Enteric Methane Emissions from Dairy–Beef Steers Supplemented with the Essential Oil Blend Agolin Ruminant
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Basal Diet
2.3. Treatment Diet
2.4. Respiration Chambers
2.5. Performance Recording
2.6. Calculations and Data Analysis
3. Results
3.1. Methane Emissions
3.2. Performance Recording
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Zhou, B., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- UNEP (United Nations Environment Programme and Climate and Clean Air Coalition). Global Methane Assessment: Benefits and costs of Mitigation Methane Emissions; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 27, 584. [Google Scholar] [CrossRef]
- Pahmeyer, C.; Britz, W. Economic opportunities of using crossbreeding and sexing in Holstein dairy herds. J. Dairy Sci. 2020, 103, 8218–8230. [Google Scholar] [CrossRef]
- AHDB (Agriculture and Horticulture Development Board). Beef and Lamb, Beef Production from the Dairy Herd; Agricultural and Horticulture Development Board: Warwickshire, UK, 2017. [Google Scholar]
- van Selm, B.; de Boer, I.J.M.; Ledgard, S.F.; van Middelaar, C.E. Reducing greenhouse gas emissions of New Zealand beef through better integration of dairy and beef production. Agric. Syst. 2021, 186, 102936. [Google Scholar] [CrossRef]
- Belanche, A.; Newbold, C.J.; Morgavi, D.P.; Bach, A.; Zweifel, B.; Yanez-Ruiz, D.R. A meta-analysis describing the effects of the essential oils blend Agolin Ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals 2020, 10, 620. [Google Scholar] [CrossRef]
- Cobellis, G.M.; Trabalza-Marinucci, M.; Yu, Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ. 2016, 545, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Rooke, J.A.; Wallace, R.J.; Duthie, C.-A.; McKain, N.; de Souza, S.M.; Hyslop, J.J.; Ross, D.W.; Waterhouse, T.; Roehe, R. Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. Br. J. Nutr. 2014, 112, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Levene, H. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ed.; Stanford University Press: Redwood City, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Meale, S.J.; Chavas, A.V.; McAllister, T.A.; Iwaasa, A.D.; Yang, W.Z.; Benchaar, C. Including essential oils in lactating dairy cow diets: Effects on methane emissions. Animal Prod. Sci. 2014, 54, 1215–1218. [Google Scholar] [CrossRef]
- Vranken, H.; Suenkel, M.; Hargreaves, P.R.; Chew, L.; Towers, E. Reduction of enteric methane emission in a commercial dairy farm by a novel feed supplement. Open J. Anim. Sci. 2019, 9, 286–296. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited Review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef]
- Castro-Montoya, J.; Peiren, N.; Cone, J.W.; Zweifel, B.; Fievez, V.; De Campeneere, S. In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation. Livest. Sci. 2015, 180, 134–142. [Google Scholar] [CrossRef]
- Klop, G.; van Laar-van Schuppen, S.; Pellikaanm, W.F.; Hendriks, W.H.; Bannink, A.; Dijkstra, J. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo. Animal 2017, 11, 591–599. [Google Scholar] [CrossRef]
- Elcoso, G.; Zweifel, B.; Bach, A. Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Appl. Anim. Sci. 2019, 35, 304–311. [Google Scholar] [CrossRef]
- Hart, K.J.; Jones, H.G.; Waddams, K.E.; Worgan, H.J.; Zweifel, B.; Newbold, C.J. An essential oil blend decreases methane emissions and increases milk yield in dairy cows. Open J. Anim. Sci. 2019, 9, 92306. [Google Scholar] [CrossRef]
- Carrazco, A.V.; Peterson, C.B.; Zhao, Y.; Pan, Y.; McGlone, J.J.; DePeters, E.J.; Mitloehner, F.M. The impact of essential oil feed supplementation on enteric gas emissions and production parameters from dairy cattle. Sustainability 2020, 12, 10347. [Google Scholar] [CrossRef]
- Boissy, A.; Le Neindre, P. Behavioral, cardiac and cortisol responses to 390 brief peer separation and reunion in cattle. Physiol. Behav. 1997, 61, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Duff, G.C.; Galyean, M.L. Board-invited Review: Recent advances in management of highly stressed, newly received feedlot cattle. J. Anim. Sci. 2007, 85, 823–840. [Google Scholar] [CrossRef]
- Llonch, P.; Troy, S.M.; Duthie, C.-A.; Somarriba, M.; Rooke, J.A.; Haskell, M.J.; Roehe, R.; Turner, S.P. Changes in feed intake during isolation stress in respiration chambers may impact methane emissions assessment. Anim. Prod. Sci. 2016, 58, 1011–1016. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.F.; Zou, Y.; Hu, X.M.; Zheng, L.F.; Wei, H.K.; Giannenas, I.; Jin, L.Z.; Peng, J.; Jiang, S.W. Effects of dietary oregano essential oil supplementation on the stress response, antioxidative capacity, and HSPs mRNA expression of transported pigs. Livest. Sci. 2015, 180, 143–149. [Google Scholar] [CrossRef]
- De Sousa, D.P.; Hocayen, P.D.A.S.; Andrade, L.N.; Andreatini, R. A systematic review of the anxiolytic-like effects of essential oils in animal models. Molecules 2015, 20, 18620–18660. [Google Scholar] [CrossRef]
- Brambila, R.; Noricumbo-Saenz, J. Evaluation of Agolin Ruminant, and essential oil blend, as a feed additive for cows at two levels of production. Open J. Anim. Sci. 2022, 12, 380–389. [Google Scholar] [CrossRef]
- Santos, M.B.; Robinson, P.H.; Williams, P.; Losa, R. Effects of addition of an essential oil complex to the diet of lactating dairy cows on whole tract digestion of nutrients and productive performance. Anim. Feed. Sci. Technol. 2010, 157, 64–71. [Google Scholar] [CrossRef]
- Benchaar, C.; Greathead, H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed. Sci. Technol. 2011, 166, 338–355. [Google Scholar] [CrossRef]
Item. | Control | Treatment |
---|---|---|
Components (g/kg DM) | ||
Grass Silage | 489 | 486 |
Barley | 284 | 281 |
Dark Grains | 194 | 189 |
Molasses | 24 | 28 |
Minerals | 9 | 16 |
Composition (g/kg DM) | ||
Ash (g/kg DM) | 76.5 | 78.8 |
Dry matter (g/kg) | 383 | 378 |
Crude protein (g/kg DM) | 173 | 178 |
AHEE (g/kg DM) | 40.5 | 37.5 |
NDF (g/kg DM) | 361 | 359 |
NCGD (% by Wt DM) | 81.9 | 80.0 |
Starch (g/kg DM) | 154 | 149 |
Metabolizable energy (MJ/kg DM) | 12.5 | 12.1 |
Response Variable | Time Point (Days) | Control Mean | Treatment Mean | Variable Significance (p) | |||
---|---|---|---|---|---|---|---|
Block | Chamber | Baseline Covariate | Treatment | ||||
DMI (kg) | −3 | 9.0 (0.05) | 9.4 (0.05) | - | - | - | - |
46 | 9.1 (0.05) | 9.8 (0.05) * | <0.01 | ns | ns | <0.05 | |
116 | 8.7 (0.05) | 9.9 (0.08) * | ns | ns | ns | <0.05 | |
CH4 (g/day) | −3 | 206 (2.1) | 209 (2.1) | - | - | - | - |
46 | 223 (2.1) | 224 (2.1) | ns | ns | <0.01 | ns | |
116 | 217 (2.1) | 218 (2.4) | ns | ns | <0.01 | ns | |
CH4 yield (g/kg DMI) | −3 | 23.1 (0.24) | 22.2 (0.17) | - | - | - | - |
46 | 24.7 (0.22) | 22.8 (0.19) * | <0.01 | <0.05 | <0.05 | <0.05 | |
116 | 25.5 (0.21) | 22.7 (0.19) * | <0.05 | <0.05 | ns | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, G.A.; Bowen, J.M.; Dewhurst, R.J.; Zweifel, B.; Spengler, K.; Duthie, C.-A. Enteric Methane Emissions from Dairy–Beef Steers Supplemented with the Essential Oil Blend Agolin Ruminant. Animals 2023, 13, 1826. https://doi.org/10.3390/ani13111826
Miller GA, Bowen JM, Dewhurst RJ, Zweifel B, Spengler K, Duthie C-A. Enteric Methane Emissions from Dairy–Beef Steers Supplemented with the Essential Oil Blend Agolin Ruminant. Animals. 2023; 13(11):1826. https://doi.org/10.3390/ani13111826
Chicago/Turabian StyleMiller, Gemma A., Jenna M. Bowen, Richard J. Dewhurst, Beatrice Zweifel, Katrin Spengler, and Carol-Anne Duthie. 2023. "Enteric Methane Emissions from Dairy–Beef Steers Supplemented with the Essential Oil Blend Agolin Ruminant" Animals 13, no. 11: 1826. https://doi.org/10.3390/ani13111826
APA StyleMiller, G. A., Bowen, J. M., Dewhurst, R. J., Zweifel, B., Spengler, K., & Duthie, C.-A. (2023). Enteric Methane Emissions from Dairy–Beef Steers Supplemented with the Essential Oil Blend Agolin Ruminant. Animals, 13(11), 1826. https://doi.org/10.3390/ani13111826