1.00 | 0.011 | ||||||
Probiotic (CFU/kg) | −0.013 | 0.002 | 1.00 | 0.000 | ||||||
Villus Height/Crypt Depth | 11 | 0.98 | 0.088 | 0.197 | 0.38 | |||||
Probiotic (CFU/kg) | 0.029 | 0.013 | 1.00 | 0.044 | ||||||
Jejunum, Week 3 | ||||||||||
Villus Height | 17 | −3.67 | 1.782 | 0.072 | 0.77 | |||||
Days post-infection | −0.007 | 0.004 | 1.26 | 0.070 | ||||||
Dietary ME (MJ/kg) | 0.385 | 0.144 | 1.25 | 0.019 | ||||||
Probiotic (CFU/kg) | 0.019 | 0.004 | 1.02 | 0.000 | ||||||
Crypt Depth | 17 | −1.06 | 0.828 | 0.080 | 0.51 | |||||
Dietary CP (%) | 0.098 | 0.039 | 1.01 | 0.026 | ||||||
Probiotic (CFU/kg) | −0.011 | 0.004 | 1.01 | 0.020 | ||||||
Villus Height/Crypt Depth | 17 | 6.18 | 1.979 | 0.191 | 0.60 | |||||
Dietary CP (%) | −0.247 | 0.094 | 1.01 | 0.020 | ||||||
Probiotic (CFU/kg) | 0.036 | 0.010 | 1.01 | 0.004 | ||||||
Jejunum, Week 5 | ||||||||||
Crypt Depth | 17 | −2.85 | 1.084 | 0.037 | 0.62 | |||||
Dietary ME (MJ/kg) | 0.301 | 0.085 | 1.00 | 0.003 | ||||||
Probiotic (CFU/kg) | −0.008 | 0.002 | 1.00 | 0.005 | ||||||
Villus Height/Crypt Depth | 17 | 1.20 | 0.067 | 0.048 | 0.57 | |||||
Days post-infection | −0.007 | 0.002 | 1.07 | 0.010 | ||||||
Probiotic (CFU/kg) | 0.012 | 0.003 | 1.07 | 0.002 | ||||||
Ileum, Week 3 | ||||||||||
Villus Height | 13 | 0.95 | 0.019 | 0.029 | 0.74 | |||||
Days post-infection | 0.006 | 0.001 | 1.00 | 0.002 | ||||||
Probiotic (CFU/kg) | 0.006 | 0.002 | 1.00 | 0.010 | ||||||
Ileum, Week 5 | ||||||||||
Crypt Depth | 15 | 1.28 | 0.072 | 0.034 | 0.75 | |||||
Days post-infection | −0.009 | 0.002 | 1.02 | 0.001 | ||||||
Probiotic (CFU/kg) | 0.012 | 0.002 | 1.02 | 0.001 | ||||||
Villus Height/Crypt Depth | 15 | 1.00 | 0.025 | 0.043 | 0.41 | |||||
Probiotic (CFU/kg) | −0.009 | 0.003 | 1.00 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yosi, F.; Metzler-Zebeli, B.U. Dietary Probiotics Modulate Gut Barrier and Immune-Related Gene Expression and Histomorphology in Broiler Chickens under Non- and Pathogen-Challenged Conditions: A Meta-Analysis. Animals 2023, 13, 1970. https://doi.org/10.3390/ani13121970
Yosi F, Metzler-Zebeli BU. Dietary Probiotics Modulate Gut Barrier and Immune-Related Gene Expression and Histomorphology in Broiler Chickens under Non- and Pathogen-Challenged Conditions: A Meta-Analysis. Animals. 2023; 13(12):1970. https://doi.org/10.3390/ani13121970
Chicago/Turabian StyleYosi, Fitra, and Barbara U. Metzler-Zebeli. 2023. "Dietary Probiotics Modulate Gut Barrier and Immune-Related Gene Expression and Histomorphology in Broiler Chickens under Non- and Pathogen-Challenged Conditions: A Meta-Analysis" Animals 13, no. 12: 1970. https://doi.org/10.3390/ani13121970
APA StyleYosi, F., & Metzler-Zebeli, B. U. (2023). Dietary Probiotics Modulate Gut Barrier and Immune-Related Gene Expression and Histomorphology in Broiler Chickens under Non- and Pathogen-Challenged Conditions: A Meta-Analysis. Animals, 13(12), 1970. https://doi.org/10.3390/ani13121970