Housing Systems Affect Eggshell Lightness and Free Amino Acid Contents of Egg Albumen in Tosa-Jidori Chickens: A Preliminary Research
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Housing Condition and Experimental Design
2.3. Body Weight Gain
2.4. Egg Production Rate
2.5. Egg Traits
2.6. Free Amino Acid Analysis of Egg Albumen
2.7. Free Amino Acid Analysis of Egg Yolk
2.8. Fecal Corticosterone Extraction and Measurement
2.9. Statistical Analysis
3. Results
3.1. Body Weight Gain
3.2. Egg Production Rate
3.3. Egg Traits
3.4. Free Amino Acid Traits in Albumen
3.5. Free Amino Acid Traits in Yolk
3.6. Fecal Corticosterone
3.7. Phenotypic Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaheer, K. An updated review on chicken eggs: Production, consumption, management aspects and nutritional benefits to human health. Food Nutr. Sci. 2015, 6, 1208–1220. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Lopes-Lutz, D.; Schieber, A.; Wu, J. Free aromatic amino acids in egg yolk show antioxidant properties. Food Chem. 2011, 129, 155–161. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Kalaivani, M. Designer foods and their benefits: A review. J. Food Sci. Technol. 2013, 50, 1–16. [Google Scholar] [CrossRef]
- Yannakopoulos, A.; Tserveni-Gousi, A.; Christaki, E. Enhanced egg production in practice: The case of bio-omega-3 egg. Int. J. Poult. Sci. 2005, 4, 531–535. [Google Scholar] [CrossRef]
- Yilmaz Dikmen, B.; Dpek, A.; Şahan, U.; Petek, M.; Sözcü, A. Egg production and welfare of laying hens kept in different housing systems (conventional, enriched cage, and free range). Poult. Sci. 2016, 95, 1564–1572. [Google Scholar] [CrossRef]
- Kikuchi, A.; Uetake, K.; Tanaka, T. Modification of furnished cages from conventional cages for laying hens: Establishing social order, behavioral changes, and use of resources after introduction. Anim. Behav. Manag. 2018, 54, 123–133. [Google Scholar]
- Philippe, F.X.; Mahmoudi, Y.; Cinq-Mars, D.; Lefrançois, M.; Moula, N.; Palacios, J.; Pelletier, F.; Godbout, S. Comparison of egg production, quality and composition in three production systems for laying hens. Livest. Sci. 2020, 232, 103917. [Google Scholar] [CrossRef]
- Appleby, M.C. The European Union ban on conventional cages for laying hens: History and prospects. J. Appl. Anim. Welf. Sci. 2003, 6, 103–121. [Google Scholar] [CrossRef]
- Gautron, J.; Réhault-Godbert, S.; van de Braak, T.G.H.; Dunn, I.C. Review: What are the challenges facing the table egg industry in the next decades and what can be done to address them? Animal 2021, 15, 100282. [Google Scholar] [CrossRef]
- FAOSTAT. 2021. Available online: https://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 9 April 2023).
- Neves, M.F.; Gray, A.W.; Lourenco, C.E.; Scott, F.A. Mantiqueira: Innovating and disrupting in the egg business. Int. Food Agribus. Manag. Rev. 2020, 24, 138–161. [Google Scholar] [CrossRef]
- Japan Livestock Technology Association. 2020. Available online: http://jlta.lin.gr.jp/english/index.html (accessed on 9 April 2023).
- Ahammed, M.; Chae, B.J.; Lohakare, J.; Keohavong, B.; Lee, M.H.; Lee, S.J.; Kim, D.M.; Lee, J.Y.; Ohh, S.J. Comparison of aviary, barn and conventional cage raising of chickens on laying performance and egg quality. Asian-Australas. J. Anim. Sci. 2014, 27, 1196–1203. [Google Scholar] [CrossRef]
- Lay, D.C.; Fulton, R.M.; Hester, P.Y.; Karcher, D.M.; Kjaer, J.B.; Mench, J.A.; Mullens, B.A.; Newberry, R.C.; Nicol, C.J.; O’Sullivan, N.P.; et al. Hen welfare in different housing systems. Poult. Sci. 2011, 90, 278–294. [Google Scholar] [CrossRef]
- Sherwin, C.M.; Richards, G.J.; Nicol, C.J. Comparison of the welfare of layer hens in 4 housing systems in the UK. Br. Poult. Sci. 2010, 51, 488–499. [Google Scholar] [CrossRef]
- Vlčková, J.; Tůmová, E.; Ketta, M.; Englmaierová, M.; Chodová, D. Effect of housing system and age of laying hens on eggshell quality, microbial contamination, and penetration of microorganisms into eggs. Czech J. Anim. Sci. 2018, 63, 51–60. [Google Scholar] [CrossRef]
- Zita, L.; Jeníková, M.; Härtlová, H. Effect of housing system on egg quality and the concentration of cholesterol in egg yolk and blood of hens of native resources of the Czech Republic and Slovakia. J. Appl. Poult. Res. 2018, 27, 380–388. [Google Scholar] [CrossRef]
- Cepero, R.; Hernándiz, A. Effects of housing systems for laying hens on egg quality and safety. Worlds Poult. Sci. J. 2015, 71, 1–18. Available online: https://www.wpsa-aeca.es/aeca_imgs_docs/17564_texto%20ricardo%20cepero_2015-60%20english.pdf (accessed on 29 May 2023).
- da Pires, P.G.S.; Bavaresco, C.; Prato, B.S.; Wirth, M.L.; de Moraes, P.O. The relationship between egg quality and hen housing systems—A systematic review. Livest. Sci. 2021, 250, 104597. [Google Scholar] [CrossRef]
- Goto, T.; Mori, H.; Shiota, S.; Tomonaga, S. Metabolomics approach reveals the effects of breed and feed on the composition of chicken eggs. Metabolites 2019, 9, 224. [Google Scholar] [CrossRef]
- Goto, T.; Shimamoto, S.; Ohtsuka, A.; Ijiri, D. Analyses of free amino acid and taste sensor traits in egg albumen and yolk revealed potential of value-added eggs in chickens. Anim. Sci. J. 2021, 92, e13510. [Google Scholar] [CrossRef]
- Goto, T.; Shimamoto, S.; Takaya, M.; Sato, S.; Takahashi, K.; Nishimura, K.; Morii, Y.; Kunishige, K.; Ohtsuka, A.; Ijiri, D. Impact on genetic differences among various chicken breeds on free amino acid contents of egg yolk and albumen. Sci. Rep. 2021, 11, 2270. [Google Scholar] [CrossRef]
- Goto, T.; Ohya, K.; Takaya, M. Genotype affects free amino acids of egg yolk and albumen in Japanese indigenous breeds and commercial Brown layer chickens. Poult. Sci. 2022, 101, 101582. [Google Scholar] [CrossRef]
- Mori, H.; Takaya, M.; Nishimura, K.; Goto, T. Breed and feed affect amino acid contents of egg yolk and eggshell color in chickens. Poult. Sci. 2020, 99, 172–178. [Google Scholar] [CrossRef]
- Nishimura, K.; Ijiri, D.; Shimamoto, S.; Takaya, M.; Ohtsuka, A.; Goto, T. Genetic effect on free amino acid contents of egg yolk and albumen using five different chicken genotypes under floor rearing system. PLoS ONE 2021, 16, e0258506. [Google Scholar] [CrossRef]
- Hernandez, C.E.; Thierfelder, T.; Svennersten-Sjaunja, K.; Berg, C.; Orihuela, A.; Lidfors, L. Time lag between peak concentrations of plasma and salivary cortisol following a stressful procedure in dairy cattle. Acta Vet. Scand. 2014, 56, 61. [Google Scholar] [CrossRef]
- Palme, R.; Robia, C.; Messmann, S.; Hofer, J.; Möstl, E. Measurement of faecal cortisol metabolites in ruminants: A non-invasive parameter of adrenocortical function. Wien. Tierarztl. Monatsschr. 1999, 86, 237–241. [Google Scholar]
- Downing, J.A.; Bryden, W.L. Determination of corticosterone concentrations in egg albumen: A non-invasive indicator of stress in laying hens. Physiol. Behav. 2008, 95, 381–387. [Google Scholar] [CrossRef]
- Hayashi, H.; Arai, C.; Ikeuchi, Y.; Yamanaka, M.; Hirayama, T. Effect of growth and parturition on hair cortisol in holstein cattle. Anim. Sci. J. 2021, 92, e13518. [Google Scholar] [CrossRef]
- Sotohira, Y.; Suzuki, K.; Sano, T.; Arai, C.; Asakawa, M.; Hayashi, H. Stress assessment using hair cortisol of kangaroos affected by the lumpy jaw disease. J. Vet. Med. Sci. 2017, 79, 852–854. [Google Scholar] [CrossRef]
- Dehnhard, M.; Schreer, A.; Krone, O.; Jewgenow, K.; Krause, M.; Grossmann, R. Measurement of plasma corticosterone and fecal glucocorticoid metabolites in the chicken (Gallus domesticus), the great cormorant (Phalacrocorax carbo), and the goshawk (Accipiter gentilis). Gen. Comp. Endocrinol. 2003, 131, 345–352. [Google Scholar] [CrossRef]
- Tsudzuki, M. Japanese native chickens. In The Relationships between Indigenous Animals and Humans in APEC Region; Chinese Society of Animal Science: Taiwan, China, 2003; pp. 91–116. [Google Scholar]
- Rahn, H.; Paganelli, C.V.; Ar, A. Relation of avian egg weight to body weight. Auk 1975, 92, 750–765. [Google Scholar] [CrossRef]
- Ono, R.; Miyachi, H.; Usui, H.; Oguchi, R.; Nishimura, K.; Takahashi, K.; Yamagishi, Y.; Kawamura, N.; Matsushita, R.; Goto, T. Phenotypic analysis of growth and morphological traits in miniature breeds of Japanese indigenous chickens. J. Poult. Sci. 2022, 59, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Cheng, K.M.; Silversides, F.G. Production performance and egg quality of four strains of laying hens kept in conventional cages and floor pens. Poult. Sci. 2009, 88, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Sekeroglu, A.; Sarica, M.; Demir, E.; Ulutas, Z.; Tilki, M.; Saatci, M.; Omed, H. Effects of different housing systems on some performance traits and egg qualities of laying hens. J. Anim. Vet. Adv. 2010, 9, 1739–1744. [Google Scholar] [CrossRef]
- Dunn, I.C.; Woolliams, J.A.; Wilson, P.W.; Icken, W.; Cavero, D.; Jones, A.C.; Quinlan-Pluck, F.; Williams, G.O.S.; Olori, V.; Bain, M.M. Genetic variation and potential for genetic improvement of cuticle deposition on chicken eggs. Genet. Sel. Evol. 2019, 51, 25. [Google Scholar] [CrossRef]
- Goto, T.; Tsudzuki, M. Genetic mapping of quantitative trait loci for egg production and egg quality traits in chickens: A review. J. Poult. Sci. 2017, 54, 1–12. [Google Scholar] [CrossRef]
- Bi, H.; Liu, Z.; Sun, C.; Li, G.; Wu, G.; Shi, F.; Liu, A.; Yang, N. Brown eggshell fading with layer ageing: Dynamic change in the content of protoporphyrin IX. Poult. Sci. 2018, 97, 1948–1953. [Google Scholar] [CrossRef]
- Kennedy, G.Y.; Vevers, H.G. A survey of eggshell pigments. Comp. Biochem. Physiol. B Comp. Biochem. 1976, 55, 117–123. [Google Scholar] [CrossRef]
- Lichovníková, M.; Zeman, L. Effect of housing system on the calcium requirement of laying hens and on eggshell quality. Czech J. Anim. Sci. 2008, 53, 162–168. [Google Scholar] [CrossRef]
- Kawamura, N.; Yokoyama, R.; Takaya, M.; Ono, R.; Goto, T. Combined effect of feed and housing system affects free amino acid content of egg yolk and albumen in brown layer chickens. J. Poult. Sci. 2023, 60, jpsa.2023007. [Google Scholar] [CrossRef]
- Kirimura, J.; Shimizu, A.; Kimizuka, A.; Ninomiya, T.; Katsuya, N. The contribution of peptides and amino acids to the taste of foodstuffs. J. Agric. Food Chem. 1969, 17, 689–695. [Google Scholar] [CrossRef]
- Zhao, C.J.; Schieber, A.; Gänzle, M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations—A review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Bermon, S.; Petriz, B.; Kajeniene, A.; Prestes, J.; Castell, L.; Franco, O.L. The microbiota: An exercise immunology perspective. Exerc. Immunol. Rev. 2015, 21, 70–79. [Google Scholar] [PubMed]
- Song, B.; Yan, S.; Li, P.; Li, G.; Gao, M.; Yan, L.; Lv, Z. Comparison and correlation analysis of immune function and gut microbiota of broiler chickens raised in double-layer cages and litter floor pens. Microbiol. Spectr. 2022, 10, e00045-22. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Ma, R.; Zhang, H.; Li, L.; Chai, L.; Qi, R.; Liu, W.; Li, J.; Li, Y.; Zhan, K. Different non-cage housing systems alter duodenal and cecal microbiota composition in Shendan chickens. Front. Vet. Sci. 2021, 8, 728538. [Google Scholar] [CrossRef] [PubMed]
- Beuving, G.; Vonder, G.M.A. Effect of stressing factors on corticosterone levels in the plasma of laying hens. Gen. Comp. Endocrinol. 1978, 35, 153–159. [Google Scholar] [CrossRef]
- Riley, V. Psychoneuroendocrine influences on immunocompetence and neoplasia. Science 1981, 212, 1100–1109. [Google Scholar] [CrossRef]
- Alm, M.; Holm, L.; Tauson, R.; Wall, H. Corticosterone metabolites in laying hen droppings-Effects of fiber enrichment, genotype, and daily variations. Poult. Sci. 2014, 93, 2615–2621. [Google Scholar] [CrossRef]
Traits | Cage | Litter | One-Way ANOVA | ||||
---|---|---|---|---|---|---|---|
dfbet | dfres | F Value | p Value | ||||
First stage | (n = 20) | (n = 20) | |||||
Body weight gain (g) | 130 ± 50 | 174 ± 46 | 1 | 18 | 3.801 | 0.067 | |
Egg weight (g) | 25.5 ± 2.7 | 24.7 ± 1.3 | 1 | 38 | 1.173 | 0.286 | |
Length of long axis of the egg (mm) | 42.7 ± 1.9 | 42.2 ± 1.5 | 1 | 38 | 1.065 | 0.309 | |
Length of short axis of the egg (mm) | 32.3 ± 1.1 | 32.4 ± 0.7 | 1 | 38 | 0.115 | 0.736 | |
Yolk weight (g) | 7.5 ± 0.8 | 7.2 ± 0.5 | 1 | 38 | 1.708 | 0.199 | |
Eggshell weight (g) | 3.7 ± 0.5 | 3.3 ± 0.5 | 1 | 38 | 5.080 | 0.030 | * |
Albumen weight (g) | 14.3 ± 1.8 | 14.2 ± 1.3 | 1 | 38 | 0.112 | 0.739 | |
Eggshell thickness (mm) | 0.38 ± 0.04 | 0.37 ± 0.03 | 1 | 38 | 0.248 | 0.621 | |
Eggshell color lightness | 73.4 ± 3.0 | 75.6 ± 2.8 | 1 | 38 | 5.646 | 0.023 | * |
Eggshell color redness | 8.0 ± 2.0 | 7.7 ± 2.3 | 1 | 38 | 0.193 | 0.663 | |
Eggshell color yellowness | 18.0 ± 2.5 | 17.7 ± 2.7 | 1 | 38 | 0.123 | 0.727 | |
Second stage | (n = 20) | (n = 19) | |||||
Body weight gain (g) | 84 ± 52 | −10 ± 41 | 1 | 18 | 18.06 | <0.001 | * |
Egg weight (g) | 29.2 ± 1.9 | 28.6 ± 2.8 | 1 | 37 | 0.559 | 0.459 | |
Length of long axis of the egg (mm) | 45.0 ± 1.6 | 43.9 ± 1.5 | 1 | 37 | 3.860 | 0.057 | |
Length of short axis of the egg (mm) | 34.2 ± 0.8 | 34.1 ± 1.0 | 1 | 37 | 0.102 | 0.751 | |
Yolk weight (g) | 9.0 ± 0.8 | 8.5 ± 0.8 | 1 | 37 | 4.230 | 0.047 | * |
Eggshell weight (g) | 4.0 ± 0.4 | 3.9 ± 0.4 | 1 | 37 | 1.391 | 0.246 | |
Albumen weight (g) | 16.2 ± 1.3 | 16.3 ± 1.8 | 1 | 37 | 0.052 | 0.820 | |
Eggshell thickness (mm) | 0.41 ± 0.03 | 0.38 ± 0.03 | 1 | 37 | 4.559 | 0.039 | * |
Eggshell color lightness | 75.9 ± 2.9 | 78.3 ± 2.5 | 1 | 37 | 7.126 | 0.011 | * |
Eggshell color redness | 6.3 ± 1.8 | 5.5 ± 1.8 | 1 | 37 | 1.681 | 0.203 | |
Eggshell color yellowness | 15.5 ± 2.4 | 14.5 ± 2.8 | 1 | 37 | 1.214 | 0.278 |
Amino Acid | Cage | Litter | One-Way ANOVA | ||||
---|---|---|---|---|---|---|---|
(μg/mL) | dfbet | dfres | F Value | p Value | |||
First stage | (n = 10) | (n = 10) | |||||
A_Asp | 2.0 ± 0.4 | 2.6 ± 2.2 | 1 | 18 | 0.542 | 0.471 | |
A_Glu | 3.3 ± 0.4 | 4.5 ± 3.6 | 1 | 18 | 1.070 | 0.315 | |
A_Asn | 0.5 ± 0.1 | 0.5 ± 0.1 | 1 | 18 | 0.514 | 0.482 | |
A_Ser | 1.4 ± 0.7 | 1.6 ± 1.4 | 1 | 18 | 0.176 | 0.679 | |
A_Gln | 1.2 ± 0.2 | 0.6 ± 0.2 | 1 | 18 | 53.100 | <0.001 | * |
A_Gly | 0.7 ± 0.2 | 0.5 ± 0.3 | 1 | 18 | 1.385 | 0.255 | |
A_His | 2.4 ± 0.1 | 1.5 ± 0.4 | 1 | 18 | 32.300 | <0.001 | * |
A_Arg | 2.3 ± 0.3 | 2.3 ± 1.3 | 1 | 18 | 0.008 | 0.931 | |
A_Thr | 0.3 ± 0.2 | 0.7 ± 0.9 | 1 | 18 | 1.889 | 0.186 | |
A_Ala | 0.7 ± 0.3 | 1.0 ± 0.9 | 1 | 18 | 1.005 | 0.329 | |
A_Pro | 0.6 ± 0.1 | 1.6 ± 1.4 | 1 | 18 | 4.124 | 0.057 | |
A_GABA | 0.4 ± 0.5 | 0.5 ± 0.3 | 1 | 18 | 0.034 | 0.857 | |
A_Tyr | 5.7 ± 1.4 | 6.7 ± 1.2 | 1 | 18 | 2.422 | 0.137 | |
A_Val | 3.4 ± 0.7 | 3.0 ± 1.8 | 1 | 18 | 0.368 | 0.552 | |
A_Met | 9.4 ± 1.2 | 6.6 ± 1.2 | 1 | 18 | 24.760 | <0.001 | * |
A_Cys | 10.2 ± 0.3 | 6.7 ± 0.4 | 1 | 18 | 421.500 | <0.001 | * |
A_Ile | 1.9 ± 0.4 | 2.6 ± 1.6 | 1 | 18 | 2.073 | 0.167 | |
A_Leu | 6.1 ± 1.3 | 6.9 ± 3.6 | 1 | 18 | 0.371 | 0.550 | |
A_Phe | 7.7 ± 2.3 | 8.2 ± 3.7 | 1 | 18 | 0.118 | 0.735 | |
A_Lys | 3.0 ± 0.1 | 1.6 ± 0.3 | 1 | 18 | 176.600 | <0.001 | * |
Second stage | (n = 10) | (n = 8) | |||||
A_Asp | 1.3 ± 0.4 | 0.8 ± 0.1 | 1 | 16 | 13.320 | 0.002 | * |
A_Glu | 3.0 ± 0.3 | 2.5 ± 0.2 | 1 | 16 | 15.110 | 0.001 | * |
A_Asn | 0.5 ± 0.1 | 0.6 ± 0.1 | 1 | 16 | 2.484 | 0.135 | |
A_Ser | 1.2 ± 0.2 | 0.9 ± 0.1 | 1 | 16 | 20.650 | <0.001 | * |
A_Gln | 1.0 ± 0.1 | 1.0 ± 0.1 | 1 | 16 | 0.032 | 0.860 | |
A_Gly | 0.6 ± 0.1 | 0.6 ± 0.1 | 1 | 16 | 0.001 | 0.975 | |
A_His | 1.7 ± 0.2 | 1.7 ± 0.1 | 1 | 16 | 0.188 | 0.670 | |
A_Arg | 3.2 ± 0.4 | 3.1 ± 0.3 | 1 | 16 | 1.061 | 0.318 | |
A_Thr | 0.7 ± 0.2 | 0.6 ± 0.1 | 1 | 16 | 6.172 | 0.024 | * |
A_Ala | 0.8 ± 0.1 | 0.6 ± 0.0 | 1 | 16 | 15.380 | 0.001 | * |
A_Pro | 0.9 ± 0.2 | 0.7 ± 0.1 | 1 | 16 | 6.114 | 0.025 | * |
A_GABA | 0.5 ± 0.7 | 0.1 ± 0.2 | 1 | 16 | 2.538 | 0.131 | |
A_Tyr | 8.4 ± 3.5 | 10.0 ± 2.3 | 1 | 16 | 1.059 | 0.319 | |
A_Val | 2.0 ± 0.2 | 1.8 ± 0.2 | 1 | 16 | 4.474 | 0.050 | |
A_Met | 11.7 ± 1.1 | 12.0 ± 0.5 | 1 | 16 | 0.352 | 0.561 | |
A_Cys | 7.1 ± 1.0 | 7.8 ± 0.5 | 1 | 16 | 3.837 | 0.068 | |
A_Ile | 3.0 ± 0.5 | 3.0 ± 0.4 | 1 | 16 | 0.020 | 0.888 | |
A_Leu | 7.4 ± 1.5 | 6.4 ± 1.4 | 1 | 16 | 1.723 | 0.208 | |
A_Phe | 8.1 ± 1.7 | 5.5 ± 1.4 | 1 | 16 | 10.030 | 0.006 | * |
A_Lys | 1.4 ± 0.1 | 1.4 ± 0.1 | 1 | 16 | 0.001 | 0.974 |
Amino Acid | Cage | Litter | One-Way ANOVA | |||
---|---|---|---|---|---|---|
(μg/mL) | dfbet | dfres | F Value | p Value | ||
First stage | (n = 10) | (n = 10) | ||||
Y_Asp | 52.4±6.3 | 57.7 ± 8.9 | 1 | 18 | 2.096 | 0.165 |
Y_Glu | 206.6 ± 7.7 | 214.8 ± 21.4 | 1 | 18 | 1.184 | 0.291 |
Y_Asn | 37.2 ± 1.8 | 35.2 ± 3.9 | 1 | 18 | 1.823 | 0.194 |
Y_Ser | 76.6 ± 3.9 | 80.7 ± 7.9 | 1 | 18 | 2.034 | 0.171 |
Y_Gln | 68.9 ± 2.9 | 65.3 ± 7.2 | 1 | 18 | 1.934 | 0.181 |
Y_Gly | 23.9 ± 1.4 | 24.2 ± 2.4 | 1 | 18 | 0.166 | 0.688 |
Y_His | 22.3 ± 2.1 | 23.8 ± 1.9 | 1 | 18 | 2.585 | 0.125 |
Y_Arg | 88.8 ± 7.8 | 91.1 ± 10.7 | 1 | 18 | 0.251 | 0.622 |
Y_Thr | 69.8 ± 10.3 | 57.0 ± 9.3 | 1 | 11 | 4.178 | 0.066 |
Y_Ala | 49.6 ± 2.6 | 50.0 ± 4.3 | 1 | 18 | 0.041 | 0.842 |
Y_Pro | 44.7 ± 3.2 | 47.3 ± 4.9 | 1 | 18 | 1.703 | 0.208 |
Y_GABA | 8.0 ± 1.6 | 8.2 ± 1.2 | 1 | 18 | 0.098 | 0.758 |
Y_Tyr | 79.0 ± 4.6 | 80.3 ± 8.4 | 1 | 18 | 0.144 | 0.709 |
Y_Val | 75.9 ± 9.1 | 74.6 ± 12.6 | 1 | 18 | 0.058 | 0.812 |
Y_Met | 30.1 ± 3.4 | 29.0 ± 3.9 | 1 | 18 | 0.453 | 0.510 |
Y_Cys | 5.4 ± 0.4 | 5.4 ± 0.2 | 1 | 18 | 0.020 | 0.890 |
Y_Ile | 60.1 ± 6.9 | 59.8 ± 7.9 | 1 | 18 | 0.006 | 0.938 |
Y_Leu | 121.2 ± 11.9 | 118.7 ± 12.9 | 1 | 18 | 0.179 | 0.678 |
Y_Phe | 47.4 ± 5.3 | 46.9 ± 6.5 | 1 | 18 | 0.032 | 0.860 |
Y_Lys | 115.8 ± 12.8 | 115.6 ± 18.1 | 1 | 18 | 0.001 | 0.976 |
Second stage | (n = 10) | (n = 9) | ||||
Y_Asp | 63.0 ± 7.9 | 58.4 ± 11.4 | 1 | 17 | 0.942 | 0.345 |
Y_Glu | 245.0 ± 15.8 | 229.4 ± 28.0 | 1 | 17 | 2.048 | 0.171 |
Y_Asn | 48.0 ± 3.3 | 47.4 ± 5.8 | 1 | 17 | 0.058 | 0.813 |
Y_Ser | 98.4 ± 7.8 | 98.7 ± 11.4 | 1 | 17 | 0.005 | 0.943 |
Y_Gln | 83.1 ± 4.8 | 79.2 ± 10.0 | 1 | 17 | 1.049 | 0.320 |
Y_Gly | 29.3 ± 2.1 | 28.5 ± 3.5 | 1 | 17 | 0.335 | 0.571 |
Y_His | 33.9 ± 3.1 | 34.2 ± 4.7 | 1 | 17 | 0.032 | 0.861 |
Y_Arg | 122.8 ± 11.8 | 116.4 ± 19.6 | 1 | 17 | 0.687 | 0.419 |
Y_Thr | 91.8 ± 13.0 | 87.3 ± 18.1 | 1 | 17 | 0.342 | 0.566 |
Y_Ala | 67.1 ± 6.0 | 62.2 ± 9.0 | 1 | 17 | 1.738 | 0.205 |
Y_Pro | 45.5 ± 3.3 | 45.6 ± 5.8 | 1 | 17 | 0.002 | 0.968 |
Y_GABA | 1.4 ± 0.7 | 1.0 ± 0.1 | 1 | 17 | 2.519 | 0.131 |
Y_Tyr | 91.4 ± 5.8 | 89.6 ± 11.9 | 1 | 17 | 0.170 | 0.685 |
Y_Val | 111.1 ± 8.6 | 105.2 ± 16.9 | 1 | 17 | 0.860 | 0.367 |
Y_Met | 41.5 ± 4.0 | 40.4 ± 6.6 | 1 | 17 | 0.153 | 0.701 |
Y_Cys | 3.4 ± 0.2 | 3.2 ± 0.1 | 1 | 17 | 2.620 | 0.124 |
Y_Ile | 75.3 ± 7.3 | 75.4 ± 11.4 | 1 | 17 | 0.000 | 0.985 |
Y_Leu | 160.0 ± 15.3 | 157.2 ± 24.8 | 1 | 17 | 0.084 | 0.776 |
Y_Phe | 64.6 ± 5.3 | 66.0 ± 9.9 | 1 | 17 | 0.146 | 0.708 |
Y_Lys | 156.7 ± 15.8 | 155.9 ± 25.1 | 1 | 17 | 0.007 | 0.936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawamura, N.; Takaya, M.; Hayashi, H.; Goto, T. Housing Systems Affect Eggshell Lightness and Free Amino Acid Contents of Egg Albumen in Tosa-Jidori Chickens: A Preliminary Research. Animals 2023, 13, 1837. https://doi.org/10.3390/ani13111837
Kawamura N, Takaya M, Hayashi H, Goto T. Housing Systems Affect Eggshell Lightness and Free Amino Acid Contents of Egg Albumen in Tosa-Jidori Chickens: A Preliminary Research. Animals. 2023; 13(11):1837. https://doi.org/10.3390/ani13111837
Chicago/Turabian StyleKawamura, Nonoka, Masahiro Takaya, Hideaki Hayashi, and Tatsuhiko Goto. 2023. "Housing Systems Affect Eggshell Lightness and Free Amino Acid Contents of Egg Albumen in Tosa-Jidori Chickens: A Preliminary Research" Animals 13, no. 11: 1837. https://doi.org/10.3390/ani13111837
APA StyleKawamura, N., Takaya, M., Hayashi, H., & Goto, T. (2023). Housing Systems Affect Eggshell Lightness and Free Amino Acid Contents of Egg Albumen in Tosa-Jidori Chickens: A Preliminary Research. Animals, 13(11), 1837. https://doi.org/10.3390/ani13111837