Ligilactobacillus salivarius MP100 as an Alternative to Metaphylactic Antimicrobials in Swine: The Impact on Production Parameters and Meat Composition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Description and Study Design
2.2. Production-Related Parameters
2.3. Characterization and Composition of Meat and Subcutaneous Fat
2.4. Physicochemical Analyses of LL Samples
2.5. Fatty Acid Profile Analysis of LL Intramuscular Fat and Subcutaneous Fat
2.6. Meat Metabolites Analysis by 1H NMR Spectroscopy
2.7. Statistical Analysis
3. Results
3.1. Fertility Rate and Litter Size
3.2. Mortality Rates during the Nursing, Post-Weaning, and Fattening Stages
3.3. Number of Days from Birth to Slaughter, Average Weight of Pigs in the Day of Slaughter, and the Average Daily Weight Gain (g)
3.4. Physicochemical Analyses of LL Samples
3.5. Fatty Acid Profile Analysis of LL Intramuscular Fat and Subcutaneous Fat
3.6. Comparative Study of the 1H NMR Spectra of Samples from Animals of the Probiotic and Control Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prescott, J.F. The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Vet. Microbiol. 2014, 171, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial resistance in veterinary medicine: An overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [PubMed]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria-A review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- Thacker, P.A. Alternatives to antibiotics as growth promoters for use in swine production: A review. J. Anim. Sci. Biotechnol. 2013, 4, 35. [Google Scholar] [CrossRef]
- Yang, H.; Paruch, L.; Chen, X.; van Eerde, A.; Skomedal, H.; Wang, Y.; Liu, D.; Clarke, J.L. Antibiotic application and resistance in swine production in China: Current situation and future perspectives. Front. Vet. Sci. 2019, 6, 136. [Google Scholar] [CrossRef]
- Knecht, D.; Cholewińska, P.; Jankowska-Mąkosa, A.; Czyż, K. Development of swine’s digestive tract microbiota and its relation to production indices-A review. Animals 2020, 10, 527. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Kim, S.W. Use of microorganisms as nutritional and functional feedstuffs for nursery pigs and broilers. Animals 2022, 12, 3141. [Google Scholar] [CrossRef]
- Zhu, C.; Yao, J.; Zhu, M.; Zhu, C.; Yuan, L.; Li, Z.; Cai, D.; Chen, S.; Hu, P.; Liu, H.-Y. A meta-analysis of Lactobacillus-based probiotics for growth performance and intestinal morphology in piglets. Front. Vet. Sci. 2022, 9, 1045965. [Google Scholar] [CrossRef]
- Sarkar, V.K.; De, U.K.; Kala, A.; Verma, A.K.; Chauhan, A.; Paul, B.R.; Soni, S.; Gandhar, J.S.; Chaudhuri, P.; Patra, M.K.; et al. Early-life intervention of lactoferrin and probiotic in suckling piglets: Effects on immunoglobulins, intestinal integrity, and neonatal mortality. Probiotics Antimicrob. Proteins 2023, 15, 149–159. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P.; Singh, B.R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE 2018, 13, e0192978. [Google Scholar] [CrossRef]
- Joysowal, M.; Saikia, B.N.; Dowarah, R.; Tamuly, S.; Kalita, D.; Choudhury, K.B.D. Effect of probiotic Pediococcus acidilactici FT28 on growth performance, nutrient digestibility, health status, meat quality, and intestinal morphology in growing pigs. Vet. World 2018, 11, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Pereira, W.A.; Franco, S.M.; Reis, I.L.; Mendonça, C.M.N.; Piazentin, A.C.M.; Azevedo, P.O.S.; Tse, M.L.; De Martinis, E.C.; Gierus, M.; Oliveira, R.P. Beneficial effects of probiotics on the pig production cycle: An overview of clinical impacts and performance. Vet. Microbiol. 2022, 269, 109431. [Google Scholar] [CrossRef] [PubMed]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P. Efficacy of species-specific probiotic Pediococcus acidilactici FT28 on blood biochemical profile, carcass traits and physicochemical properties of meat in fattening pigs. Res. Vet. Sci. 2018, 117, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Menegat, M.B.; DeRouchey, J.M.; Woodworth, J.C.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D. Effects of Bacillus subtilis C-3102 on sow and progeny performance, fecal consistency, and fecal microbes during gestation, lactation, and nursery periods. J. Anim. Sci. 2019, 97, 3920–3937. [Google Scholar] [CrossRef]
- Sobrino, O.J.; Alba, C.; Arroyo, R.; Pérez, I.; Sariego, L.; Delgado, S.; Fernández, L.; de María, J.; Fumanal, P.; Fumanal, A.; et al. Replacement of metaphylactic antimicrobial therapy by oral administration of Ligilactobacillus salivarius MP100 in a pig farm. Front. Vet. Sci. 2021, 8, 666887. [Google Scholar] [CrossRef]
- Castejón, D.; García-Segura, J.M.; Escudero, R.; Herrera, A.; Cambero, M.I. Metabolomics of meat exudate: Its potential to evaluate beef meat conservation and aging. Anal. Chim. Acta 2015, 901, 1–11. [Google Scholar] [CrossRef]
- García-García, A.B.; Herrera, A.; Fernández-Valle, M.E.; Cambero, M.I.; Castejón, D. Evaluation of E-beam irradiation and storage time in pork exudates using NMR metabolomics. Food Res. Int. 2019, 120, 553–559. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2006. [Google Scholar]
- Hanson, S.W.F.; Olley, J. Application of the Bligh and Dyer method of lipid extraction to tissue homogenates. Biochem. J. 1963, 89, 101–102. [Google Scholar]
- Kauffman, R.G.; Eikelenboom, G.; van der Wal, P.G.; Engel, B.; Zaar, M. A comparison of methods to estimate water-holding capacity in post-rigor porcine muscle. Meat Sci. 1986, 18, 307–322. [Google Scholar] [CrossRef]
- García-Márquez, I.; Ordóñez, J.A.; Cambero, M.I.; Cabeza, M.C. Use of e-beam for shelf-life extension and sanitizing of marinated pork loin. Int. J. Microbiol. 2012, 2012, 962846. [Google Scholar] [CrossRef]
- Garcés, R.; Mancha, M. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 1993, 211, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Segura, J.; Cambero, M.I.; Cámara, L.; Loriente, C.; Mateos, G.G.; López-Bote, C.J. Effect of sex, dietary glycerol or dietary fat during late fattening, on fatty acid composition and positional distribution of fatty acids within the triglyceride in pigs. Animal 2015, 9, 1904–1911. [Google Scholar] [CrossRef] [PubMed]
- García-García, A.B.; Lamichhane, S.; Castejón, D.; Cambero, M.I.; Bertram, H.C. 1H HR-MAS NMR-based metabolomics analysis for dry-fermented sausage characterization. Food Chem. 2018, 240, 514–523. [Google Scholar] [CrossRef]
- Aluthge, N.D.; Van Sambeek, D.M.; Carney-Hinkle, E.E.; Li, Y.S.; Fernando, S.C.; Burkey, T.E. The pig microbiota and the potential for harnessing the power of the microbiome to improve growth and health. J. Anim. Sci. 2019, 97, 3741–3757. [Google Scholar] [CrossRef] [PubMed]
- Saladrigas-García, M.; Solà-Oriol, D.; López-Vergé, S.; D’Angelo, M.; Collado, M.C.; Nielsen, B.; Faldyna, M.; Pérez, J.F.; Martín-Orúe, S.M. Potential effect of two Bacillus probiotic strains on performance and fecal microbiota of breeding sows and their piglets. J. Anim. Sci. 2022, 100, skac163. [Google Scholar] [CrossRef]
- Kristensen, L.; Purslow, P.P. The effect of ageing on the water-holding capacity of pork: Role of cytoskeletal proteins. Meat Sci. 2001, 58, 17–23. [Google Scholar] [CrossRef]
- Rincker, P.J.; Killefer, J.; Ellis, M.; Brewer, M.S.; McKeith, F.K. Intramuscular fat content has little influence on the eating quality of fresh pork loin chops. J. Anim. Sci. 2008, 86, 730–737. [Google Scholar] [CrossRef]
- Hoz, L.; Lopez-Bote, C.J.; Cambero, M.I.; D’Arrigo, M.; Pin, C.; Santos, C.; Ordóñez, J.A. Effect of dietary linseed oil and α-tocopherol on pork tenderloin (Psoas major) muscle. Meat Sci. 2003, 65, 1039–1044. [Google Scholar] [CrossRef]
- Kasprzyk, A.; Tyra, M.; Marek, B. Fatty acid profile of pork from a local and a commercial breed. Arch. Anim. Breed. 2015, 58, 379–385. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Scollan, N.; Hocquette, J.F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Tikk, M.; Tikk, K.; Tørngren, M.A.; Meinert, L.; Aaslyng, M.D.; Karlsson, A.H.; Andersen, H.J. Development of inosine monophosphate and its degradation products during aging of pork of different qualities in relation to basic taste and retronasal flavor perception of the meat. J. Agric. Food Chem. 2006, 54, 7769–7777. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.T.; Samar, M.; Shami, A.A.; Mumtaz, M.W.; Mukhtar, H.; Tahir, A.; Shahzad-Ul-Hussan, S.; Chaudhary, S.U.; Kaka, U. 1H-NMR-Based Metabolomics: An Integrated Approach for the Detection of the Adulteration in Chicken, Chevon, Beef and Donkey Meat. Molecules 2021, 26, 4643. [Google Scholar] [CrossRef] [PubMed]
- Haskó, G.; Sitkovsky, M.V.; Szabó, C. Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol. Sci. 2004, 25, 152–157. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Shtarkman, I.N.; Smirnova, V.S.; Chernikov, A.V.; Bruskov, V.I. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice. Radiat. Res. 2006, 165, 538–545. [Google Scholar] [CrossRef]
- Kim, I.S.; Jo, E.K. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front. Pharmacol. 2022, 13, 1043970. [Google Scholar] [CrossRef]
- Castejón, D.; Villa, P.; Calvo, M.M.; Santa-María, G.; Herraiz, M.; Herrera, A. 1H-HRMAS NMR study of smoked Atlantic salmon (Salmo salar). Magn. Reson. Chem. 2010, 48, 693–703. [Google Scholar] [CrossRef]
Control Group | Probiotic Group | |
---|---|---|
Moisture (%) | 72.62 ± 2.22 a | 72.88 ± 1.98 a |
Ash (%) | 1.17 ± 0.16 a | 1.10 ± 0.11 a |
Protein (%) | 22.21 ± 2.06 a | 20.93 ± 1.82 a |
Intramuscular fat | 4.26 ± 0.68 b | 5.97 ± 0.57 a |
SFT * (mm) | 7.75 ± 2.01 b | 12.67 ± 2.05 a |
WHC ** | 42.89 ± 4.01 a | 42.97 ± 4.47 a |
pH (24 h post mortem) | 5.38 ± 0.10 a | 5.48 ± 0.08 a |
Batch | Intramuscular Fat | Subcutaneous Fat | ||
---|---|---|---|---|
Fatty Acid | Control Group | Probiotic Group | Control Group | Probiotic Group |
C14:0 | 1.18 ± 0.19 a | 1.00 ± 0.17 a | 1.25 ± 0.09 a | 1.17 ± 0.11 a |
C14:1 | 0.13 ± 0.07 a | 0.11 ± 0.05 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
C15:0 | 0.08 ± 0.01 a | 0.07 ± 0.02 a | 0.06 ± 0.01 a | 0.05 ± 0.01 a |
C16:0 | 22.25 ± 1.69 a | 22.12 ± 0.83 a | 22.82 ± 0.81 a | 21.88 ± 1.44 a |
C16:1n-9 | 0.43 ± 0.07 a | 0.47 ± 0.09 a | 0.47 ± 0.08 a | 0.47 ± 0.09 a |
C16:1n-7 | 2.39 ± 0.33 a | 2.82 ± 0.52 a | 2.04 ± 0.26 a | 2.21 ± 0.21 a |
C17:0 | 0.31 ± 0.07 a | 0.23 ± 0.04 a | 0.39 ± 0.06 a | 0.33 ± 0.07 a |
C17:1 | 0.37 ± 0.05 a | 0.34 ± 0.08 a | 0.37 ± 0.05 a | 0.32 ± 0.08 a |
C18:0 | 11.34 ± 0.98 a | 10.73 ± 0.9 a | 12.18 ± 0.98 a | 11.28 ± 1.31 a |
C18:1n-9 | 37.85 ± 3.78 a | 37.51 ± 3.01 a | 39.96 ± 1.94 a | 41.76 ± 1.54 a |
C18:1n-7 | 2.86 ± 0.55 a | 3.76 ± 0.83 a | 2.24 ± 0.47 a | 2.40 ± 0.24 a |
C18:2n-6 | 14.94 ± 1.96 a | 15.43 ± 1.95 a | 15.11 ± 1.16 a | 14.96 ± 1.88 a |
C18:3n-6 | 0.12 ± 0.09 a | 0.17 ± 0.05 a | 0.04 ± 0.02 a | 0.02 ± 0.00 a |
C18:3n-3 | 0.71 ± 0.09 a | 0.55 ± 0.11 a | 0.93 ± 0.11 a | 1.07 ± 0.17 a |
C18:4n-3 | 0.09 ± 0.03 a | 0.11 ± 0.02 a | 0.1 ± 0.02 a | 0.08 ± 0.02 a |
C20:0 | 0.17 ± 0.03 a | 0.15 ± 0.02 a | 0.18 ± 0.04 a | 0.17 ± 0.04 a |
C20:1n-9 | 0.62 ± 0.19 a | 0.56 ± 0.11 a | 0.74 ± 0.19 a | 0.77 ± 0.18 a |
C20:2 | 0.59 ± 0.17 a | 0.58 ± 0.19 a | 0.70 ± 0.14 a | 0.73 ± 0.10 a |
C20:3n-6 | 0.48 ± 0.12 a | 0.59 ± 0.14 a | 0.12 ± 0.02 a | 0.12 ± 0.02 a |
C20:4n-6 | 3.15 ± 0.78 a | 3.67 ± 0.57 a | 0.29 ± 0.07 a | 0.28 ± 0.07 a |
SFA | 35.68 ± 2.09 a | 34.33 ± 1.64 a | 36.31 ± 1.93 a | 34.89 ± 2.88 a |
MUFA | 44.58 ± 4.33 a | 45.91 ± 3.27 a | 46.47 ± 1.57 a | 47.86 ± 1.49 a |
PUFA | 19.74 ± 3.11 a | 19.77 ± 2.66 a | 17.22 ± 1.66 a | 17.25 ± 2.09 a |
n-6 | 17.41 ± 3.88 a | 18.55 ± 2.86 a | 15.55 ± 2.48 a | 15.38 ± 2.22 a |
n-3 | 0.74 ± 0.25 a | 0.67 ± 0.19 a | 0.99 ± 0.19 a | 1.15 ± 0.13 a |
h | 59.89 ± 2.08 a | 60.67 ± 1.51 a | 59.46 ± 2.05 a | 60.69 ± 2.05 a |
H | 22.98 ± 1.78 a | 22.78 ± 0.75 a | 23.65 ± 1.19 a | 23.05 ± 1.67 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba, C.; Castejón, D.; Remiro, V.; Rodríguez, J.M.; Sobrino, O.J.; de María, J.; Fumanal, P.; Fumanal, A.; Cambero, M.I. Ligilactobacillus salivarius MP100 as an Alternative to Metaphylactic Antimicrobials in Swine: The Impact on Production Parameters and Meat Composition. Animals 2023, 13, 1653. https://doi.org/10.3390/ani13101653
Alba C, Castejón D, Remiro V, Rodríguez JM, Sobrino OJ, de María J, Fumanal P, Fumanal A, Cambero MI. Ligilactobacillus salivarius MP100 as an Alternative to Metaphylactic Antimicrobials in Swine: The Impact on Production Parameters and Meat Composition. Animals. 2023; 13(10):1653. https://doi.org/10.3390/ani13101653
Chicago/Turabian StyleAlba, Claudio, David Castejón, Víctor Remiro, Juan M. Rodríguez, Odón J. Sobrino, Julián de María, Pilar Fumanal, Antonio Fumanal, and M. Isabel Cambero. 2023. "Ligilactobacillus salivarius MP100 as an Alternative to Metaphylactic Antimicrobials in Swine: The Impact on Production Parameters and Meat Composition" Animals 13, no. 10: 1653. https://doi.org/10.3390/ani13101653
APA StyleAlba, C., Castejón, D., Remiro, V., Rodríguez, J. M., Sobrino, O. J., de María, J., Fumanal, P., Fumanal, A., & Cambero, M. I. (2023). Ligilactobacillus salivarius MP100 as an Alternative to Metaphylactic Antimicrobials in Swine: The Impact on Production Parameters and Meat Composition. Animals, 13(10), 1653. https://doi.org/10.3390/ani13101653